CELLULAR AUTOMATA SIMULATION OF TRAFFIC LIGHT STRATEGIES IN OPTIMIZING THE TRAFFIC FLOW

Similar documents
Spontaneous Jam Formation

Traffic Modelling for Moving-Block Train Control System

A MODIFIED CELLULAR AUTOMATON MODEL FOR RING ROAD TRAFFIC WITH VELOCITY GUIDANCE

Simulation study of traffic accidents in bidirectional traffic models

Transient situations in traffic flow: Modelling the Mexico City Cuernavaca Highway

Cellular Automata Model of Self-organizing Traffic Control in Urban Networks

Modeling Traffic Flow for Two and Three Lanes through Cellular Automata

An improved CA model with anticipation for one-lane traffic flow

Spontaneous-braking and lane-changing effect on traffic congestion using cellular automata model applied to the two-lane traffic

Emergence of traffic jams in high-density environments

An Interruption in the Highway: New Approach to Modeling Car Traffic

arxiv:cond-mat/ v3 [cond-mat.stat-mech] 18 Aug 2003

Advanced information feedback strategy in intelligent two-route traffic flow systems

Analysis of Phase Transition in Traffic Flow based on a New Model of Driving Decision

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 28 Nov 2001

Optimizing traffic flow on highway with three consecutive on-ramps

THE EXACTLY SOLVABLE SIMPLEST MODEL FOR QUEUE DYNAMICS

Modeling and simulation of highway traffic using a cellular automaton approach

Vehicular Traffic: A Forefront Socio-Quantitative Complex System

Car-Following Parameters by Means of Cellular Automata in the Case of Evacuation

IHSTIITOT CTS QA C45 B46. I A Al I

Resonance, criticality, and emergence in city traffic investigated in cellular automaton models

An Interruption in the Highway: New Approach to Modeling the Car-Traffic

A Continuous Model for Two-Lane Traffic Flow

The Physics of Traffic Jams: Emergent Properties of Vehicular Congestion

Exact results for deterministic cellular automata traffic models

Proceedings of the 2015 Winter Simulation Conference L. Yilmaz, W. K. V. Chan, I. Moon, T. M. K. Roeder, C. Macal, and M. D. Rossetti, eds.

Traffic Flow Simulation using Cellular automata under Non-equilibrium Environment

Available online at ScienceDirect. Transportation Research Procedia 2 (2014 )

Nonlinear Analysis of a New Car-Following Model Based on Internet-Connected Vehicles

Multi-Agent Systems. Bernhard Nebel, Felix Lindner, and Thorsten Engesser. Summer Term Albert-Ludwigs-Universität Freiburg

Kinetic Monte Carlo simulations of 1D and 2D traffic flows: Comparison of two look-ahead potentials

Cellular-automaton model with velocity adaptation in the framework of Kerner s three-phase traffic theory

Empirical Study of Traffic Velocity Distribution and its Effect on VANETs Connectivity

Non-equilibrium statistical mechanics and applications to transport modelling. Rosemary Harris

Cellular Automata Models of Traffic on Ant Trails

A Probability-Based Model of Traffic Flow

The Effect of off-ramp on the one-dimensional cellular automaton traffic flow with open boundaries

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 19 May 1999

Particle hopping models and traffic flow theory

Characteristics of vehicular traffic flow at a roundabout

Introduction. Pedestrian dynamics more complex than vehicular traffic: motion is 2-dimensional counterflow interactions longer-ranged

arxiv:cond-mat/ v1 10 Oct 1993

Dynamics of Motorized Vehicle Flow under Mixed Traffic Circumstance

Modelling and Simulation for Train Movement Control Using Car-Following Strategy

VEHICULAR TRAFFIC FLOW MODELS

Recent Researches in Engineering and Automatic Control

Chapter 5 Traffic Flow Characteristics

Pedestrian traffic models

Phase transitions of traffic flow. Abstract

Open boundary conditions in stochastic transport processes with pair-factorized steady states

From Applied Maths to Transport Modelling. Rosemary Harris

An extended microscopic traffic flow model based on the spring-mass system theory

arxiv: v1 [nlin.cg] 11 Nov 2015

Continuum Modelling of Traffic Flow

A lattice traffic model with consideration of preceding mixture traffic information

Phase transition on speed limit traffic with slope

Analytical investigation on the minimum traffic delay at a two-phase. intersection considering the dynamical evolution process of queues

Research Article Individual Subjective Initiative Merge Model Based on Cellular Automaton

