High Sensitivity Gas Sensor Based on IR Spectroscopy Technology and Application

Similar documents
Spectroscopic Applications of Quantum Cascade Lasers

DIODE- AND DIFFERENCE-FREQUENCY LASER STUDIES OF ATMOSPHERIC MOLECULES IN THE NEAR- AND MID-INFRARED: H2O, NH3, and NO2

Hefei

Compact Hydrogen Peroxide Sensor for Sterilization Cycle Monitoring

Testing an Integrated Tunable Quantum Cascade Laser

Advanced Spectroscopy Laboratory

Workshop on optical gas sensing

Mid-Infrared Laser based Trace Gas Sensor Technologies: Recent advances and Applications

THz QCL sources for operation above cryogenic temperatures Mikhail Belkin

II. WAVELENGTH SELECTION

laser with Q-switching for generation of terahertz radiation Multiline CO 2 Journal of Physics: Conference Series PAPER OPEN ACCESS

Isotopic Ratio Measurements of Atmospheric Carbon Dioxide Using a 4.3 µm Pulsed QC Laser

Recent progress on single-mode quantum cascade lasers

Quantum Cascade laser for biophotonics

Unlike the near-infrared and visible spectral ranges, where diode lasers provide compact and reliable sources,

MEASUREMENT of gain from amplified spontaneous

Molecular spectroscopy

White Rose Research Online URL for this paper:

2001 Spectrometers. Instrument Machinery. Movies from this presentation can be access at

Temperature dependence of the frequency noise in a mid-ir DFB quantum cascade laser from cryogenic to room temperature

Pollutant emission monitoring using QC laser-based mid-ir sensors

THz QCL sources based on intracavity difference-frequency mixing

Ultrafast All-optical Switches Based on Intersubband Transitions in GaN/AlN Multiple Quantum Wells for Tb/s Operation

Chemistry Instrumental Analysis Lecture 15. Chem 4631

Recent Advances and Applications of Semiconductor Laser based Gas Sensor Technology

Radiation in the Earth's Atmosphere. Part 1: Absorption and Emission by Atmospheric Gases

Application of IR Raman Spectroscopy

The original publication is available at

Infrared Quantum Cascade Laser

Abstract... I. Acknowledgements... III. Table of Content... V. List of Tables... VIII. List of Figures... IX

SEMICONDUCTOR LASER BASED TRACE GAS SENSOR TECHNOLOGY: RECENT ADVANCES AND APPLICATIONS

Fabry-Perot Interferometer for atmospheric monitoring useful for EAS detection E.Fokitis 1, K. Patrinos 1, Z. Nikitaki 1

Stimulated Emission Devices: LASERS

Miniaturization of High Sensitivity Laser Sensing Systems. Damien Weidmann

Lecture 11: Doppler wind lidar

A high precision pulsed QCL spectrometer. for measurements of stable isotopes of carbon dioxide

Defense Technical Information Center Compilation Part Notice

Frontiers in quantum cascade laser based analysis of greenhouse gas stable isotopes

Absorption Line Physics

ВЛИЯНИЕ ТОЧНОСТИ СПЕКТРОСКОПИЧЕСКОЙ ИНФОРМАЦИИ В ЗАДАЧАХ МОНИТОРИНГА МЕТАНА

Lecture 6 - spectroscopy

Fourier Transform Infrared. Spectrometry

requency generation spectroscopy Rahul N

Nonlinear optics with quantum-engineered intersubband metamaterials

FT-IR-iPAS A tool for industrial multicomponent gas measurement Christian Hirschmann 1,2 *, Jussi Tenhunnen 2, Satu Ojala 1,2 and Riitta Keiski 1

FIRST HIGH-RESOLUTION ANALYSIS OF PHOSGENE 35 Cl 2. CO AND 35 Cl 37 ClCO FUNDAMENTALS IN THE CM -1 SPECTRAL REGION

Chemistry Instrumental Analysis Lecture 5. Chem 4631

Quantum cascade lasers with an integrated polarization mode converter

Infrared quantitative spectroscopy and atmospheric satellite measurements

Where are the Fringes? (in a real system) Div. of Amplitude - Wedged Plates. Fringe Localisation Double Slit. Fringe Localisation Grating

Semiconductor Lasers II

Quantum Cascade Lasers in Test Benches Tracing Additional Exhaust Components using the Latest Measurement Equipment under Test Bench Conditions

Distributed feedback semiconductor lasers

Ho:YLF pumped HBr laser

The near-infrared spectra and distribution of excited states of electrodeless discharge rubidium vapour lamps

Composition and structure of the atmosphere. Absorption and emission by atmospheric gases.

