Shear Wave Velocity Estimation Utilizing Wireline Logs for a Carbonate Reservoir, South-West Iran

Similar documents
A Fast Method For Estimating Shear Wave Velocity By Using Neural Network

A look into Gassmann s Equation

SEG/New Orleans 2006 Annual Meeting

Some consideration about fluid substitution without shear wave velocity Fuyong Yan*, De-Hua Han, Rock Physics Lab, University of Houston

Generation of synthetic shear wave logs for multicomponent seismic interpretation

THE ROCK PHYSICS HANDBOOK

Crosswell tomography imaging of the permeability structure within a sandstone oil field.

ATTENUATION CHARACTERISTICS OF SAUDI ARABIAN RESERVOIR SANDSTONE AND LIMESTONE CORES

Velocity-porosity relationships, 1: Accurate velocity model for clean consolidated sandstones

SPE These in turn can be used to estimate mechanical properties.

Characterization of Heterogeneities in Carbonates Ravi Sharma* and Manika Prasad, Colorado School of Mines

RESEARCH PROPOSAL. Effects of scales and extracting methods on quantifying quality factor Q. Yi Shen

ROCK PHYSICS DIAGNOSTICS OF NORTH SEA SANDS: LINK BETWEEN MICROSTRUCTURE AND SEISMIC PROPERTIES ABSTRACT

Fluid-property discrimination with AVO: A Biot-Gassmann perspective

ACAE -- ESTUDIO PILOTO DE DIAGNÓSTICO DE FÍSICA DE ROCAS DEL YACIMIENTO CABALLOS EN LOS CAMPOS PUERTO COLON - LORO Y HORMIGA AREA SUR PUTUMAYO

6298 Stress induced azimuthally anisotropic reservoir - AVO modeling

An empirical method for estimation of anisotropic parameters in clastic rocks

IDENTIFYING PATCHY SATURATION FROM WELL LOGS Short Note. / K s. + K f., G Dry. = G / ρ, (2)

SUMMARY INTRODUCTION EXPERIMENTAL PROCEDURE

The relationship between elastic-wave velocities and density in sedimentary rocks: A proposal

Determination of the Laminar, Structural and Disperse Shale Volumes Using a Joint Inversion of Conventional Logs*

Summary. Simple model for kerogen maturity (Carcione, 2000)

BPM37 Linking Basin Modeling with Seismic Attributes through Rock Physics

RP 2.6. SEG/Houston 2005 Annual Meeting 1521

Rock physics of a gas hydrate reservoir. Gas hydrates are solids composed of a hydrogen-bonded ROUND TABLE

Estimating Permeability from Acoustic Velocity and Formation Resistivity Factor

GRAIN SORTING, POROSITY, AND ELASTICITY. Jack Dvorkin and Mario A. Gutierrez Geophysics Department, Stanford University ABSTRACT

Uncertainties in rock pore compressibility and effects on time lapse seismic modeling An application to Norne field

SEG Houston 2009 International Exposition and Annual Meeting. that the project results can correctly interpreted.

Velocity porosity relationships: Predictive velocity model for cemented sands composed of multiple mineral phases

Calibration of the petro-elastic model (PEM) for 4D seismic studies in multi-mineral rocks Amini, Hamed; Alvarez, Erick Raciel

Quick Look : Rule Of Thumb of Rock Properties in Deep Water, Krishna-Godavari Basin

Integrating rock physics and full elastic modeling for reservoir characterization Mosab Nasser and John B. Sinton*, Maersk Oil Houston Inc.

Recent advances in application of AVO to carbonate reservoirs: case histories

Rock Physics Perturbational Modeling: Carbonate case study, an intracratonic basin Northwest/Saharan Africa

Competing Effect of Pore Fluid and Texture -- Case Study

Geological Classification of Seismic-Inversion Data in the Doba Basin of Chad*

AVO Attributes of a Deep Coal Seam

The Hangingstone steam-assisted gravity drainage

P314 Anisotropic Elastic Modelling for Organic Shales

Reservoir Characteristics of a Quaternary Channel: Incorporating Rock Physics in Seismic and DC Resistivity Surveys

