Chemistry 201: General Chemistry II - Lecture

Similar documents
ACID BASE EQUILIBRIUM

Chapter 16 Acid-Base Equilibria

Properties of Acids and Bases

ADVANCED PLACEMENT CHEMISTRY ACIDS, BASES, AND AQUEOUS EQUILIBRIA

Cu 2+ (aq) + 4NH 3(aq) = Cu(NH 3) 4 2+ (aq) I (aq) + I 2(aq) = I 3 (aq) Fe 3+ (aq) + 6H 2O(l) = Fe(H 2O) 6 3+ (aq) Strong acids

Chapter 14 Acids and Bases

Chap 16 Chemical Equilibrium HSU FUYIN

Chapter 14: Acids and Bases

Chemical Equilibrium Chapter 6

Chapter 14. Objectives

Lecture Presentation. Chapter 16. Acid Base Equilibria. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc.

ACID-BASE EQUILIBRIA. Chapter 16

Chapter 10. Acids, Bases, and Salts

Acids and Bases. A strong base is a substance that completely ionizes in aqueous solutions to give a cation and a hydroxide ion.

11/15/11. Chapter 16. HA(aq) + H 2 O(l) H 3 O + (aq) + A (aq) acid base conjugate conjugate

Chapter 16. Acid-Base Equilibria

CHAPTER 8: ACID/BASE EQUILIBRIUM

Chapter 7 Acids and Bases

The Chemistry of Acids and Bases

Chapter 14 Acid- Base Equilibria Study Guide

Aqueous Equilibria, Part 1 AP Chemistry Lecture Outline

Chapter 16. Acids and Bases. Copyright Cengage Learning. All rights reserved 1

Chapter 8 Acid-Base Equilibria

Acids and Bases. Chapter 15. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Principles of Reactivity: The Chemistry of Acids and Bases. Acids, Bases and Arrhenius

Acid/Base Theories The common characteristics of acids

Contents and Concepts

HA(aq) H + (aq) + A (aq) We can write an equilibrium constant expression for this dissociation: [ ][ ]

Chapter 16 Acid-Base Equilibria

Chapter 16. Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten

Acids and bases. for it cannot be But I am pigeon-liver d and lack gall To make oppression bitter Hamlet. Different concepts Calculations and scales

Acid and Bases. Physical Properties. Chemical Properties. Indicators. Corrosive when concentrated. Corrosive when concentrated.

(Label the Conjugate Pairs) Water in the last example acted as a Bronsted-Lowry base, and here it is acting as an acid. or

Aqueous Equilibria: Acids and Bases

Chapter 16 - Acids and Bases

Weak acids are only partially ionized in aqueous solution: mixture of ions and un-ionized acid in solution.

Acids and bases, as we use them in the lab, are usually aqueous solutions. Ex: when we talk about hydrochloric acid, it is actually hydrogen chloride

Chapter 14. Acids and Bases

NATURE OF ACIDS & BASES

Acids and Bases Unit 11

AP Chemistry CHAPTER 16 STUDY GUIDE Acid-Base Equilibrium

Acid/Base Definitions

Acids and Bases. CHEM 102 T. Hughbanks. In following equilibrium, will reactants or products be favored? Strong acid (HCl) + Strong base (NaOH)

Advanced Placement Chemistry Chapters Syllabus

CHAPTER 14 ACIDS AND BASES

Chapters 15 & 16 ACIDS & BASES ph & Titrations

Chapter 16 Acid Base Equilibria

Chemistry: The Central Science. Chapter 16: Acid-Base Equilibria. 16.1: Acids and Bases: A Brief Review

The Arrhenius Definition of Acids & Bases

Chapter 16: Acid Base Equilibria Chapter 16 Acid-Base Equilibria Learning Standards & Objectives;

Chemistry I Notes Unit 10: Acids and Bases

CHAPTER 13: ACIDS & BASES. Section Arrhenius Acid & Bases Svante Arrhenius, Swedish chemist ( ).

Aqueous solutions of acids have a sour Aqueous solutions of bases taste bitter

Chemistry 201: General Chemistry II - Lecture

Acid-Base Chemistry & Organic Compounds. Chapter 2

Section 32 Acids and Bases. Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved.

