Probabilistic Reasoning; Graphical models

Similar documents
innovations shocks white noise

Boosting and Ensemble Methods

Consider a system of 2 simultaneous first order linear equations

t=0 t>0: + vr - i dvc Continuation

The Variance-Covariance Matrix

Sampling Techniques for Probabilistic and Deterministic Graphical models

Advanced Queueing Theory. M/G/1 Queueing Systems

Lecture 4 : Backpropagation Algorithm. Prof. Seul Jung ( Intelligent Systems and Emotional Engineering Laboratory) Chungnam National University

Summary: Solving a Homogeneous System of Two Linear First Order Equations in Two Unknowns

Supplementary Figure 1. Experiment and simulation with finite qudit. anharmonicity. (a), Experimental data taken after a 60 ns three-tone pulse.

Homework: Introduction to Motion

Wave Superposition Principle

ELEN E4830 Digital Image Processing

Problem 1: Consider the following stationary data generation process for a random variable y t. e t ~ N(0,1) i.i.d.

CSE 245: Computer Aided Circuit Simulation and Verification

9. Simple Rules for Monetary Policy

Theoretical Seismology

State Observer Design

EE243 Advanced Electromagnetic Theory Lec # 10: Poynting s Theorem, Time- Harmonic EM Fields

FAULT TOLERANT SYSTEMS

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

Chapter 13 Laplace Transform Analysis

SIMEON BALL AND AART BLOKHUIS

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 )

Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /21/2016 1/23

Frequency Response. Response of an LTI System to Eigenfunction

Poisson process Markov process

Review - Probabilistic Classification

8. Queueing systems. Contents. Simple teletraffic model. Pure queueing system

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees

Final Exam : Solutions

Chapter 9 Transient Response

Microscopic Flow Characteristics Time Headway - Distribution

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

EXERCISE - 01 CHECK YOUR GRASP

Almost unbiased exponential estimator for the finite population mean

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn.

Institute of Actuaries of India

Chap 2: Reliability and Availability Models

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

Basic Polyhedral theory

Applying Software Reliability Techniques to Low Retail Demand Estimation

The Hyperelastic material is examined in this section.

Conventional Hot-Wire Anemometer

Outline. Probabilistic Model Learning. Probabilistic Model Learning. Probabilistic Model for Time-series Data: Hidden Markov Model

Elementary Differential Equations and Boundary Value Problems

CIVL 8/ D Boundary Value Problems - Triangular Elements (T6) 1/8

Search sequence databases 3 10/25/2016

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b

Transient Analysis of Two-dimensional State M/G/1 Queueing Model with Multiple Vacations and Bernoulli Schedule

1. Inverse Matrix 4[(3 7) (02)] 1[(0 7) (3 2)] Recall that the inverse of A is equal to:

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

Control Systems (Lecture note #6)

A Note on Estimability in Linear Models

CHAPTER CHAPTER14. Expectations: The Basic Tools. Prepared by: Fernando Quijano and Yvonn Quijano

Least squares and motion. Nuno Vasconcelos ECE Department, UCSD

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Engineering Circuit Analysis 8th Edition Chapter Nine Exercise Solutions

Gaussian Random Process and Its Application for Detecting the Ionospheric Disturbances Using GPS

CHAPTER 2: Supervised Learning

Bethe-Salpeter Equation Green s Function and the Bethe-Salpeter Equation for Effective Interaction in the Ladder Approximation

Lecture VI Regression

Text: WMM, Chapter 5. Sections , ,

A L A BA M A L A W R E V IE W

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall.

Analysis of decentralized potential field based multi-agent navigation via primal-dual Lyapunov theory

Solution: APPM 1360 Final (150 pts) Spring (60 pts total) The following parts are not related, justify your answers:

Transfer function and the Laplace transformation

Chapter 7 Stead St y- ate Errors

Continuous probability distributions

I) Title: Rational Expectations and Adaptive Learning. II) Contents: Introduction to Adaptive Learning

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D

Improved Exponential Estimator for Population Variance Using Two Auxiliary Variables

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

Physics 160 Lecture 3. R. Johnson April 6, 2015

arxiv: v1 [math.ap] 16 Apr 2016

Economics 302 (Sec. 001) Intermediate Macroeconomic Theory and Policy (Spring 2011) 3/28/2012. UW Madison

Jones vector & matrices

The Fourier Transform

Random Process Part 1

FI 3103 Quantum Physics

CHAPTER: 3 INVERSE EXPONENTIAL DISTRIBUTION: DIFFERENT METHOD OF ESTIMATIONS

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35

On the Speed of Heat Wave. Mihály Makai

NAME: ANSWER KEY DATE: PERIOD. DIRECTIONS: MULTIPLE CHOICE. Choose the letter of the correct answer.