LINK BETWEEN ATTENUATION AND VELOCITY DISPERSION

Th LHR2 08 Towards an Effective Petroelastic Model for Simulator to Seismic Studies

Rock Physics Modeling in Montney Tight Gas Play

Velocity Measurements of Pore Fluids at Pressure and Temperature: Application to bitumen

A Thesis. Presented to. the Faculty of the Department of Earth and Atmospheric Sciences. University of Houston. In Partial Fulfillment

AVO responses for varying Gas saturation sands A Possible Pathway in Reducing Exploration Risk

A New AVO Attribute for Hydrocarbon Prediction and Application to the Marmousi II Dataset*

The elastic properties such as velocity, density, impedance,

Practical Gassmann fluid substitution in sand/shale sequences

Researcher 2015;7(9)

Hydrogeophysics - Seismics

We Simultaneous Joint Inversion of Electromagnetic and Seismic Full-waveform Data - A Sensitivity Analysis to Biot Parameter

Seismic Velocity Dispersion and the Petrophysical Properties of Porous Media

Evaluation of Rock Properties from Logs Affected by Deep Invasion A Case Study

VELOCITY MODELING TO DETERMINE PORE ASPECT RATIOS OF THE HAYNESVILLE SHALE. Kwon Taek Oh

Dependence of critical porosity on pore geometry and pore structure and its use in estimating porosity and permeability

Rock Physics and Quantitative Wavelet Estimation. for Seismic Interpretation: Tertiary North Sea. R.W.Simm 1, S.Xu 2 and R.E.

Temperature Dependence of Acoustic Velocities in Gas-Saturated Sandstones

We apply a rock physics analysis to well log data from the North-East Gulf of Mexico

Short Note. A simple derivation of the effective stress coefficient for seismic velocities in porous rocks. Boris Gurevich. n = 1 K 0 /K s, (4)

Unjacketed bulk compressibility of sandstone in laboratory experiments. R. M. Makhnenko 1 and J. F. Labuz 1

An empirical study of hydrocarbon indicators

Pre-Stack Seismic Inversion and Amplitude Versus Angle Modeling Reduces the Risk in Hydrocarbon Prospect Evaluation

Constraining seismic rock-property logs in organic shale reservoirs

P- and S-Wave Velocity Measurements and Pressure Sensitivity Analysis of AVA Response

Downloaded 02/05/15 to Redistribution subject to SEG license or copyright; see Terms of Use at

Partial Saturation Fluid Substitution with Partial Saturation

SRC software. Rock physics modelling tools for analyzing and predicting geophysical reservoir properties

3D petrophysical modeling - 1-3D Petrophysical Modeling Usning Complex Seismic Attributes and Limited Well Log Data

Integration of rock attributes to discriminate Miocene reservoirs for heterogeneity and fluid variability

Estimating rock porosity and fluid saturation using only seismic velocities

QUANTITATIVE ANALYSIS OF SEISMIC RESPONSE TO TOTAL-ORGANIC-CONTENT AND THERMAL MATURITY IN SHALE GAS PLAYS

Measurement of elastic properties of kerogen Fuyong Yan, De-hua Han*, Rock Physics Lab, University of Houston

Integrating reservoir flow simulation with time-lapse seismic inversion in a heavy oil case study

Key Laboratory of Geo-detection (China University of Geosciences, Beijing), Ministry of Education, Beijing , China

Reservoir Rock Properties COPYRIGHT. Sources and Seals Porosity and Permeability. This section will cover the following learning objectives:

Mechanical Properties Log Processing and Calibration. R.D. Barree

The role of seismic modeling in Reservoir characterization: A case study from Crestal part of South Mumbai High field

Poisson's Ration, Deep Resistivity and Water Saturation Relationships for Shaly Sand Reservoir, SE Sirt, Murzuq and Gadames Basins, Libya (Case study)

Edinburgh Anisotropy Project, British Geological Survey, Murchison House, West Mains

Rock physics and AVO applications in gas hydrate exploration

Pore Pressure Prediction and Distribution in Arthit Field, North Malay Basin, Gulf of Thailand

DISPERSION ANALYSIS OF ACOUSTIC VELOCITIES IN POLISH SHALE ROCKS: EFFECTS OF PETROPHYSICAL PROPERTIES AND MINERALOGY

Use of Seismic and EM Data for Exploration, Appraisal and Reservoir Characterization