Chapter 15 - Acids and Bases Fundamental Concepts

Acids, Bases and ph Chapter 19

Acids - Bases in Water

Chapter 15. Properties of Acids. Structure of Acids 7/3/08. Acid and Bases

Acid Base Equilibria

Chapter 16. Dr Ayman Nafady

8.1 Explaining the Properties of Acids & Bases. SCH4U - Chemistry, Gr. 12, University Prep

A) Arrhenius Acids produce H+ and bases produce OH not always used because it only IDs X OH as basic species

Lecture 20 Chapter 17, Sections 4-5 More weak acids and bases. Identifying acids and bases Conjugate acids and bases Salts of weak acids and bases

Introduction to Acids & Bases. Packet #26

Chapter Menu Chapter Menu

Chapter 16. Acid-Base Equilibria

Contents and Concepts

Unit Nine Notes N C U9

Advanced Chemistry. Approximate Timeline. Students are expected to keep up with class work when absent. CHAPTER 14 ACIDS & BASES

ACIDS AND BASES. Note: For most of the acid-base reactions, we will be using the Bronsted-Lowry definitions.

Honors Chemistry Study Guide for Acids and Bases. NH4 + (aq) + H2O(l) H3O + (aq) + NH3(aq) water. a)hno3. b) NH3

Wednesday, February 25, Acid and Base Reactions

AP Chemistry Study Guide 8 v Stomach acid and heartburn Ø The cells that line your stomach produce hydrochloric acid To kill unwanted bacteria To

Acids & Bases. Strong Acids. Weak Acids. Strong Bases. Acetic Acid. Arrhenius Definition: Classic Definition of Acids and Bases.

Chemistry 102 Chapter 15 ACID-BASE CONCEPTS

Acid-Base Chemistry. There are a couple of ways to define acids and bases Brønsted-Lowry acids and bases. Lewis acids and bases

Chapter 8 Acid-Base Equilibria

Acids and Bases. Properties, Reactions, ph, and Titration

The ph of aqueous salt solutions

Chpt 16: Acids and Bases

Chapter 16 Acids and Bases. Chapter 16 Acids and Bases

Chapter 17 Acids and Bases

Unit 9. Acids, Bases, & Salts Acid/Base Equilibrium

Solutions are aqueous and the temperature is 25 C unless stated otherwise.

What we learn from Chap 17

Acids & Bases. Chapter 17

Reactions in Aqueous Solutions I: Acids, Bases & Salts

Chapter 10. Acids and Bases

Chemistry 400 Homework #3, Chapter 16: Acid-Base Equilibria

Name AP CHEM / / Chapter 14 Outline Acids and Bases

1.10 Structural formulas

Chapter Test B. Chapter: Acids and Bases

Acids and Bases. Unit 10

INTRODUCTION TO ACIDS AND BASES

CHAPTER 14 THE CHEMISTRY OF ACIDS AND BASES

g. Looking at the equation, one can conclude that H 2 O has accepted a proton from HONH 3 HONH 3

Acid Dissociation Constant

Chapter In each case the conjugate base is obtained by removing a proton from the acid: (a) OH (b) I (c)

Transcription:

Chemistry 201: General Chemistry II - Lecture Dr. Namphol Sinkaset Chapter 17 Study Guide Concepts 1. There are multiple definitions for acids and bases. 2. An Arrhenius acid is a substance that produces H + (H 3 O + ) ions in aqueous solution. An Arrhenius base is a substance that produces OH ions in aqueous solution. 3. A Brønsted-Lowry acid is a proton donor whereas a Brønsted-Lowry base is a proton acceptor. 4. Under the Brønsted-Lowry definitions, acids and bases always occur in pairs. 5. Substances that can act as either an acid or base are called amphoteric. 6. Conjugate acid-base pairs are two substances related to each other by a transfer of a proton. 7. A Lewis acid is an electron pair acceptor. A Lewis base is an electron pair donor. 8. A strong acid completely ionizes in solution. 9. A weak acid partially ionizes in solution. 10. Strong acids include: hydrochloric, hydrobromic, hydroiodic, nitric, chloric, perchloric, bromic, perbromic, iodic, periodic, and sulfuric acids. 11. Weak acids establish an equilibrium between their ionized and nonionized forms. 12. The stronger the acid, the weaker its conjugate base. 13. An acid dissociation constant, K a, is an equilibrium constant written for the equilibrium set up by a weak acid. 14. Water reacts with itself in an autoionization reaction. 15. The ion product constant for water, K w, is the equilibrium constant written for the autoionization reaction of water. Note that K w = 1.00 10 14. 16. When [H 3 O + ] = [OH ], a solution is neutral. 17. Acidic solutions have additional H 3 O + ions. Basic solutions have additional OH ions. Regardless, the product of hydronium and hydroxide ions always equals K w. 18. ph is another way to specify the acidity of a solution. ph < 7 is acidic, ph = 7 is neutral, and ph > 7 is basic. 1

