Quantummushrooms,scars,andthe high-frequencylimitofchaoticeigenfunctions

Similar documents
Ergodicity of quantum eigenfunctions in classically chaotic systems

Chaos, Quantum Mechanics and Number Theory

Asymptotic rate of quantum ergodicity in chaotic Euclidean billiards

Spectra, dynamical systems, and geometry. Fields Medal Symposium, Fields Institute, Toronto. Tuesday, October 1, 2013

Arithmetic quantum chaos and random wave conjecture. 9th Mathematical Physics Meeting. Goran Djankovi

Eigenvalues and eigenfunctions of the Laplacian. Andrew Hassell

Quantum Billiards. Martin Sieber (Bristol) Postgraduate Research Conference: Mathematical Billiard and their Applications

Order and chaos in wave propagation

Quasi-orthogonality on the boundary for Euclidean Laplace eigenfunctions

Quantum ergodicity. Nalini Anantharaman. 22 août Université de Strasbourg

Spectral theory, geometry and dynamical systems

What is quantum unique ergodicity?

Fractal uncertainty principle and quantum chaos

Recent developments in mathematical Quantum Chaos, I

Bouncing Ball Modes and Quantum Chaos

Quantum Ergodicity for a Class of Mixed Systems

BOUNCING BALL MODES AND QUANTUM CHAOS

Quantum symbolic dynamics

Universality. Why? (Bohigas, Giannoni, Schmit 84; see also Casati, Vals-Gris, Guarneri; Berry, Tabor)

Variations on Quantum Ergodic Theorems. Michael Taylor

A gentle introduction to Quantum Ergodicity

Quantum decay rates in chaotic scattering

LOCALIZED EIGENFUNCTIONS: HERE YOU SEE THEM, THERE YOU

Quantum Chaos: An Exploration of the Stadium Billiard Using Finite Differences

Stadium Billiards. Charles Kankelborg. March 11, 2016

Asymptotic Statistics of Nodal Domains of Quantum Chaotic Billiards in the Semiclassical Limit

Strichartz estimates for the Schrödinger equation on polygonal domains

Fluctuation statistics for quantum star graphs

Experimental and theoretical aspects of quantum chaos

Homoclinic and Heteroclinic Motions in Quantum Dynamics

Interaction Matrix Element Fluctuations

Forward and inverse wave problems:quantum billiards and brain imaging p.1

arxiv:nlin/ v2 [nlin.cd] 8 Feb 2005

Theory of Adiabatic Invariants A SOCRATES Lecture Course at the Physics Department, University of Marburg, Germany, February 2004

Is Quantum Mechanics Chaotic? Steven Anlage

Scar Selection in an Optical Fibre

Eigenvalues and eigenfunctions of a clover plate

BOUNDARY QUASI-ORTHOGONALITY AND SHARP INCLUSION BOUNDS FOR LARGE DIRICHLET EIGENVALUES

arxiv:chao-dyn/ v1 19 Jan 1993

Centre de recherches mathématiques

Optimal shape and placement of actuators or sensors for PDE models

NON-UNIVERSALITY OF THE NAZAROV-SODIN CONSTANT

Geometry and analysis on hyperbolic manifolds

The nodal count mystery

arxiv:chao-dyn/ v1 2 Mar 1999


Introduction to Theory of Mesoscopic Systems

Interaction Matrix Element Fluctuations

Interaction Matrix Element Fluctuations

Narrowly avoided crossings

Periodic Orbits in Generalized Mushroom Billiards SURF Final Report

The Berry-Tabor conjecture

Localized Eigenfunctions: Here You See Them, There You Don t

Dispersive Equations and Hyperbolic Orbits

University of Washington. Quantum Chaos in Scattering Theory

ORIGINS. E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956

Quantum Ergodicity and Benjamini-Schramm convergence of hyperbolic surfaces

Zeros and Nodal Lines of Modular Forms

The semiclassical resonance spectrum of hydrogen in a constant magnetic field

Ergodic billiards that are not quantum unique ergodic

Applications of measure rigidity: from number theory to statistical mechanics

Physics 504, Lecture 9 Feb. 21, 2011

Mixing in a Simple Map

arxiv:nlin/ v1 [nlin.cd] 8 Jan 2001

MAT 280: Laplacian Eigenfunctions: Theory, Applications, and Computations Lecture 7: Nodal Sets