The Weyburn Field in southeastern Saskatchewan,

Theoretical Approach in Vp/Vs Prediction from Rock Conductivity in Gas Saturating Shaly Sand

AFI (AVO Fluid Inversion)

Exploration / Appraisal of Shales. Petrophysics Technical Manager Unconventional Resources

SENSITIVITY ANALYSIS OF THE PETROPHYSICAL PROPERTIES VARIATIONS ON THE SEISMIC RESPONSE OF A CO2 STORAGE SITE. Juan E. Santos

Basics of Geophysical Well Logs_Porosity

Reservoir properties inversion from AVO attributes

Summary. Seismic Field Example

1: Research Institute of Petroleum Industry, RIPI, Iran, 2: STATOIL ASA, Norway,

Rock Physics & Formation Evaluation. Special Topic

Methane hydrate rock physics models for the Blake Outer Ridge

ROCK PHYSICS MODELING FOR LITHOLOGY PREDICTION USING HERTZ- MINDLIN THEORY

Role of Data Analysis in fixing parameters for petrophysics & rockphysics modeling for effective seismic reservoir characterization A case study

THE EFFECT OF CEMENTATION ON THE SEISMIC PROPERTIES OF SANDSTONE:

Formation Evaluation: Logs and cores

Transcription:

Iranian Int. J. Sci. 4(2), 2003, p. 209-221 Shear Wave Velocity Estimation Utilizing Wireline Logs for a Carbonate Reservoir, South-West Iran Eskandari, H. 1, Rezaee, M.R., 2 Javaherian, A., 3 and Mohammadnia, M., 4 1 Amirkabir University of Technology, 2 Tehran University, Faculty of Science, Geology Dept. 3 Tehran University, Geophysics Institute, 4 Research Institute of Petroleum Industry, NIOC, (received: 7/7/2003 ; accepted: 3/10/2003) Abstract Estimation of shear wave (Vs) velocity using log data is an important approach in the seismic exploration and development of a reservoir. The velocity dispersion due to frequency difference between ultrasonic laboratory measurement on cores and low frequency is about 3.5%, and thus laboratory measurement velocities are more than sonic log in this study. Therefore, we used compressional wave velocity from sonic log to predicate shear wave velocity. In this study, a new statistical method is presented to predict Vs from wireline log data. The model can predict shear wave velocity from petrophysical parameters and any pair of compressional wave velocity, porosity and density in carbonate rocks. The established method can estimate shear wave velocity in carbonate rocks with correlation coefficient of about 0.94. Kaywords: Petrophysics, acoustic properties, dispersion, sonic log, shear wave velocity, multiple regression. Introduction In many developed oil fields, only compressional wave velocity may be available through old sonic logs or seismic velocity check shots. For practical purpose such as in seismic modeling, amplitude variation with offset (AVO) analysis, and engineering applications, shear wave velocities or moduli are needed. In these applications, it is important to extract, either empirically or theoretically, the needed shear wave velocities or moduli from available compressional velocities or moduli (Wang, 2000).

210 Eskandari.,H., et al., IIJS, 4 (Geol.), 2003 In rock physics and its applications, three methods are used normally to study the elastic properties of rocks: theoretical and model studies, laboratory measurement and investigations, and statistical and empirical correlations. Theoretical studies yield mathematical expressions of the elastic properties of rocks but have to make assumptions to simplify the mathematics. The assumptions are sometimes oversimplified and even unrealistic. Laboratory measurements provide data under controlled or simulated physical conditions of rocks but sample only a small portion of the reservoir. On the other hand, statistical and empirical correlations provide simple mathematical formulations of the laboratory and/or field data. These correlations often ignore the physics and complicated mathematics behind the data and require large data sets for the analyses (Wang, 2000). The investigation of the variation in seismic velocities due to change of the dynamic reservoir properties requires controlled experiments in which accurate seismic data are complemented by detailed mineralogical and petrophysical analysis of the rock. This can only be done in a systematic way using laboratory measurements. Laboratory measurements are used to establish models to relate seismic properties (velocity and attenuation) to reservoir properties (porosity, permeability and clay content). These so-called petroacoustic studies have become increasingly an essential part of any study in reservoir geophysics (Khaksar, 2000). During the past years, many studies have been done on elastic wave velocities focused on related petrophysical properties of rocks. Unfortunately, nearly all of these studies are about sandstone formations. In Iran most of reservoirs are carbonate rocks. In this study, we first used available data set to validate empirical correlations that have been delivered for carbonate rocks. After evolution of the effective petrophysical properties on shear wave velocity, statistical method was used to establish a correlation among effective petrophysical properties and shear wave velocitiy. The established method can estimate shear wave velocity in carbonate rocks with correlation coefficient of about 0.94.