Available online at ScienceDirect. Physics Procedia 57 (2014 ) 77 81

suppressing traffic flow instabilities

Incident-Related Travel Time Estimation Using a Cellular Automata Model

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 22 Jan 1998

Traffic flow theory involves the development of mathematical relationships among

arxiv: v2 [physics.soc-ph] 29 Sep 2014

Cellular Automata. Jason Frank Mathematical Institute

Assessing the uncertainty in micro-simulation model outputs

An Analysis of Numerical Methods on Traffic Flow Models

Simulating car accidents with Cellular Automata traffic flow model

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 11 Feb 1999

Modeling Traffic Flow on Multi-Lane Road: Effects of Lane-Change Manoeuvres Due to an On-ramp

No. 11 Analysis of the stability and density waves for trafc flow 119 where the function f sti represents the response to the stimulus received by the

2.1 Traffic Stream Characteristics. Time Space Diagram and Measurement Procedures Variables of Interest

Mesoscopic Traffic Flow Model Considering Overtaking Requirements*

Traffic Flow Theory and Simulation

Answers to Problem Set Number 02 for MIT (Spring 2008)

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

Proceedings of the 2012 Winter Simulation Conference C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, and A. M. Uhrmacher, eds.

A cellular automata traffic flow model considering the heterogeneity of acceleration and delay probability

A Cellular Automaton Model for Heterogeneous and Incosistent Driver Behavior in Urban Traffic

Available online Journal of Scientific and Engineering Research, 2017, 4(4): Research Article

Efficiency promotion for an on-ramp system based on intelligent transportation system information

CHAPTER 5 DELAY ESTIMATION FOR OVERSATURATED SIGNALIZED APPROACHES

The Booth Tolls for Thee

Statistical Mechanics-inspired Framework for Studying the Effects of Mixed Traffic Flows on Highway Congestion

Arterial signal optimization through traffic microscopic simulation

A Stochastic Continuous Cellular Automata Traffic Model with Fuzzy Decision Rules

Non-Oscillatory Central Schemes for a Traffic Flow Model with Arrhenius Look-Ahead Dynamics

An Improved Car-Following Model for Multiphase Vehicular Traffic Flow and Numerical Tests

arxiv: v1 [cond-mat.stat-mech] 16 Nov 2016

Delay of Incidents Consequences of Stochastic Incident Duration

Enhancing highway capacity by lane expansion and traffic light regulation

Phase Diagram, Density, And Current Density Profiles Of Totally Asymmetric Simple Exclusion Process For A Junction With Two Entrances and Two Exits

Cellular Automata Models of Pedestrian Dynamics

String and robust stability of connected vehicle systems with delayed feedback

NATHAN HALE HIGH SCHOOL PARKING AND TRAFFIC ANALYSIS. Table of Contents

CHAPTER 3. CAPACITY OF SIGNALIZED INTERSECTIONS

A Continuous Topography Approach for Agent Based Traffic Simulation, Lane Changing Model*

Traffic experiment reveals the nature of car-following

Critical Density of Experimental Traffic Jam

Transcription:

CELLULAR AUTOMATA SIMULATION OF TRAFFIC LIGHT STRATEGIES IN OPTIMIZING THE TRAFFIC FLOW ENDAR H. NUGRAHANI, RISWAN RAMDHANI Department of Mathematics, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University Jl. Meranti, Kampus IPB Dramaga, Bogor, 16680 Indonesia Abstracts. The behavior of traffic system controlled by traffic lights is presented under assumptions of city traffic on a single lane based on the optimal velocity model. The effect of differrent traffic light control strategies on the traffic flow is discussed using three different strategies, i.e. the synchronized, green wave, and random offset strategies. The flow-density diagrams are analyzed using these strategies. The numerical investigation is carried out using cellular automata model to get a better understanding of the microscopic behavior of the system under the three different traffic light strategies. Keywords: traffic light, traffic flow, cellular automata 1. INTRODUCTION There have been several approaches in mathematical modeling of traffic flow [2,4,6]. One approach, from a microscopic view, studies individual movements of vehicles and interactions between vehicle pairs. This approach considers driving behavior of every single vehicle and vehicle pair dynamics [2,4]. Another approach studies the macroscopic features of traffic flows such as flow rate, traffic density and travel speed [4]. The other approach in analyzing the traffic phenomena is by using the kinetic theory approach in analogy with gas dynamics in physics, which is called the kinetic theory of vehicular traffic [2,6] Because of ist function to support modern lifestyle, everybody tends to take part in the system of vehicular traffic. As a consequence, there are getting more-more vehicles on the streets. Unfortunately, the capacity of the existing street networks is often exceeded. Therefore, this situation often leads to some traffic problems such as traffic jams. The mathematical explanations and discussions on this matter has been done and getting more-more attention [5]. In urban networks, the flow is controlled by traffic lights. This can be considered as one possibility to reduce the traffic problems. But unfortunately, traffic *Tulisan ini merupakan bagian dari hasil penelitian yang didanai oleh Hibah Penelitian PHK A2 Departemen 13 Matematika IPB tahun 2005