Chaos Experiments. Steven M. Anlage Renato Mariz de Moraes Tom Antonsen Ed Ott. Physics Department University of Maryland, College Park

arxiv:nlin/ v2 [nlin.cd] 24 Apr 2002

Recent Progress on QUE

Analysis of high-quality modes in open chaotic microcavities

Thermalization in Quantum Systems

The wave function for a particle of energy E moving in a constant potential V

Quantum chaos in optical microcavities

Quantum chaos on graphs

Electron transport through quantum dots

The quantum billiards near cosmological singularities of (super-)gravity theories

Friedel oscillations in microwave billiards

Invisible Random Media And Diffraction Gratings That Don't Diffract

CUTOFF RESOLVENT ESTIMATES AND THE SEMILINEAR SCHRÖDINGER EQUATION

Applications of homogeneous dynamics: from number theory to statistical mechanics

Rogue Waves: Refraction of Gaussian Seas and Rare Event Statistics

ESI Lectures on Semiclassical Analysis and Quantum Ergodicity 2012

and finally, any second order divergence form elliptic operator

Microwave studies of chaotic systems

QUANTUM ERGODICITY AND BEYOND. WITH A GALLERY OF PICTURES.

RECENT DEVELOPMENTS IN MATHEMATICAL QUANTUM CHAOS PRELIMINARY VERSION/COMMENTS APPRECIATED

Using controlling chaos technique to suppress self-modulation in a delayed feedback traveling wave tube oscillator

Numerical Solutions to Partial Differential Equations

Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor

Large-scale Eigenfunctions and Mixing

arxiv: v1 [nlin.cd] 27 May 2008

THE SEMICLASSICAL THEORY OF DISCONTINUOUS SYSTEMS AND RAY-SPLITTING BILLIARDS

(5) N #{j N : X j+1 X j [a, b]}

QUANTUM ERGODICITY AND MIXING OF EIGENFUNCTIONS

SPREADING OF LAGRANGIAN REGULARITY ON RATIONAL INVARIANT TORI

Magnetic wells in dimension three

Estimates on Neumann eigenfunctions at the boundary, and the Method of Particular Solutions" for computing them

Chapter 29. Quantum Chaos

arxiv: v1 [math-ph] 21 Sep 2009

Semiclassical theory of non-local statistical measures: residual Coulomb interactions

Quantum Chaos. Dominique Delande. Laboratoire Kastler-Brossel Université Pierre et Marie Curie and Ecole Normale Supérieure Paris (European Union)

Transcription:

p.1 Quantummushrooms,scars,andthe high-frequencylimitofchaoticeigenfunctions ICIAM07, July 18, 2007 Alex Barnett Mathematics Department, Dartmouth College

p.2 PlanarDirichleteigenproblem Normalmodesofelasticmembraneor drum (Helmholtz,Germain,19 th C) Eigenfunctions φ j oflaplacian := x 2 1 + x 2 2 inboundedcavity Ω R 2 φ j = E j φ j φ j Ω = 0 DirichletBC φ Ω iφ j dx = δ ij

p.2 PlanarDirichleteigenproblem Normalmodesofelasticmembraneor drum (Helmholtz,Germain,19 th C) Eigenfunctions φ j oflaplacian := x 2 1 + x 2 2 inboundedcavity Ω R 2 φ j = E j φ j φ j Ω = 0 DirichletBC φ Ω iφ j dx = δ ij mode j = 1 discrete eigenvalues E 1 <E 2 E 3 wavenumber k j =E 1/2 j wavelength λ j := 2π k j

