Binary-coded and real-coded genetic algorithm in pipeline flow optimization

Similar documents
Numerical Simulation of Pressure Surge with the Method of Characteristics

Chapter Four Hydraulic Machines

REE 307 Fluid Mechanics II. Lecture 1. Sep 27, Dr./ Ahmed Mohamed Nagib Elmekawy. Zewail City for Science and Technology

Chapter Four Hydraulic Machines

CVE 372 HYDROMECHANICS EXERCISE PROBLEMS

Determining Liquid Capacity 4 th Annual Pipeline Knowledge Retention Chris Sonneborn November 7, 2013

Water hammer simulation by explicit central finite difference methods in staggered grids

An overview of the Hydraulics of Water Distribution Networks

AN EFFICIENT NUMERICAL SCHEME FOR MODELING TWO-PHASE BUBBLY HOMOGENEOUS AIR-WATER MIXTURES

A numerical study of SSP time integration methods for hyperbolic conservation laws

GODUNOV-TYPE SOLUTIONS FOR TWO-PHASE WATER HAMMER FLOWS

Transient Phenomena in Liquid/Gas Flow in Pipelines

TCCS Published by Elsevier Ltd. Selection and/or peer-review under responsibility of [name organizer]

Various lecture notes for

EFFECT OF LIQUID PHASE COMPRESSIBILITY ON MODELING OF GAS-LIQUID TWO-PHASE FLOWS USING TWO-FLUID MODEL

International Journal of Civil Engineering and Geo-Environment. Investigation of Parameters Affecting Discrete Vapour Cavity Model

Hydraulic (Piezometric) Grade Lines (HGL) and

Lesson 6 Review of fundamentals: Fluid flow

Gas Dynamics Equations: Computation

CIVE HYDRAULIC ENGINEERING PART II Pierre Julien Colorado State University

ACCEPTED VERSION.

Water Hammer Simulation For Practical Approach

Simulation of low pressure water hammer

Answers to Problem Set Number 04 for MIT (Spring 2008)

UNSTABLE OPERATION OF FRANCIS PUMP-TURBINE AT RUNAWAY: RIGID AND ELASTIC WATER COLUMN OSCILLATION MODES

A Very Brief Introduction to Conservation Laws

Engineering Fluid Mechanics

9. Pumps (compressors & turbines) Partly based on Chapter 10 of the De Nevers textbook.

Parameters Affecting Water Hammer Wave Attenuation, Shape and Timing

K. Ambika and R. Radha

MODEL BASED PIPELINE MONITORING WITH LEAK DETECTION

Math 660-Lecture 23: Gudonov s method and some theories for FVM schemes

On a simple model of isothermal phase transition

Simple waves and a characteristic decomposition of the two dimensional compressible Euler equations

A New Fourth-Order Non-Oscillatory Central Scheme For Hyperbolic Conservation Laws

IMPORTANCE OF NUMERICAL EFFICIENCY FOR REAL TIME CONTROL OF TRANSIENT GRAVITY FLOWS IN SEWERS

Department of Energy Fundamentals Handbook. THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW, Module 3 Fluid Flow

CapSel Euler The Euler equations. conservation laws for 1D dynamics of compressible gas. = 0 m t + (m v + p) x

Ilaboya, I. R. 1, *, Oti, E. O. 1, Atikpo E. 3, Enamuotor, B. O. 2, Umukoro, L. O Introduction

Comparison of MOC and Lax FDE for simulating transients in Pipe Flows

Surge Analysis Using Transient Pressure Theory

HYDRAULIC TRANSIENTS IN PUMPING SYSTEMS WITH HORIZONTAL PIPES

IMPROVED METHOD FOR SIMULATING FRICTIONAL LOSSES IN LAMINAR TRANSIENT LIQUID PIPE FLOW KAMIL URBANOWICZ, ZBIGNIEW ZARZYCKI

Applied Fluid Mechanics

Pumping Stations Design For Infrastructure Master Program Engineering Faculty-IUG

Mechanical Engineering Programme of Study

Hierarchical Reconstruction with up to Second Degree Remainder for Solving Nonlinear Conservation Laws

Notes: Outline. Shallow water equations. Notes: Shallow water equations. Notes:

Evolutionary Computation

Hydraulic Design Of Polyethylene Pipes

Design Methodology for Hydraulic Ram Pump

Propagation of the Hydraulic Head in an Elastic Pipeline. Blanka Filipova, Pavel Nevfiva, Stepan Ozana