Shear Wave Velocity Estimation Utilizing Wireline Logs 211 Data sources A data set of both compressional and shear velocities in 35 core samples (23 limestone and 12 dolomite samples). The velocities are measured at both dry and water saturated conditions. These data were gathered at an ultrasonic frequency of 0.5-1 MHz. X-ray diffraction (XRD), thin sections and scanning electronic microscopy (SEM) are used to determine mineralogy, volume of individual minerals and other microscopic sedimentological features. The petrophysical properties of these core samples cover a wide range for exploration interest, with porosity from 0.2% to 29%, permeability from 0.02 to 228.2 md, clay content from 0% to 10%, calcite content from 47% to 98% and dolomite from 0% to 49%. Velocity Dispersion between Seismic and Ultrasonic Frequencies It is known that the acoustic velocities in fluid-saturated rocks are dispersive (Khaksar, 2000). That is, the velocities are frequency dependent. The magnitude of velocity dispersion needs to be known if acoustic data obtained from laboratory measurement at ultrasonic frequencies are to be used for log analysis and seismic interpretation. Comparison of laboratory ultrasonic frequency wave propagation model of Biot (1956) and Gassmann (1951) may give estimates of total velocity dispersion between low frequency and measurement frequency. Assuming that the dry velocities are independent of frequency (Winkler, 1986), the Biot-Gassmann equations presented below are used to calculate the low frequency velocities in the fully saturated rocks. The difference between the measured velocities and the calculated low frequency velocities may be interpreted as an indication of dispersion. The following equations were used in dispersion analysis: K=k d +{[(1-k d /k m ) 2 ]/(f/k f )+[(1-f)/k m ]-k d /k m 2 } (1) µ = µ d (2) V p = [(k+4 µ /3)/ ρ] 1/2 (3) V s = (µ/ρ) 1/2 (4)

212 Eskandari.,H., et al., IIJS, 4 (Geol.), 2003 ρ = f ρ f + (1-f) ρ m (5) The parameters in equations 1 through 5 are defined as follows: K is bulk modulus; k d, k m and k f are the bulk moduli of the dry rock, matrix and the pore fluid respectively; µ is the shear modulus of the saturated rock and µ d is the shear modulus of dry rock; f is fractional porosity; ρ is bulk density, ρ f is pore fluid density and ρ m is grain density. To derive the input parameters for the Gassmann equation (equ. 1) V p and V s measurements on dry samples were used in conjunction with density measurements to derive bulk (k d ) and shear (µ d) moduli of the samples. Empirical relations for acoustic velocity of water at different pressure and temperatures were used to calculate the bulk modulus of water (k f ). The bulk modulus of the matrix (k m ) was determined from an extrapolation to zero porosity of the regression curve of k d versus porosity at 30Mpa confining stress (Fig.1). Figure 2 illustrates calculated low frequency V p considering water-wet shear modulus as input parameter for velocity calculations. Biot-Gassmann calculated velocities fit the measured ultrasonic frequency with an average of 3.5% dispersion. 60 Kd(GPa) 50 40 30 20 y = 0.0244x 2-1.7099x + 43.618 R 2 = 0.8003 10 0 0 5 10 15 20 25 30 35 Porosity(%) Figure 1 - Bulk modulus of air-saturated samples versus porosity at 30Mpa confining pressure. At zero porosity, k m is equal to 43.618 Gpa.