PlanarDirichleteigenproblem Normalmodesofelasticmembraneor drum (Helmholtz,Germain,19 th C) Eigenfunctions φ j oflaplacian := x 2 1 + x 2 2 inboundedcavity Ω R 2 φ j = E j φ j φ j Ω = 0 DirichletBC φ Ω iφ j dx = δ ij mode j = 1 discrete eigenvalues E 1 <E 2 E 3 wavenumber k j =E 1/2 j wavelength λ j := 2π k j Time-harmonic solns of wave eqn(acoustics, optics, quantum, etc) Asymptoticsof φ j aseigenvalue E j?dependsonshape... p.2

p.3 (Somefavorite)eigenmodetopics I. Background, chaotic billiards II. Quantum ergodicity: how uniform are eigenmodes? III. Scarring and the mushroom: how do periodic ray orbits affect mode statistics?

p.4 Somehistoryof(related)eigenmodes Ernst Chladni(1756 1827) sprinkles sand on metal plates Plays themwithviolinbow:visualizesnodallines(φ j = 0)

p.4 Somehistoryof(related)eigenmodes Ernst Chladni(1756 1827) sprinkles sand on metal plates Plays themwithviolinbow:visualizesnodallines(φ j = 0) popular lectures all over Europe Napoleon impressed: offers 1 kg gold to explain patterns Napoleon realised: irregularly shaped plate harder to understand (first funding for quantum chaos!) Sophie Germain got prize in 1816 Note: rigid plate membrane (biharmonic 2 ratherthanlaplacian )

p.5 Einstein-Brillouin-Keller(EBK) (Keller 60) Recallinseparabledomains(ellipse,rect.): φ j productsof1dmodes

p.5 Einstein-Brillouin-Keller(EBK) (Keller 60) Recallinseparabledomains(ellipse,rect.): φ j productsof1dmodes EBK: semiclassical approx. for certain non-separable modes φ(x) M m=1 A m(x)e iks m(x) mode sum of traveling waves, rays S m =phasefunction A m =amplitudefunction

p.5 Einstein-Brillouin-Keller(EBK) (Keller 60) Recallinseparabledomains(ellipse,rect.): φ j productsof1dmodes EBK: semiclassical approx. for certain non-separable modes φ(x) M m=1 A m(x)e iks m(x) mode sum of traveling waves, rays S m =phasefunction A m =amplitudefunction Insertinto φ = Eφ gives S m = 1 phasegrowsalongstraightrays For single-valued φ to exist and satisfy BCs: i) rays reflect off boundary, giving ray families which must close ii)quantization:round-tripphase = 2πn + π (#focalpoints) + π(#reflections) 2

p.5 Einstein-Brillouin-Keller(EBK) (Keller 60) Recallinseparabledomains(ellipse,rect.): φ j productsof1dmodes EBK: semiclassical approx. for certain non-separable modes φ(x) M m=1 A m(x)e iks m(x) mode sum of traveling waves, rays S m =phasefunction A m =amplitudefunction Insertinto φ = Eφ gives S m = 1 phasegrowsalongstraightrays For single-valued φ to exist and satisfy BCs: i) rays reflect off boundary, giving ray families which must close ii)quantization:round-tripphase = 2πn + π (#focalpoints) + π(#reflections) 2 But,dobouncingraypathsalwaysformclosedfamilies...?

p.6 Bouncingrays:thegameofbilliards x Ω ξ θ i θ θ r fullphasespace (x 1,x 2,ξ 1,ξ 2 ) =: (x,ξ) free motion: Hamiltonian dynamical system energy H(x,ξ) = ξ 2 conserved trajectory x(t)launchedat x(0) = x 0

p.6 Bouncingrays:thegameofbilliards x Ω ξ θ i θ θ r fullphasespace (x 1,x 2,ξ 1,ξ 2 ) =: (x,ξ) free motion: Hamiltonian dynamical system energy H(x,ξ) = ξ 2 conserved trajectory x(t)launchedat x(0) = x 0 TWO BROAD CLASSES OF MOTION 1 0.9 integrable: ergodic: 0.8 0.7 0.6 0.5 0.4 0.3 0.2 d conserved quantities(d=2) 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 only H conserved: chaos!