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension

Severe slugging: modeling, simulation and stability criteria

Vacuum I. G. Franchetti CAS - Bilbao. 30/5/2011 G. Franchetti 1

Design of Restricted Orifice Surge Tank

Lecturer, Department t of Mechanical Engineering, SVMIT, Bharuch

Transient Characteristics of Radial Outflow Turbine Generators

ENGINEERING FLUID MECHANICS. CHAPTER 1 Properties of Fluids

0.3.4 Burgers Equation and Nonlinear Wave

SYNTHESIS OF A FLUID JOURNAL BEARING USING A GENETIC ALGORITHM

Experiment (3): Impact of jet

Meshless Computation of Water Hammer

Integrated analysis of hydraulic PTOs in WECs

Evaluation of pump characteristic from measurement of fast deceleration

Numerical Optimization: Basic Concepts and Algorithms

A Fourth-Order Central Runge-Kutta Scheme for Hyperbolic Conservation Laws

On the Modeling and Simulation of a Laser-Induced Caviation Bubble

CHAPTER THREE FLUID MECHANICS

APPLICATION OF GODUNOV-TYPE SCHEMES TO TRANSIENT MIXED FLOWS

FREE BOUNDARY PROBLEMS IN FLUID MECHANICS

PERFORMANCE OF A CENTRAL-TYPE JET PUMP II- EXPERIMENTAL STUDY ON WATER FLOW

FURTHER INVESTIGATION OF PARAMETERS AFFECTING WATER HAMMER WAVE ATTENUATION, SHAPE AND TIMING PART 2: CASE STUDIES

Reservoir Oscillations with Through Flow

Pump-turbine characteristics for analysis of unsteady flows

Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 17 Laminar and Turbulent flows

ICES REPORT A Multilevel-WENO Technique for Solving Nonlinear Conservation Laws

FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER

A method for avoiding the acoustic time step restriction in compressible flow

A general well-balanced finite volume scheme for Euler equations with gravity

Hydraulics Prof. Dr. Arup Kumar Sarma Department of Civil Engineering Indian Institute of Technology, Guwahati

BAE 820 Physical Principles of Environmental Systems

Numerical investigation of cavitation-regimes in a converging-diverging nozzle

ME 309 Fluid Mechanics Fall 2010 Exam 2 1A. 1B.

OE4625 Dredge Pumps and Slurry Transport. Vaclav Matousek October 13, 2004

Dynamic Behavior of a 2 Variable Speed Pump- Turbine Power Plant

c 2007 by Arturo S. León. All rights reserved.

University of Hail Faculty of Engineering DEPARTMENT OF MECHANICAL ENGINEERING. ME Fluid Mechanics Lecture notes. Chapter 1

Hydraulic (Fluid) Systems

Waves in a Shock Tube

Fluid Mechanics II 3 credit hour. Fluid flow through pipes-minor losses

Fluid Mechanics II Viscosity and shear stresses

Homework 6. Solution 1. r ( V jet sin( θ) + ω r) ( ρ Q r) Vjet

Target Simulations. Roman Samulyak in collaboration with Y. Prykarpatskyy, T. Lu

CHAPTER EIGHT P U M P I N G O F L I Q U I D S

FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4)

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)

1. INTRODUCTION TO CFD SPRING 2018

The multi-stage centred-scheme approach applied to a drift-flux two-phase flow model

STUDY OF FLOW AT THE AIR WATER INTERFACE

Transcription:

Mathematical Communications 41999), 35-42 35 Binary-coded and real-coded genetic algorithm in pipeline flow optimization Senka Vuković and Luka Sopta Abstract. The mathematical model for the liquid-gas mixture flow in pipelines is an initial-boundary value problem for a nonlinear hyperbolic conservation law system. This hyperbolic conservation law system together with boundary conditions is numerically solved using the essentially non-oscillatory ENO) schemes. The optimization problem is a boundary control problem, i.e. boundary conditions that cause pressure values in the pipeline as close as possible to the desired ones are to be found, considering given constraints. The applied optimization method is the genetic algorithm GA) with two different variable-to-chromosome coding strategies: binary coding and real coding. The results of both GA strategies applied to two pipeline flow optimization problems are presented and compared. Key words: pipeline, liquid-gas mixture, water-hammer, cavitation, optimization, genetic algorithm, binary-coded and real-coded GA AMS subject classifications: 65C20, 35L65, 49M99, 76-04 1. Introduction We are concerned with pipelines consisting of pipes, reservoirs, valves, pumps, turbines, surge tanks, air chambers etc. filled with a liquid-gas mixture. Perturbations at the boundaries of the pipes induce nonstationary fluid flow characterized by waterhammer and cavitation phenomena. Our goal is to control the operations with valves, turbines, pumps and other pipeline elements in order to minimize pressure oscillations. In this paper we not only propose a solution of this problem using essentially non-oscillatory schemes for the computation of the flow and the genetic algorithm as the optimization method see [8]), but also further improve of the optimization results obtained by applying of real coding instead of binary coding. This paper was presented at the Special Section: Appl. Math. Comput. at the 7 th International Conference on OR, Rovinj, 1998. Faculty of Engineering, University of Rijeka, Vukovarska 58, HR-51 000 Rijeka, Croatia, e-mail: senkav@rijeka.riteh.hr Faculty of Engineering, University of Rijeka, Vukovarska 58, HR-51 000 Rijeka, Croatia, e-mail: sopta@rijeka.riteh.hr