14 ENDAR H NUGRAHANI engineers are often forced to question if the capacity of the network is exploited by the chosen control strategy. One possible method to answer such questions could be the use of vehicular traffic models in control systems as well as in the planning and design of transportation networks. For almost half a century, there were strong attempts to develop a theoretical framework of traffic science [3,7]. For some simulation works, the reader could refer to [1,7] This paper is aimed to discuss the modeling of vehicular traffic from a microscopic point of view using an optimal velocity model. This model is of interes because of ist ability to explain not only individual behavior of a vehicle, but also it s connectivity to some macroscopic values such as traffic flow and density. Furtermore, the model can be used nicely to explain the evolution of vehicle movements with a presence of a traffic light. Some numerical results is given from a cellular automata simulation, which shows how the traffic system behave at a traffic light under certain traffic light strategies. car i: 2. THE OPTIMAL VELOCITY MODEL The optimal velocity model is described by the following equation of motion of d 2 xi 2 dt av x i dxi dt where x i(t) is the posisiton of the i-th car at time t, V x i is the optimal velocity function, xi xi1 xi is the headway of the i-th car, and a is the sensitivity. With this model the behavior of a given car in a traffic system is described as follows. A driver always adjusts the car velocity to approach the optimal velocity, which is determined by the observed headway. Moreover his movement will also be influenced by the sensitivity a, which allows for the time lag τ that it takes for the car velocity to reach the optimal velocity, where τ = 1/a. The basic properties of an optimal velocity function are as follows. Is should be a mononically increasing function. Moreover, it should have an upper bound (maximal velocity), which could be determined by the traffic rule or by the technical limitations of the vehicle. Generally the graph of an optimal velocity function could take a form given in the following figure. (1) Figure 1. The general Optimal Velocity Functions.

JMA, VOL. 4, NO. 2, DESEMBER, 2005, 13-20 15 According to these basic properties, the following typical function is being chosen [S and N, 2003] V V max x tanh x x tanh x i i c c (2) where V max is the maximal velocity mentioned above. 2 3. TRAFFIC LIGHT STRATEGIES To be considered is the traffic flow on a single-lane roadway. There is a set of two traffic lights defined on this single-lane roadway, which is illustrated in Fig 2. Let the length of the roadway is L and the interval between the two traffic lights is L/2. The traffic flow is being studied under the periodic boundary condition, which means that for a given infinite road length, this schema is simply repeated periodically. Figure 2. Schematic illustration of the trrafic light model. There are three traffic light strategies to be considered, i.e. the synchronized, the green wave, and the random offset strategy. In synchronized strategy, the traffic lights are chosen to switch simultaneously after a fixed time period T/2. The traffic lights are assumed to flip periodically (green and red respectively) at regular time intervals T/2. Time T is called the cycle time of the traffic light. In the green wave strategy, the traffic light changes with a certain time delay T delay between the traffic light phases of two successive intersections. In the random switching strategy, the cycle time T changes randomly and the traffic lights change independently. In the simple synchronized strategy where all traffic lights change simultaneously from red (green) to green (red), the traffic flow does not depend on the number of traffic lights for the periodic boundary, but is affected by the space interval between the traffic lights. Therefore, the traffic problem reduces to the simple case of a single roadway with one traffic light in the synchronized strategy. 4. SIMULATION USING CELLULAR AUTOMATA In this paper, we analyze the impact of global traffic light control strategies, in particular, synchronized traffic lights, traffic lights with random offset, and with a defined offset in a recently proposed CA model for city traffic. Chowdhury and Schadschneider (CS) combine basic ideas from the Biham-Middleton-Levine (BML) model of city traffic and the Nagel-Schreckenberg (NaSch) model of highway traffic [1]. The BML model is a simple two-dimensional (square lattice) CA model. Each cell of the lattice represents an intersection of an east-bound and a north-bound street.