p.7 Propertiesofchaoticrays Defn.ofergodic:Given A(x)testfunc,fora.e.trajectory x 0, lim T 1 T T 0 time average = spatial average A(x(t))dt = 1 vol(ω) Ω A(x)dx =: A

p.7 Propertiesofchaoticrays Defn.ofergodic:Given A(x)testfunc,fora.e.trajectory x 0, lim T 1 T T 0 time average = spatial average A(x(t))dt = 1 vol(ω) Ω A(x)dx =: A hyperbolic : x 1 (t) x 2 (t) ce Λt 0 < Λ =Lyapunovexponent Anosov : uniformly hyperbolic (all periodic orbits unstable, isolated) e.g. Bunimovich stadium ergodic but not Anosov...

p.7 Propertiesofchaoticrays Defn.ofergodic:Given A(x)testfunc,fora.e.trajectory x 0, lim T 1 T T 0 time average = spatial average A(x(t))dt = 1 vol(ω) Ω A(x)dx =: A hyperbolic : x 1 (t) x 2 (t) ce Λt 0 < Λ =Lyapunovexponent Anosov : uniformly hyperbolic (all periodic orbits unstable, isolated) e.g. Bunimovich stadium ergodic but not Anosov... QUANTUM CHAOS : study of eigenmodes when Ω ergodic(einstein 1917) Apps: quantum dots, nano-scale devices, molecular phys/chem Why chaos important? Generic shapes have some chaotic phase space Modes φ j irregular: VIEW j 3000:45wavelengthsacross...saymore?

p.8 II.QuantumErgodicityTheorem(QET) studymodematrixelements φ j, Aφ j := Ω A(x) φ j(x) 2 dx

p.8 II.QuantumErgodicityTheorem(QET) studymodematrixelements φ j, Aφ j := Ω A(x) φ j(x) 2 dx Thm:if Ωergodic,a.e.matrixelementtendstothemean: lim φ j,aφ j A = 0 E j jexceptsubseq.ofvanishingdensity (Schnirelman 74, Colin de Verdière 85, Zelditch 87, Z-Zworski 96)

p.8 II.QuantumErgodicityTheorem(QET) studymodematrixelements φ j, Aφ j := Ω A(x) φ j(x) 2 dx Thm:if Ωergodic,a.e.matrixelementtendstothemean: lim φ j,aφ j A = 0 E j jexceptsubseq.ofvanishingdensity (Schnirelman 74, Colin de Verdière 85, Zelditch 87, Z-Zworski 96) measure φ j 2 dx weaklyin L1 dx/vol(ω) j = 1 j = 10 j = 10 2 j = 10 3 j 5 10 4

p.8 II.QuantumErgodicityTheorem(QET) studymodematrixelements φ j, Aφ j := Ω A(x) φ j(x) 2 dx Thm:if Ωergodic,a.e.matrixelementtendstothemean: lim φ j,aφ j A = 0 E j jexceptsubseq.ofvanishingdensity (Schnirelman 74, Colin de Verdière 85, Zelditch 87, Z-Zworski 96) measure φ j 2 dx weaklyin L1 dx/vol(ω) j = 1 j = 10 j = 10 2 j = 10 3 j 5 10 4 Of practical importance: At what rate is limit reached? How fast does the density of excluded subsequence vanish?

p.9 QuantumUniqueErgodicity(QUE) Conj.(Rudnick-Sarnak 94): There is no excluded subsequence in QET

p.9 QuantumUniqueErgodicity(QUE) Conj.(Rudnick-Sarnak 94): There is no excluded subsequence in QET context: negatively curved manifolds(anosov) Recent analytic results: Proventoholdforarithmeticmanifold SL 2 (Z) \ H(Lindenstrauss 03)...veryspecialsystem,symmetries,all Λ = 1 ProvennottoholdforsomequantumArnoldcatmaps(Faureetal 03)

p.9 QuantumUniqueErgodicity(QUE) Conj.(Rudnick-Sarnak 94): There is no excluded subsequence in QET context: negatively curved manifolds(anosov) Recent analytic results: Proventoholdforarithmeticmanifold SL 2 (Z) \ H(Lindenstrauss 03)...veryspecialsystem,symmetries,all Λ = 1 ProvennottoholdforsomequantumArnoldcatmaps(Faureetal 03) Buttherearenoanalyticresultsforplanarcavities...