36 S. Vuković and L.Sopta 2. ENO-schemes in computation of liquid-gas mixture flow in pipelines The model for nonstationary liquid-gas mixture flow in a pipe is the conservation law system: t ϱν)+ x ϱν2 + p) = ϱ ϱ t + ϱν) =0 1) x g dz dx + λ ) 2D ν ν t κ) =c p s p 1 κ 3) p pν for x 0,L), t>0 together with relations: ϱ = 2) 1 c ) 2κ dp ϱ t, a t =. 4) p p ν dϱ t Here: x - position along the pipe axis, t -time,ϱ -density,ν -flowvelocity,p - pressure, g - gravity acceleration, z - height measured from a given level, λ - friction factor, D - circular cross section diameter of the pipe, κ - quantity of gas in a bubble, c 1,c 2 - constants of proportionality, p s - liquid-gas saturation pressure, p ν - vaporization pressure, ϱ t - liquid density, a t - sound velocity in the liquid in the pipe, L -pipelength. The equations are the mass conservation law 1), the momentum conservation law 2) see [3]) and the ideal gas law combined with the Boussinesque relation 3) see [6]). Initial and boundary conditions are needed in order to solve the system 1)- 4). Boundary conditions are derived from the influence of other pipeline elements: reservoirs, pumps, valves, turbines, air chambers, surge tanks etc. on the fluid flow and are usually non-linear see [2]). The physical phenomena in that way modeled are waterhammer and cavitation. The system 1)-4) is a hyperbolic conservation law system see [4]): u t + f u) = g u, x, t) 5) x where: ) ) ϱ u u =, f u) 2 = u ϱν 2, g u, x, t) = 2 + p ) 0 g dz dx x + λ 2D ) ) u 2 u 2 u 2 1 6) For this system Hugoniot loci in 1- and 2-characteristic fields are 1-parametric ξparameter) curves: ν s = û2 û 1 pû 1 1+ξ)) pû 1 ) û 1 ξ 1+ξ, u = ˆ u+ξ û 1 pû11+ξ)) pû 1) û 1ξ 1+ξ ) 7)

Binary and real coded GA for pipeline flows 37 differential equations for 1- and 2- rarefaction integral curves: ) u 1 1 ξ) = a) ± a u 2 ) ± a ) and 1- and 2- Riemann invariants: R 1) u) = u 2 where: a = - sound speed. dp d au1 ) d, R 2) u) = u 2 + 8) au1 ) d, 9) In order to numerically solve the initial-boundary value problem for 1)-4), we applied essentially non-oscillatory ENO) schemes see [7]) and with particular care we numerically modeled boundary conditions see [8]). 3. Binary-coded and real-coded genetic algorithm in optimization of pipeline flows Valve closures, pump failures, turbine operations etc. are boundary perturbations that generate pressure oscillations propagating through the pipeline. The optimization goal is to minimize these oscillations, i.e. the function: ϕ = max px 0,t) p 0 t), 10) t [t 1,t 2] where: x 0 - chosen position in the pipeline, [t 1,t 2 ] - time interval, p 0 - desired pressure values. The optimization variables are the cross section area of the valve opening as a function of time, the rotational speed of a centrifugal pump or of a turbine as a function of time etc. We chose the genetic algorithm GA) see [5]) as the optimization method. For the coding of the goal function real variables into the chromosome of an individual we used two different approaches. In the binary-coded GA the chromosome is: g 1 g l g i 1)l+1 g il g n 1)l+1 g nl, 11) g j {0, 1}, j =1,...,nl, 12) η i = g i 1)l+1 2 0 + g i 1)l+2 2 1 + + g il 2 l 1 { 0, 1,...,2 l 1}, 13) ξ i = ξ i,max ξ i,min 2 l η i + ξ i,min [ξ i,min,ξ i,max ], 1 i =1,...,n 14) and in the equivalent real-coded GA: g 1 g n, 15) g i { 0, 1,...,2 l 1}, i =1,...,n, 16) ξ i = ξ i,max ξ i,min 2 l g i + ξ i,min [ξ i,min,ξ i,max ], i =1,...,n 17) 1