Shear Wave Velocity Estimation Utilizing Wireline Logs 213 7.0 Calculated low-frequency Vp(Km/s) 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 y = 1.035x - 0.1387 R 2 = 0.8284 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 Measured water-saturated Vp(Km/s) Figure 2 - Calculated low-frequency Vp using Gassmann s equation versus measured saturated Vp. Wang and Nur (1992) commented that a 2% difference between Biot-Gassmann calculated low-frequency and measured velocities should be considered as a perfect fit for practical purposes. Due to this discrepancy between velocities measured in the laboratory at ultrasonic frequencies on water-saturated samples cannot be treated as low-frequency data and therefore we will use compressional velocities from sonic log to calculate shear velocities. As it can be expected, the difference between shear velocities measured in laboratory and calculated from Biot-Gassmann are low (Figure 3). Calculated low-frequency Vs(Km/s) 3.50 3.00 2.50 2.00 1.50 y = 0.9827x + 0.0216 R 2 = 0.9525 1.50 2.00 2.50 3.00 3.50 Measured water-saturated Vs(km/s) Figure 3 - Calculated low-frequency Vs using Gassmann s equation versus measured water saturated Vs.

214 Eskandari.,H., et al., IIJS, 4 (Geol.), 2003 Shear Wave Velocity Prediction There are many applications for shear wave velocities in petrophysics, seismic and geomechanical studies. There is not any borehole in the studied field with S-wave velocity data, thus prediction of V s from other logs was necessary. Even when an S-wave log has been run, comparison with its prediction from other logs can be a useful quality control. There are several empirical equations (for example, Han et al., (1986) and Castagna et al., (1993)) to predict V s from other logs. In general, these empirical relationships give good result only in similar formations and their reliability for other rocks should be considered suspect until a calibration is established. It is therefore useful to have a physical model that provides some understanding of shear wave behavior (Wang, 2000). Although, the prediction should be the same if all measurements are error free, comparison of predictions with laboratory and logging measurement show that predictions using compressional wave velocity are the most reliable especially for carbonate rocks. Figure 4 shows a good relation between V p and V s in well 3. Figure 5 shows a lack of relationship between velocity and core porosity for samples measured under air- and water-saturated condition under 31-33 Mpa. The significant difference in V p /V s values for air- and water-saturated shown in Figure 5 suggests that the velocity ratio has potential for detecting gas-saturated intervals under in-situ reservoir pressures in the study area whenever shear wave velocity data are available. Vp & Vs Measured Sat.(Km/s) 7 6 5 4 3 2 1 Vp Vs 2770 2790 2810 2830 2850 2870 2890 Depth(m) Figure 4 A comparison between V p and V s in well 3, showing a good match.

Shear Wave Velocity Estimation Utilizing Wireline Logs 215 2.1 2 1.9 Vp/Vs 1.8 1.7 1.6 1.5 1.4 Air saturated Water saturated 0 5 10 15 20 25 30 35 Porosity Figure 5 - Velocity ratio versus porosity at 30Mpa effective stress for air- and water-saturated. Figure 6 shows the plots of predicted V s, using the equation proposed by Castagna et al., (1993) versus measured data for water saturated samples from this study. Notice that the V p data for this equation are derive from sonic log. The equations for limestone and dolomite are: V s (km/s) = -0.05509V 2 p +1.0168V p -1.0305 (6) V s (km/s) = 0.583V p -0.07776 (7) Where, V p is in km/s and derived from sonic log. Vs Castagna(1993) For Limestone & Dolomite 3.25 3 2.75 2.5 2.25 2 1.75 1.5 y = 0.8565x + 0.3944 R 2 = 0.7086 1.5 1.75 2 2.25 2.5 2.75 3 3.25 VS Measured-Km/s Figure 6 - Plot of calculated Vs from Castagna et al., (1993) equation versus measured Vs at 30Mpa effective stress and 100% water-saturated condition.