16 ENDAR H NUGRAHANI The spatial extension of the streets between two intersections is completely neglected. The cells (intersections) can either be empty or occupied by a vehicle moving to the east or to the north. In order to enable movement in two different directions, east-bound vehicles are updated at every odd discrete time step whereas north-bound vehicles are updated at every even time step. The velocity update of the cars is realized following the rules of the asymmetric simple exclusion process (ASEP): a vehicle moves forward by one cell if the cell in front is empty, otherwise, the vehicle stays at its actual position. The alternating movement of east-bound and north-bound vehicles corresponds to a traffic light s-cycle of one time step. In this simplest version of the BML model, lane changes are not possible, and therefore, the number of vehicles on each street is conserved. However, in the last few years, various modifications and extensions have been proposed for this model. The NaSch model is a probabilistic CA model for one-dimensional highway traffic. It is the simplest known CA model that can reproduce the basic phenomena encountered in real traffic, e.g., the occurrence of phantom jams. In order to obtain a description of highway traffic on a more detailed level, various modifications to the NS model have been proposed and many CA models were suggested in recent years. The motion in the NS model is implemented by a simple set of rules. The first rule reflects the tendency to accelerate until the maximum speed v max is reached. To avoid accidents, which are forbidden explicitly in the model, the driver has to brake if the speed exceeds the free space in front. This braking event is implemented by the second update rule. In the third update rule, a stochastic element is introduced. This randomizing takes into account the different behavioral patterns of the individual drivers, especially nondeterministic acceleration as well as overreaction while slowing down. Note, that the NaSch model with v max = 1 is equivalent to the ASEP which, in its deterministic limit, is used for the movement in the BML model. One of the main differences between the NaSch model and the BML model is the nature of jamming. In the NaSch model, traffic jams appear because of the intrinsic stochasticity of the dynamics. The movement of vehicles in the BML model is completely deterministic and stochasticity arises only from the random initial conditions. Additionally, the NaSch model describes vehicle movement and interaction with sufficiently high detail for most applications, while the vehicle dynamics on streets is completely neglected in the BML model (except for the effects of hard-core exclusion). In order to take into account the more detailed dynamics, the BML model is extended by inserting finite streets between the cells. On the streets, vehicles drive in accordance to the NS rules. Further, to take into account interactions at the intersections, some of the prescriptions of the BML model have to be modified. At this point, we want to emphasize that in the considered network, all streets are equal in respect to the processes at intersection, i.e., no streets or directions are dominant. The average densities, traffic light periods, etc., for all streets (intersections) are assumed to be equal in the following discussions. The configuration of the above mentioned cellular automata is given in Figure 3.

JMA, VOL. 4, NO. 2, DESEMBER, 2005, 13-20 17 Figure 3. The cellular automata configuration The results of the simulation using the cellular automata are given in the following Figures 4, 5, 6, and 7. It has been shown that a simple change of the update rules is sufficient to avoid the transition to a completely blocked state that occurs at a finite density in analogy to the BML model. Note, that this blocking is undesirable when testing different traffic light control strategies and is therefore avoided in our analyses. Furthermore, different global traffic light control strategies are presented and their impact on the traffic will be shown. Further it is illustrated that most of the numerical results affecting the dependence between the model parameters and the optimal solutions for the chosen control strategies may be derived by simple heuristic arguments in good agreement with the numerical results. In the summary, the results may be used benefitably for real urban traffic situations and whether it could be useful to consider improved control systems, e.g., autonomous traffic light control. Light density Heavy density Figure 4. Simulation results for the green wave strategy. Light density Heavy density Figure 5. Simulation results for the random offset strategy.

18 ENDAR H NUGRAHANI Scenario (a) Scenario (b) Scenario (c) Scenario (d) Scenario (e)

JMA, VOL. 4, NO. 2, DESEMBER, 2005, 13-20 19 Figure 6. The simulation results for the synchronized strategy using low traffic density. Scenario (a) Scenario (b) Scenario (c) Scenario (d)

20 ENDAR H NUGRAHANI Scenario (e) Figure 7. The simulation results for the synchronized strategy using high traffic density. 5. CONCLUDING REMARKS From the above discussions, some remarks could be given. Firstly, the optimal velocity model in traffic flow can describe the occurance of traffic jams by determining the critical headway. Secondly, among the traffic light strategies, the random offset gives the best value of traffic flow. Finally, it is worth to mention that some further studies are still needed to be done to consider different strategies and/or different assumptions. Also it is still needed to find the actual optimal cycle time of the traffic light, so that this result can be implemented directly in the real situation. Acknowledgements This research is partially funded by the Research Grant of the 2005 A2 Project of the Department of Mathematics, Bogor Agricultural University, Indonesia. References [1] E. Brockfeld, R. Barlovic, A. Schadschneider, M. Schreckenberg. Optimizing traffic lights in a cellular automaton for city traffic. Physical Review E 64, 056132 (2001). [2] I. Gasser and J. Struckmeier. Traffic models. Workshop on Modeling in Life and Material Sciences and in Technology, ICTP, Trieste, Italy (2004) [3] W. Jin. Traffic flow models and their numerical solutions. Thesis at the University of California Davis, 2000. [4] K. Nagel. Particle hopping vs. fluid dynamical models for traffic flow, LA-UR Preprint 95-4018 (1995). [5] K. Nagel and H. J. Herrmann. Deterministic models for traffic jams, HLRZ Preprint 46/93 (1993). [6] I. Prigogine and R. Herman, Kinetic Theory of Vehicular Traffic, Elsevier, Amsterdam, 1971. [7] M. Sasaki and T. Nagatani. Transition and saturation of traffic flow controlled by traffic lights. Physica A 325 (2003), 531 546.