p.10 Numericalexperiments (B, Comm. Pure Appl. Math. 06) dispersing cavity, proven Anosov(Sinai 70) desymmetrized, generic Λ exponents { 1 in Ω A, testfunction A = 0 otherwise

p.10 Numericalexperiments (B, Comm. Pure Appl. Math. 06) dispersing cavity, proven Anosov(Sinai 70) desymmetrized, generic Λ exponents { 1 in Ω A, testfunction A = 0 otherwise Large-scalestudy,30,000modesinrange j 10 4 to 10 6,enabledby: 1. Efficientboundary-basednumericsfor φ j ( scalingmethod ) 2. Matrixelements Ω A φ 2 jdxviaboundaryintegralson Ω A 100timeshigherin jthananypreviousstudies(e.g.bäcker 98) only a few CPU-days total

p.11 Typicalhigh-frequencyergodicmode 225 wavelengths across system level number j 5 10 4 E j 10 6 Stringiness unexplained...

(compare: random sum of plane waves) Re ikm x a e m m P all wavenumbers km = E = const. similarly stringy... interesting to the eye only? p. 12

Raw matrix element data To reach high E, only use modes in intervals Ej [E, E + L(E)] diagonal elements classical mean 0.65 <φn, A φn> 0.6 0.55 0.5 0.45 0.6 0.4 0.5 0.4 0.35 4 5 10 0 2 4 6 10 E 6 n 7 10 8 10 10 5 x 10 No outliers strong evidence for QUE (exceptional density < 3 10 5 ) p. 13

p.14 Atwhatratecondensetothemean? interval I E = [E,E + L(E)] choosewidth L(E) = O(E 1/2 ) eigenvaluecountininterval N(I E ) := #{j : E j I E } quantumvariance V A (E) := 1 φj,aφ j A 2 N(I E ) E j I E

p.14 Atwhatratecondensetothemean? interval I E = [E,E + L(E)] choosewidth L(E) = O(E 1/2 ) eigenvaluecountininterval N(I E ) := #{j : E j I E } quantumvariance V A (E) := 1 φj,aφ j A 2 N(I E ) E j I E Random-wavestatisticalmodelfor φ j gives: V A (E) a RW E 1/2

p.14 Atwhatratecondensetothemean? interval I E = [E,E + L(E)] choosewidth L(E) = O(E 1/2 ) eigenvaluecountininterval N(I E ) := #{j : E j I E } quantumvariance V A (E) := 1 φj,aφ j A 2 N(I E ) E j I E Random-wavestatisticalmodelfor φ j gives: V A (E) a RW E 1/2 Conj.(Feingold-Peres 86): V A (E) g C A (0) vol(ω) E 1/2 where g = 2fromstatisticalindependenceofnearby φ j (heuristic) C A (ω) :=FTofautocorrelation 1 vol(ω) Ω A(x 0)A(x(τ))dx A 2

p.15 Resultsonquantumergodicityrate measured V A (E) 10 3 Conj. 1.2 (best fit) random wave model Conj. 1.3 (FP) consistent with power law model V A (E) = ae γ V A (E) 1.2 1.1 Ratio V A (E) / FP fit γ = 0.48 ± 0.01 10 4 1 0.9 0.8 10 5 10 6 10 7 10 4 10 5 10 6 10 7 E verycloseto γ = 1/2 prefactor: RW model fails FP Conj. succeeds large numbers of modes unprecedented accuracy(< 1%) asymptotic regime seen for first time(but more data needed!) consistentwithfpconj.,convergenceveryslow:7%offat j = 10 5