Application of high-precision temperature-controlled FBG f ilter and light source self-calibration technique in the BOTDR sensor system

All-Optical Delay with Large Dynamic Range Using Atomic Dispersion

Chem Homework Set Answers

Lecture 10. Lidar Effective Cross-Section vs. Convolution

The Planck Blackbody Equation and Atmospheric Radiative Transfer

Optics, Light and Lasers

Nonparabolic effects in multiple quantum well structures and influence of external magnetic field on dipole matrix elements

Assimilation of MIPAS limb radiances at ECMWF using 1d and 2d radiative transfer models

Efficient Light Scattering in Mid-Infrared Detectors

Thermal And Near infrared Sensor for carbon Observation (TANSO) On board the Greenhouse gases Observing SATellite (GOSAT) Research Announcement

Course Details. Analytical Techniques Based on Optical Spectroscopy. Course Details. Textbook. SCCH 211: Analytical Chemistry I

Quantum Dots for Advanced Research and Devices

Survey on Laser Spectroscopic Techniques for Condensed Matter

Recent spectroscopy updates to the line-by-line radiative transfer model LBLRTM evaluated using IASI case studies

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford

Design of a High Spectral Resolution Lidar for Atmospheric Monitoring in EAS Detection Experiments

1. Transition dipole moment

Optical Frequency Comb Fourier Transform Spectroscopy with Resolution beyond the Path Difference Limit

Self-induced transparency modelocking of quantum cascade lasers in the presence of saturable nonlinearity and group velocity dispersion

SUB-NATURAL-WIDTH N-RESONANCES OBSERVED IN LARGE FREQUENCY INTERVAL

Simulation of UV-VIS observations

QUANTUM CASCADE LASERS: COMPACT WIDELY TAILORABLE LIGHT SOURCES FROM THE MID-INFRARED TO THE FAR INFRARED FEDERICO CAPASSO

ARTS - GARLIC - KOPRA

Lecture 15. Temperature Lidar (4) Doppler Techniques

Quantitative spectroscopy of several tropospheric or statospheric molecules: recent updates performed in the GEISA database

Nonlinear Dynamics of Quantum Cascade Laser in Ring Cavity

Laser Dissociation of Protonated PAHs

Optical Spectroscopy of Advanced Materials

Lecture 2. Electron states and optical properties of semiconductor nanostructures

Two-electron systems

Detection of ozone for use as an extrasolar biosignature

Time Dependent Perturbation Theory. Andreas Wacker Mathematical Physics Lund University

Light emitting diode absorption spectroscopy for combustible gas monitoring

Light Emission. Today s Topics. Excitation/De-Excitation 10/26/2008. Excitation Emission Spectra Incandescence

Diagnósticos em Plasmas

Chemistry 524--Final Exam--Keiderling Dec. 12, pm SES

What Makes a Laser Light Amplification by Stimulated Emission of Radiation Main Requirements of the Laser Laser Gain Medium (provides the light

Compact and low-noise quartz-enhanced photoacoustic sensor for sub-ppm ethylene detection in atmosphere

Ultrafast Wavelength Tuning and Scaling Properties of a Noncollinear Optical Parametric Oscillator (NOPO)

Laser spectroscopy of gas confined in nanoporous materials

OPTI 511R, Spring 2018 Problem Set 10 Prof. R.J. Jones Due Thursday, April 19

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful

The last 2 million years.

(b) Spontaneous emission. Absorption, spontaneous (random photon) emission and stimulated emission.