216 Eskandari.,H., et al., IIJS, 4 (Geol.), 2003 In order to deliver an equation with better correlation coefficient (Castagna equation has correlation coefficient of about 0.70) we used statistical method to approach a statistical correlation that calculate shear wave velocity. At first, we used only V p from sonic log as input. In this way the best equation is as follow (equ. 8): V s (km/s) = -0.1236V p 2 +1.6126V p -2.3057 (8) Figure 7 shows the plots of predicted V s using the equation 8. This equation has one input parameter and correlation coefficient for this equation is approximately 0.80. Vs Predicted From Multivariate Regression(Km/s) 3. 5 3. 25 3 2. 75 2. 5 2. 25 2 1. 75 y = 0.8035x + 0.475 R 2 = 0.8048 1. 5 1. 50 1. 75 2. 00 2. 25 2. 50 2. 75 3. 00 3.25 3. 50 Vs Measured Sat.(Km/s) Figure 7 - Plot of predicted Vs using equation 8 versus measured Vs under 30Mpa effective stress and 100% water-saturated condition. Other parameters including Neutron Porosity (NPHI), Bulk Density (RHOB), Gamma Ray (GR) and Deep Latrolog (LLD) were considered to include to the new equation in order to increase the accuracy of predicted V s using multiple variable regression. Figures 8 to 10 show the effect of porosity, clay content and bulk density on V s. Clay content is a significant factor in the study of acoustic velocities. Due to low amount of clay content in the studied samples, result suggested that clay content has a negligible effect of velocity. Shear wave velocity decreases with increase of porosity and increases with increase of bulk density.

Shear Wave Velocity Estimation Utilizing Wireline Logs 217 Then these five parameters (V p, bulk density, neutron porosity, Gamma ray and deep resistivity) were used as input of multiple regression. A multivariate model of the data solves for unknown coefficient a 0, a 1, a 2, of multivariate equation such as equation 9: V s = a 0 + a 1 V p + a 2 NPHI+ a 3 RHOB+ a 4 GR+ a 5 LLD (9) 3.25 Vs Measured Sat.(Km/ s) 3.00 2.75 2.50 2.25 2.00 1.75 1.50 0.00 0.02 0.04 0.06 0.08 0.10 0.12 Clay content (Volume Fraction) Figure 8 - Effect of clay content on shear wave velocity. Vs Measured Sat.(Km/s) 3.50 3.25 3.00 2.75 2.50 2.25 2.00 1.75 1.50 0 5 10 15 20 25 30 35 Porosity(%) Figure 9 - Effect of porosity on shear wave velocity.

218 Eskandari.,H., et al., IIJS, 4 (Geol.), 2003 Vs Measured Sat.(Km/s) 3.25 3.00 2.75 2.50 2.25 2.00 1.75 1.50 2.2 2.3 2.4 2.5 2.6 2.7 2.8 Density(gr/cc) Figure 10 -Effect of bulk density on shear wave velocity. The strength of the input variables to predict V s is given by their degree of contribution to the V s, which is determined by the multiple regression analysis. Contribution factors are shown in Table 1. It can be seen that the most important variables to this regression are the NPHI, RHOB and V p that play significant roles in the model. The weakest variables are the GR and LLD. This means that they may be taken out of the model. When GR and LLD were omitted then R² increased from 0.91 to 0.94. These two equations are shown in Table 1 (equations a and b). Figure 11 shows a plot of the best equation for prediction of shear wave velocity with R² close to 0.94. This equation (equ. 10) is: V s= -17.0885 + 0.4068*Vp-2.1907*NPHI 2-1.1794*NPHI-3.2747* RHOB 2 +15.3587*RHOB Table1 - Input strength for statistical equations. Input Variable Input Strength (Eq.a) Input Strength (Eq.b) A 0 3.28-17.0885 Vp 0.4380 0.4068 NPHI -1.3820-1.1749, -2.1907 RHOB -1.0544 15.3587, -3.2747 GR 0.0037 - LLD -0.0011 - R 2 0.91 0.94

Shear Wave Velocity Estimation Utilizing Wireline Logs 219 Vs Predicted From Multivariate Regression(Km/s) 3.5 3.25 3 2.75 y = 0.9538x + 0.1047 R 2 = 0.9394 2.5 2.25 2 1.75 1.5 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 Vs Measured Sat.(Km/s) Figure 11 - Plot of predicted shear wave velocity using equation 10 versus measured data under 30Mpa effective stress and 100% water-saturated condition. Figure 12 present the computed shear wave velocity and core shear wave velocity versus depth for well 3. Multiple regression presented robust correlation to predict shear wave velocity from well log data. Multiple regression is an extension of the regression analysis that incorporates additional independent variable in the predictive equation. All two methods, empirical and multiple regression, were applied to log data to predict shear wave velocity for the carbonate reservoir. The result show that statistical method perform better than empirical models, which can be used only to obtain an order of magnitude for shear wave velocity. 3.5 Shear Wave Velocity (km/s) 3.25 3 2.75 2.5 2.25 2 Core 1.75 Multiple Regression 1.5 2770 2790 2810 2830 2850 2870 Depth (m) Figure 12 - Core and computed shear wave velocity for well#3.