Note also exceptional bouncing ball BB modes(since not Anosov) Apps of scars: dielectric micro-lasers(tureci et al), tunnel diodes... p.16 III.Scars:shadowsofperiodicrayorbits Somehigh-jmodes φ j 2 localizeonunstableperiodicorbits(upo) discovered by numerical study of quarter-stadium modes (Heller 84)

p.17 Whydomodesshowscars? Statistics of modes Greens function wave propagation

p.17 Whydomodesshowscars? Statistics of modes Greens function wave propagation Indistributionalsensein k(wavenumber),for x Ω, j=1 φ j (x) 2 δ(k k j ) = 2k π lim ε 0 Im G(x,x;k2 + iε) Local Density Of States Greens func for Helmholtz eqn in Ω

p.17 Whydomodesshowscars? Statistics of modes Greens function wave propagation Indistributionalsensein k(wavenumber),for x Ω, j=1 φ j (x) 2 δ(k k j ) = 2k π lim ε 0 Im G(x,x;k2 + iε) Local Density Of States Greens func for Helmholtz eqn in Ω Then use semiclassical ray theory(heuristic): G(x,x;k 2 ) (freespace) + returning orbits x x (geometricfactor) e ik(orbitlength)

Whydomodesshowscars? Statistics of modes Greens function wave propagation Indistributionalsensein k(wavenumber),for x Ω, j=1 φ j (x) 2 δ(k k j ) = 2k π lim ε 0 Im G(x,x;k2 + iε) Local Density Of States Greens func for Helmholtz eqn in Ω Then use semiclassical ray theory(heuristic): G(x,x;k 2 ) (freespace) + returning orbits x x (geometricfactor) e ik(orbitlength) Outcome: k-periodic LDOS enhancement along each periodic orbit (Gutzwiller, Heller, Bogomolny, Berry, Kaplan, 80-90s) p.17

Mushroomcavitymodes (B-Betcke, nlin/0611059) Unusually simple divided phase space (Bunimovich 01) ergodic rays regular rays p.18

Mushroomcavitymodes (B-Betcke, nlin/0611059) Unusually simple divided phase space (Bunimovich 01) First calculation of high-freq modes: j 2000 ergodic rays regular rays Percival 73 conjecture verified(percival 73): modes localize to either regular or chaotic region p.18

Veryhighfreqmushroommodes ergodic, equidistributed ergodic, strongly scarred p.19

Newphenomenon:a movingscar n φ j (q) 2,boundarylocation q: 600 500 400 j 300 200 100 0 1 2 3 4 5 q sloping streak effect MODES SMOOTHED p.20

Newphenomenon:a movingscar n φ j (q) 2,boundarylocation q: 600 takeftalong kaxis,gives: wave autocorrelation in time 500 18 16 14 400 12 l 10 j 300 8 6 4 200 100 2 0 0 1 2 3 4 5 q 0 1 2 3 4 5 q sloping streak effect MODES SMOOTHED refocused returning orbits return length varies with q EVOLVE p.20

p.21 Conclusion Highfrequencyasymptoticpropertiesofchaoticmodes φ j : φ j (x) 2 tendstospatiallyuniformatconjecturedrate Scarring on unstable periodic orbits, enhanced by refocusing Topics not covered: Bouncing ball mode leakage Quasi-orthogonalityofboundaryfunctions n φ j (s) (ongoing w/ A. Hassell) Findouthowthenumericalmethodworks:Friam:KOLF121 Thanks: P. Deift(NYU) A. Hassell(ANU) P. Sarnak(Princeton) T. Betcke(Manchester) S. Zelditch(JHU) Funding: NSF(DMS-0507614) Preprints, talks, movies: http://math.dartmouth.edu/ ahb madewith:linux,l A TEX,Prosper

p.22 High-eigenvaluequarter-stadiumscar Our numerical evidence for QUE scars die, measure o(1)

Husimidistributionsonmushroomboundary 1 0.5 ergodic integrable classical boundary PSOS: p 0 0.5 ergodic 1 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 q c q L 1 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 p 0 p 0 0.2 0.2 0.4 0.4 0.6 0.6 0.8 0.8 1 1 1 2 3 4 5 q 1 2 3 4 5 q regular ergodic, strongly scarred p.23

IV.BouncingBallmodes (ongoing work w/ A. Hassell) p.24