Transcription:

PHOTONIC SENSORS / Vol. 6, No. 2, 2016: 127 131 High Sensitivity Gas Sensor Based on IR Spectroscopy Technology and Application Hengyi LI Department of Electronic Information Engineering, Jincheng College of Sichuan University, 611731, Chengdu, China * Corresponding author: Hengyi LI E-mail: henrysport@163.com Abstract: Due to extremely effective advantages of the quantum cascade laser spectroscopy and technology for trace gas detection, this paper presents spectroscopy scanning, the characteristics of temperature tuning, system resolution, sensitivity, and system stability with the application of the presented gas sensor. Experimental results showed that the sensor resolution was 0.01cm 1 (equivalent to 0.06 nm), and the sensor sensitivity was at the level of 194 ppb with the application of H 2 CO measurement. Keywords: Quantum cascade laser; IR spectroscopy; high sensitivity; formaldehyde Citation: Hengyi LI, High Sensitivity Gas Sensor Based on IR Spectroscopy Technology and Application, Photonic Sensors, DOI: 2016, 6(2): 127 131. 1. Introduction Infrared laser absorption spectroscopy is an extremely effective tool for detecting trace gases. The demonstrated sensitivity of this technique is at the level of parts per billion (ppb). Presently, the usefulness of the laser spectroscopy approach is limited by the availability of convenient tunable sources in the spectroscopically important fingerprint region from 3 μm to 20 μm [1]. Recent measurements with QC-DFB (distributed feedback quantum cascade laser) lasers [2, 3] have demonstrated the usefulness of these devices for highly selective real-time trace gas concentration measurements based on the absorption spectroscopy with the sensitivity of several ppb [4 11]. Due to the characteristics of high output power, narrow line-width, room temperature operation, and so on, quantum cascade lasers (QCLs) have become the research focus in the fields of trace gas detection technology and instrumental integration system. This paper aims at the issues existing in the gas detection technology and instrument system research, and the key technologies in gas spectroscopy detection based on the QCL were carried out. 2. Spectrum detection and gas sensor performance As to the experimental setup, the laser light was collimated by an off-axis parabolic gold mirror and then passed through a 20 m multi-pass white cell filled with the sample gas for detection. The radiation passed through a germanium Fabry-Pérot etalon with a free spectral range of 500 MHz. The longitudinal modes supported by an etalon with the length d and refractive index n were separated by the free spectral range (FSR), ν FSR =c/2nd. A typical signal was detected when a 200-ns-long laser pulse at a wavelength around 8 μm passed through an empty cell, which was used to find the nonlinear Received: 22 September 2015 / Revised: 13 November 2015 The Author(s) 2015. This article is published with open access at Springerlink.com DOI: 10.1007/s13320-015-0290-8 Article type: Regular

128 Photonic Sensors relation between the time and frequency axes. 2.1 Spectrum scanning Range The spectroscopy scanning range was determined both by pulse current tuning and temperature tuning [11]. In order to express the spectrum scanning characteristics, 121 mtorr H 2 CO with the purity of 99.8% was introduced into the gas cell to obtain the absorption spectrum at different temperatures. Keeping the H 2 CO pressure and operation temperature unchanged, a series of scanning spectra were collected when tuning the operation temperature from 15 to 20 with an increment of 5. The scanning spectrum is shown in Fig. 1, from which we can see that the scanning range will move to the longer wavelength with an increase in operation temperature. Fig. 1 Absorption line of H 2 CO at the sweeping temperature from 15 to 20. 2.2 Temperature tuning coefficient When the QCL operation temperature changed, the central emission wavelength would move, so it is necessary to test the temperature tuning coefficient for the detection system. Formaldehyde was used as the detection gas to get the correlation of the central emission wavelength with a function of tuning temperature, which is represented by scatter dots in Fig. 2, with linear fit (represented by ) of the experimental data, and the calculated temperature tuning coefficient was 0.083cm 1 /K. Wavenumber tunable value (cm 1 ) 1253.5 Wavenumber tunable value Linear fit of wavenumber tunable value 1253.0 1252.5 1252.0 1251.5 1251.0 1250.5 Weight No Weighting Residual sum 1.99038E-4 of Squares Adj. R-square 0.99997 Value Standard Error Intercept 1252.10192 0.00208 Wavenumber tunable value Slope -0.08309 1.77745E-4 1250.0 20 15 10 5 0 5 10 15 20 25 Temperature (Celsius degree) Fig. 2 Relationship between the QCL central wavenumber and temperature. 2.3 Sensor spectrum resolution Spectral resolution refers to the detection system which can distinguish the minimum wavelength difference, which is based on the Rayleigh criterion, taking the absorption spectral full width at half maximum (FWHM) as the spectral resolution of the detection system. Figure 3 shows the Fourier transform spectrometer (FTIR) spectrum collected during laser operating temperature changing from 15 to +20, in which indicates the formaldehyde absorption spectrum taken from this experimental system, and indicates the spectral measurement range of 1250 cm 1 1255 cm 1. 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 A Spectrum from FTIR Spectrum from this work B 0.2 0.10 1250.5 1251.5 1252.5 1253.5 1254.5 Fig. 3 Comparison of the absorption spectroscopy done in this work and FTIR. C D E 0.10 0.05 0.00 0.05