38 S. Vuković and L.Sopta where: g j - gene, ξ i - goal function variable. Since the crossover operator makes cuts between genes in the binary-coded GA, it changes the value of the goal function variables, while in the real-coded GA it just interchanges the variables between individuals. The mutation operator is the only one that creates new variable values in the real-coded GA, so we must take a small mutation probability p m =0.05) in the binary-coded GA, and a much greater one p m =0.3 ) in the real-coded GA. 4. Results We implemented the chosen numerical and optimization methods in the C++ program. The results were obtained using the ENO-Localy-Lax-Friedrichs scheme of 3 rd order, and the GA with linear scaling of raw fitness, stochastic universal sampling for the selection operator, two-point crossover operator and multi-bit mutation operator. In both of the following two computations the real-coded GA gave better results than the binary-coded GA. We can conclude that for the solution of optimization problems where the goal function has real variables the real coding should be preferred to the binary coding. 4.1. Valve-closure optimization In the pipeline with the structure: reservoir - pipe - junction - pipe - valve, the valve has to be closed in the time interval [0s, 6s]. The binary-coded GA gave us the valve-closure strategy in Figure 2 that reduces pressure oscillations in respect to the initial value down to the value of ϕ min = 784015 Pa, while with the realcoded GA we obtained an improved valve-closure strategy in Figure 4 that gave us ϕ min = 736218 Pa. Pressure and velocities at the valve in both cases can be seen

Binary and real coded GA for pipeline flows 39 in Figure 1 and Figure 3, respectively. Figure 1. Binary-coded GA result: pressure and velocity at the valve

40 S. Vuković and L.Sopta Figure 2. Binary-coded GA result: optimal value-closure strategy Figure 3. Real-coded GA result: pressure and velocity at the valve

Binary and real coded GA for pipeline flows 41 Figure 4. Real-coded GA result: optimal value-closure strategy 4.2. Pump-stoppage optimization In the pipeline with the structure: reservoir - pipe - pump - pipe - junction - pipe - reservoir, the pump has to be stopped in the time interval [0s, 4s]. The binarycoded GA gave us the pump-stoppage strategy in Figure 6 that reduces pressure oscillations in respect to the initial value down to the value of ϕ min = 310760 Pa, while with the real-coded GA we obtained an improved pump-stoppage strategy in Figure 8 that gave us ϕ min = 308562 Pa. Pressure and velocities at the valve in both cases can be seen in Figure 5 and Figure 7, respectively. Figure 5. Binary-coded GA result: pressure and velocity at the pipe junction

42 S. Vuković and L.Sopta Figure 6. Binary-coded GA result: optimal pump-stoppage strategy Figure 7. Real-coded GA result: pressure and velocity at the pipe junction

Binary and real coded GA for pipeline flows 43 References Figure 8. Real-coded GA result: optimal pump-stoppage strategy [1] J. Abreu, E. Cabrera, J. Garcia-Serra, P. A. Lopez, Optimal closure of a valve for minimizing water hammer, in: Hydraulic Machinery and Cavitation II, Kluwer Academic Publishers, Dordrecht, 1996. [2] M. H. Chaudhry, Applied Hydraulic Transients, Van Nostrand Reinhold Company, New York, 1979. [3] J. H. Ferziger, M. Perić, Computational Methods for Fluid Dynamics, Springer-Verlag, Berlin, 1996. [4] E. Godlewski, P. A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, Springer-Verlag, New York, 1996. [5] E. D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley Publishing Company, New York, 1989. [6] C. Kranenburg, Gas release during transient cavitation in pipes, Journal of the Hydraulics Division 1001974), 1383 1397. [7] C. W. Shu, S. Osher S, Efficient implementation of essentially nonoscillatory shock-capturing schemes II, Journal of Computational Physics 831989), 32 78. [8] S. Vuković, Optimal Control of Nonstationary Pipeline Flows, Ph. D. thesis, Faculty of Engineering, University of Rijeka, 1998.