220 Eskandari.,H., et al., IIJS, 4 (Geol.), 2003 Conclusion This petrophysical study has investigated the use of laboratory measurements of acoustic properties on core samples for prediction of shear wave velocities using sonic log. In this study we used sonic log as input information of regression. We observed that the most important variable to this regression are the NPHI, RHOB and V p that play significant roles in the statistical model. The introduced equation can predict shear wave velocity for carbonate reservoir with R² of about 0.94. References Biot, M. A., 1956, Theory of propagation of elastic waves in fluid-saturated porous solid.!-low frequency range. Journal of Acoustical Society of America, 28,168-178. Castagna, J. P., Batzle, M. L. and Eastwood, R.L., 1985, Relationship between compressional and shear wave velocities in silicate rocks: Geophysics, 50, 571-581. Castagna, J. P., and Batzle, M. L., and Kan, T. K., 1993, Rock physics - The link between rock properties and AVO response, in Castagna, J. P., and Backus, M. M., Eds., Offset-dependent reflectivity-theory and practice of AVO analysis: Soc. Expl. Geophys., 124-157. Gassmann, F.,1951, Elastic waves through a packing of spheres, Geophysics, 16, 673-685. Greenberg, M. L., and Castagna, J. P., 1992, Shear- wave velocity estimation in porous rocks: Theoretical formulation, preliminary verification and applications: Geophysical Prospecting, 40, 195-209. Han, D., 1989, Emprical relationships among seismic velocity, effective pressure, porosity, and clay content in sandstone: Geophysics, 54, 82-89. Han, D. and Nur, A., and Morgan, D., 1986, Effects of porosity and clay content on wave velocities in sandstones: Geophysics, 51, 2093-2107. Khaksar, A., 2000, Calibrating core, log and seismic data to assess effective stress and hydrocarbon saturation, Cooper basin, South Australia: Australian Association of Petroleum Exploration Journal 2000, 314-325. Koesoemadinata, A. P., and McMechan, G. A., 2001, Empirical estimation of viscoelastic seismic parameters from petrophysical properties of sandstone: Geophysics, 66, 1457-1470. Krief, M., Garat,J., Stellingwerf, J., and Venter, J.,1990, A petrophysical interpretation using the velocities of P and S waves (full waveform sonic): The Log Analyst, 31, 355-369.

Shear Wave Velocity Estimation Utilizing Wireline Logs 221 Nur, A., and Wang, Z., Eds., 1989, Siesmic and acoustic velocities in reservoir rocks: Volume I: Experimental studies: Soc. Expl. Geophys. Pickett, G.R., 1963, Acoustic character logs and their applications in formation evaluation: Journal of Petroleum Technology, 15, 650-667. Wang, Z., and Nur, A., 1992, Dispersion analysis of acoustic velocities in rocks: J. Acoust. Soc. Am., 87, 2384-2395. Wang, Z., 2000, Velocity relationships in granular rocks, in Wang, Z. and Nur, A., Eds., Seismic and acoustic velocities in reservoir rocks, vol. 3: Recent development, published by Society of Exploration Geophysicists. Wang, Z., 2000, The Gassmann equation revisited: Comparing laboratory data with Gassmann, s predictions: Geophysics, 56, 8-23. Wang, Z., 2001, Fundamentals of seismic rock physics: Geophysics, 66, 398-412. Winkler, K. W., 1986, Estimation of velocity dispersion between seismic and ultrasonic frequencies: Geophysics, 51, 183-189. Wyllie M. R. J., Gregory A. R. and Gardner L. W., 1956. Elastic wave velocities in heterogeneous and porous media: Geophysics 21, 41-70.