Hengyi LI: High Sensitivity Gas Sensor Based on IR Spectroscopy Technology and Application 129 The calculation of formaldehyde absorption lines A, B, C, D, and E at 20 showed that the largest width was 0.01 cm 1, which was exactly in the most intensive areas, in which it would be more reasonable to calculate the resolution. Other results are shown in Table 1. So the resolution of this spectroscopic detection system was 0.01 cm 1 (equivalent to 0.06 nm), which could also be seen from the comparison between the two results. It is obvious that the QCL detection system has a significantly higher resolution than the FTIR spectrometer. Output power (mw) 10 9 8 7 6 5 4 3 2 Output power Linear fit Weight No weighting Residual sum 0.01063 of squares Adj. R-square 0 Intercept 6.97847 0.01882 Book3_B slope 0 -- 1 2 3 4 Time (min) 5 6 (a) Table 1 Linewidth of experimental formaldehyde spectrum. Line A B C D E FWHM (cm 1 ) 0.0100 0.0098 0.0097 0.0098 0.0096 2.4 Gas sensor stability The system stability renders the basic response throughout the detection time, mainly measured through the zero drift and interval drift. The zero drift refers to the absence of the measured gas and the output changes throughout the detection time of the system. The interval drift refers to the changes in the continuous output in the case of measured gas presence over the measuring time. In the absence of any absorbed gas existing, the zero drift is expressed by the output light intensity versus time shown in Fig. 4(a). In the case of H 2 CO gas absorption as presence, the interval drift is analyzed from the relationship of the specific absorption peak intensity varying with time, as shown in Fig. 4(b). It can be seen from the linear fit results that the quantum cascade laser output light intensity of the standard deviation is 0.0188, the calculated zero drift relative standard deviation is 0.26%, and the stability of the standard deviation of gas absorption peak is 0.0007. Thus the calculated interval drift expressed by relative standard deviation is 0.24%. Both results illustrate a good stability of the QCL detection system. 0.32 0.30 0.28 0.26 0.24 0.22 0.20 Linear fit Weight No weighting Residual 1.39699E Adj. R-s 0 Book18_ Intercept 0.2746 6.82396E-4 B slope 0 -- 1 2 3 4 5 6 Time (min) (b) Fig. 4 System stability measured by (a) zero drift: output power of QCL varying with time and (b) interval drift: absorbance varying with time. 2.5 Sensor sensitivity Selecting the appropriate line and fitting function is very important for the calculation of detection limit. Usually, we choose the Voigt function for nonlinear fitting and also the integration of spectral lines in the region, and then we obtain the integrated absorption intensity area for calculating detection sensitivity. The measured gas pressure is fixed, by varying the buffer gas pressure, so we can get different concentrations of formaldehyde. As shown in Fig. 5(a), the absorption spectrum of 60 mtorr H 2 CO in 200 Torr N 2 was measured and then fitted with the nonlinear Voigt function and non-absorption part fitted with linear function. In Fig. 5, indicates original absorption lines of H 2 CO, indicates Voigt function fitting, and