19. The log function has its own significant figure rule. 20. The p function is the mathematical operation of taking the negative log. 21. Weak acid equilibrium problems can be solved using techniques applied to ordinary equilibria. In these problems, we ignore the insignificant contribution of H 3 O + from the autoionization of water. 22. The strength of a weak acid can also be characterized by its percent ionization. 23. A mixture of a strong acid with one or more weak acids can be treated as if the strong acid is the only component. 24. A mixture of weak acids may need to be solved as a double equilibrium problem depending on their relative K a s. 25. Everything discussed about acids applies to bases. 26. Strong bases ionize completely. Most hydroxides of Group 1 and Group 2 metals are strong bases. 27. Weak bases produce OH by pulling a proton off water. 28. The strength of a weak base depends on its base ionization constant, K b. It is the equilibrium constant for a weak base. 29. Some ions can act as either weak acids or weak bases. 30. Anions that are conjugate bases of weak acids are themselves weak bases. 31. Anions that are conjugate bases of strong acids are ph neutral. 32. Conjugate acid/base pairs have related K a s and K b s. 33. Cations that are conjugate acids of weak bases are themselves weak acids. 34. Small, highly-charged metal cations form weakly acidic solutions. 35. Salt solutions can be either neutral, acidic, or basic. If the cation is a weak acid, and the anion is a weak base, then the ph depends on the K a and K b. 36. Acids that have more than one acidic proton are called polyprotic acids. 37. Generally, successive K a s are much smaller than the 1st, so polyprotic acids only need to be solved for the first ionization. Exceptions include sulfuric acid and when K a s are within a few hundred of each other. Exceptions must be solved as a double equilibrium problem. 38. The strength of a binary acid depends on bond polarity and bond strength. When H holds the partial negative charge and the bond is relatively weak, the acid will be strong. 2

39. Oxyacid (oxoacid) strength depends on the electronegativity of Y and the number of O atoms attached to Y. Oxyacids that have Y s with higher electronegativities and more O atoms are stronger acids. Equations 1. K a = [H 3O + ][A ] [HA] (General acid dissociation expression) 2. K w = [H 3 O + ][OH ] (Ion product constant for water) 3. ph = log [H 3 O + ] (Definition of ph) 4. ph + poh = 14.00 (Relationship between ph and poh) 5. % ionization = [ionized acid] [initial acid] 100% = [H 3O + ] equil [HA] init 100% (% ionization) 6. K b = [BH+ ][OH ] [B] (General base association equation) 7. K a K b = K w = 1.00 10 14 (Relationship between K a and K b ) 8. pk a = log K a (pk a expression) 9. pk b = log K b (pk b expression) Representative Problems R43. What are the concentrations of all the substances in a 1.0 M solution of hydrogen peroxide, H 2 O 2? What is the ph of the solution? For H 2 O 2, K a = 1.8 10 12. We determine that H 2 O 2 must be a weak acid because they give us the K a. The acid dissociation equation is then: The acid dissociation constant is then: We set up our chart and fill it in as usual. H 2 O 2 (aq) + H 2 O (l) H 3 O + (aq) + HOO (aq) K a = [H 3O + ][HOO ] [H 2 O 2 ] Reaction: H 2 O 2(aq) + H 2 O (l) H 3 O + (aq) + HOO (aq) Initial 1.0 0 0 Change x +x +x Equil. 1.0 x x x 3

We put the equilibrium concentrations into the K a expression. K a = [H 3O + ][HOO ] [H 2 O 2 ] 1.8 10 12 = (x)(x) 1.0 x 1.8 10 12 = x2 1.0 x = 1.3 4 10 6 Checking our approximation, we get 0.00013%, well within the 5% requirement. The concentrations of everything in solution are: [H + ] = 1.3 10 6 M, [HOO ] = 1.3 10 6 M, [H 2 O 2 ] = 1.0 M. (You d have to go out to 0.9999987 M to see a difference, but of course, sig figs limit us from going out that far). To find the ph, we just take the -log of the [H + ]. ph = log [H + ] = log(1.3 4 10 6 ) = 5.87 3 = 5.87 R55. Quinine, an important drug in treating malaria, is a weak Brønsted base that we may represent as Qu. To make it more soluble in water, it is put into a solution as its conjugate acid, which we may represent as H-QuCl. What is the calculated ph of a 0.15 M solution of H-Qu +? Its pk a is 8.52 at 25 C. Another equilibrium problem, and we use the exact same steps we ve been using. First, identify the equilibrium reaction and write its K a expression. H-Qu + (aq) + H 2O (l) H 3 O + (aq) + Qu (aq) K a = [H 3O + ][Qu] [H-Qu + ] We set up the chart, filling it in with the given information. Reaction: H-Qu + (aq) + H 2O (l) H 3 O + (aq) + Qu (aq) Initial 0.15 0 0 Change x +x +x Equil. 0.15 x x x 4