130 Photonic Sensors is a linear fit to the noise signal. As seen from Fig. 5, the Voigt function fits well with the experimental results. Figure 5(b) shows fitting residuals with the deviation in the range of 0.4%. After data processing and analysis, the calculated minimum detectable concentration is 187 ppb. In this system, the signal to noise ratio (SNR) is calculated to be 1549, and the corresponding concentration is 300 ppm, then the detection sensitivity is 194 ppb when SNR is 1. Residual of absorbance 0.3 0.2 0.1 0.0 0.010 0.008 0.006 0.004 0.002 0.000 60 mtorr H2CO in 200 Torr N2 Voigt fit of absorbance Linear fit of absorbance y0-0.00156 5.71109E-4 xc 1253.1360 1111.06902 A 0.01052 1.86554 wg 0.0124 0 wl 0.07577 1.71059E-4 Value Standard error µ=0.0853 Intercept -4.13479 5.50551 Slope E-4 0 E-5 -- SD=5.506 E-5 1252.9 1253.0 1253.1 1253.2 1253.3 1253.4 1253.5 1253.6 (a) Residual of absorbance 0.002 0.004 0.006 0.008 0.010 1253.35 1253.40 1253.45 1253.50 1253.55 1253.60 (b) Fig. 5 Formaldehyde spectrum and the residual signal: (a) Voigt fit of 60 mtorr formaldehyde in 200 Torr N 2 and (b) standard error less than 0.4% between the experimental results and Voigt function fit. 3. Conclusions In this work, the gas sensor performance based on the IR spectroscopy technology was carried out. The spectrum range was 1249 cm 1 1257 cm 1, the temperature tuning coefficient was 0.083cm 1 /K, the absorbance reproducibility relative standard deviation was less than 0.0051%, the system resolution was less than 0.01 cm 1, and the system detects sensitivity reached 194 ppb, which was comparatively high sensitivity for detection trace gas or toxic gases. Acknowledgment The authors wish to thank the financial support from the National Natural Science Foundation of China (61505020) and the Fundamental Research Funds for the Central Universities (ZYGX2013J007). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http:// creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. References [1] J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Quantum cascade laser, Science, 1994, 264(158): 553 556. [2] L. Wang and T. R. Sharples, Intrapulse quantum cascade laser spectroscopy: pressure induced line broadening and shifting in the ν6 band of formaldehyde, Applied Physics B, 2012, 108(2): 427 435. [3] T. Steck, N. Glatthor, T. von Clarmann, H. Fischer, J. M. Flaud, and B. Funke, Retrieval of global upper tropospheric and stratospheric formaldehyde (H 2 CO) distributions from high-resolution MIPAS-envisat spectra, Atmospheric Chemistry & Physics, 2008, 8(3): 463 470. [4] X. Chen, L. Cheng, D. Guo, Y. Kostov, and F. S. Choa, Quantum cascade laser based standoff photoacoustic chemical detection, Optics Express, 2011, 9(21): 20251 20257. [5] L. Wang and S. Thomas-Reoben, Monitoring hydrogen sulfide using a quantum cascade laser based trace gas sensing system, Chinese Physics Letters, 2011, 28(6): 1183 1187. [6] A. Wisthaler, E. C. Apel, J. Bossmeyer, A. Hansel, W. Junkermann, and R. Koppmann, Technical note:

Hengyi LI: High Sensitivity Gas Sensor Based on IR Spectroscopy Technology and Application 131 intercomparison of formaldehyde measurements at the atmosphere simulation chamber SAPHIR, Atmospheric Chemistry & Physics Discussions, 2008, 7(6): 15619 15650. [7] K. Chance and J. Orphal, Revised ultraviolet absorption cross sections of H 2 CO for the HITRAN database, Journal of Quantitative Spectroscopy & Radiative Transfer, 2011, 112(9): 1509 1510. [8] I. R. Burling, R. J. Yolelson, S. K. Akagi, S. P. Urbanski, C. E. Wold, D. W. T. Griffith, et al., Airborne and ground-based measurements of the trace gases and particles emitted by prescribed fires in the United States, Atmospheric Chemistry & Physics, 2011, 11(23): 12197 12216. [9] C. L. Heald, A. H. Goldstein, J. D. Allan, and A. C. Aiken, Total observed organic carbon (TOOC) in the atmosphere: a synthesis of North American observations, Atmospheric Chemistry & Physics, 2008, 8(7): 2007 2025. [10] L. Wang, Formaldehyde and methane spectroscopy measurements based on mid-ir quantum cascade laser system, Journal of Infrared and Millimeter Waves, 2014, 33(6): 591 597. [11] G. Duxbury, N. Langford, M. T. McCulloch, and W. Stephen, Quantum cascade semiconductor infrared and far-infrared lasers: from trace gas sensing to non-linear optics, Chemical Society Reviews, 2005, 34(11): 921 934.