Before we fill in everything into the K a expression, we need to get the value of K a from the given pk a. pk a = log K a 8.52 = log K a 8.52 = log K a K a = 3.0 2 10 9 K a = [H+ ][Qu] [H-Qu + ] 3.0 2 10 9 = (x)(x) 0.15 x 3.0 2 10 9 = x2 0.15 x = 2.1 3 10 5 Checking our approximation, we get 0.014%. Now, we calculate the solution ph. ph = log [H + ] = log(2.1 3 10 5 ) = 4.67 1 = 4.67 R102. What is [OH ] in an aqueous solution that is 5.0% NaClO by mass and also 0.0050% NaOH by mass? What is the ph of the solution? (Assume d of solution = 1.0 g/ml.) In water, NaClO dissociates into Na + and ClO ions. Since Na + cannot donate protons and isn t highly-charged, it is not a weak acid and thus is a neutral cation. ClO can accept a proton to form HClO, hypochlorous acid. This means that ClO is a weak base. We write a base equilibrium for the ClO in water. ClO (aq) + H 2O (l) HClO (aq) + OH (aq) Thus, we need to calculate the concentration of ClO. 5.0 g NaClO 1.0 g solution 1 mole NaClO 1000 ml solution = 0.67 2 M 100.0 g solution 1.0 ml solution 74.44 g NaClO 1 L solution Since NaClO dissociates completely, [ClO ] = 0.067 2 M. Additionally, there is NaOH in the solution. Sodium hydroxide is a strong base, so it dissociates completely into Na + 5

(which again is a neutral cation) and OH. Since OH appears in the equilibrium, we need to know its concentration. 0.0050 g NaOH 1.0 g solution 1 mole NaOH 1000 ml solution = 0.0012 5 M 100.0 g solution 1.0 ml solution 39.998 g NaOH 1 L solution Again, since NaOH dissociates completely, [OH ] = 0.00125 0 M. Now we set up our equilibrium chart and fill in. Reaction: OCl (aq) + H 2O (l) HClO (aq) + OH (aq) Initial 0.67 2 0 0.0012 5 Change x +x +x Equil. 0.67 2 x x x + 0.0012 5 To calculate, we need the K b. Conjugate bases are rarely found in a K b table, so we need to use the K a of HClO to find the K b of OCl. Consulting an acid dissociation constant table, we find that K a = 2.9 10 8 for HClO. K a K b = K w (2.9 10 8 )K b = 1.00 10 14 Now we set up our K b expression and solve. K b = 3.4 5 10 7 K b = [HClO][OH ] [OCl ] 3.4 5 10 7 = (x)(x + 0.0012 5) 0.67 2 x 3.4 5 10 7 = 0.0012 5x 0.67 2 x = 1.8 5 10 4 Before continuing, we verify that our approximation is valid. Comparing x to 0.0012 5, we find that it is 14. 8 %, so we re in trouble. We have to go through and use the quadratic equation. 3.4 5 10 7 = (x)(x + 0.0012 5) 0.67 2 x (3.4 5 10 7 )(0.067 2 x) = x 2 + 0.0012 5 x 2.3 2 10 8 (3.4 5 10 7 )x = x 2 + 0.0012 5 x Now we solve for x with the quadratic equation. 0 = x 2 + 0.0012 5 x 2.3 2 10 8 6

x = b ± b 2 4ac 2a = 0.00125 ± (0.00125) 2 4(1)( 2.32 10 8 ) 2(1) 0.00125 ± 0.00129 = 2 = 2.00 10 4 or -1.27 10 3 The negative root doesn t make physical sense, so x = 2.0 0 10 4 (our sig figs are limited by what s in K b ). From our chart, [OH ] = 1.4 5 10 3 M which equals 1.5 10 3 M reported to the correct number of sig figs. We can calculate ph by going through poh. poh = log [OH ] = log(1.4 5 10 3 ) = 2.83 9 Of course, ph + poh = 14.00, so ph of the solution is 11.16. 7