Grand Canonical Ensemble

Discussion 06 Solutions

Comparative Study of Finite Element and Haar Wavelet Correlation Method for the Numerical Solution of Parabolic Type Partial Differential Equations

LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES

Linear Non-Gaussian Structural Equation Models

Mixture Ratio Estimators Using Multi-Auxiliary Variables and Attributes for Two-Phase Sampling

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

3(8 ) (8 x x ) 3x x (8 )

Ma/CS 6a Class 15: Flows and Bipartite Graphs

Transcription:

Ovrvw. robablsc Rasonng/Graphcal modls. Imporanc Samplng 3. Markov Chan Mon Carlo: Gbbs Samplng 4. Samplng n prsnc of Drmnsm 5. Rao-Blackwllsaon 6. AND/OR mporanc samplng

Ovrvw. robablsc Rasonng/Graphcal modls. Imporanc Samplng 3. Markov Chan Mon Carlo: Gbbs Samplng 4. Samplng n prsnc of Drmnsm 5. Cus-basd Varanc Rducon 6. AND/OR mporanc samplng

robablsc Rasonng; Graphcal modls Graphcal modls: Baysan nwork consran nworks md nwork Qurs Eac algorhm usng nfrnc sarch and hybrds Graph paramrs: r-wdh cycl-cus w-cus

Qurs robably of vdnc or paron funcon var pa osror margnal blfs: Mos robabl Eplanaon n var j n n var j Z j j pa pa j j C * argma

Appromaon Snc nfrnc sarch and hybrds ar oo pnsv whn graph s dns; hgh rwdh hn: Boundng nfrnc: mn-buck and mn-clusrng Blf propagaon Boundng sarch: Samplng Goal: an anym schm 5

Ovrvw. robablsc Rasonng/Graphcal modls. Imporanc Samplng 3. Markov Chan Mon Carlo: Gbbs Samplng 4. Samplng n prsnc of Drmnsm 5. Rao-Blackwllsaon 6. AND/OR mporanc samplng

Ouln Dfnons and Background on Sascs Thory of mporanc samplng Lklhood wghng Sa-of-h-ar mporanc samplng chnqus 7

A sampl Gvn a s of varabls ={... n } a sampl dnod by S s an nsanaon of all varabls: S... n 8

How o draw a sampl? Unvara dsrbuon Eampl: Gvn random varabl havng doman {0 } and a dsrbuon = 0.3 0.7. Task: Gnra sampls of from. How? draw random numbr r [0 ] If r < 0.3 hn s =0 Els s = 9

How o draw a sampl? Mul-vara dsrbuon L ={.. n } b a s of varabls Eprss h dsrbuon n produc form... n... n Sampl varabls on by on from lf o rgh along h ordrng dcad by h produc form. Baysan nwork lraur: Logc samplng 0

Samplng for rob. Infrnc Ouln Logc Samplng Imporanc Samplng Lklhood Samplng Choosng a roposal Dsrbuon Markov Chan Mon Carlo MCMC Mropols-Hasngs Gbbs samplng Varanc Rducon

Logc Samplng: No Evdnc Hnron 988 Inpu: Baysan nwork = { N } N- #nods T - # sampls Oupu: T sampls rocss nods n opologcal ordr frs procss h ancsors of a nod hn h nod slf:. For = 0 o T. For = 0 o N 3. sampl from pa

Logc samplng ampl 3 4 3 4 3 No Evdnc 3 3 4 4 3 // gnra sampl k.sampl.sampl 3.Sampl 4.Sampl 3 4 from from from 3 from 4 3 3 3

Logc Samplng w/ Evdnc Inpu: Baysan nwork = { N } N- #nods E vdnc T - # sampls Oupu: T sampls conssn wh E. For = o T. For = o N 3. sampl from pa 4. If n E and rjc sampl: 5. Goo Sp. 4

Logc Samplng ampl Evdnc : 3 0 3 4 3 4 3 // gnra sampl k.sampl.sampl 3.Sampl 4. If 3 and sar from ohrws 5.Sampl 3 from from from 0 rjc sampl 4 3 from 4 3 5

Epcd valu and Varanc Epcd valu: Gvn a probably dsrbuon and a funcon g dfnd ovr a s of varabls = { n } h pcd valu of g w.r.. s E [ g ] g Varanc: Th varanc of g w.r.. s: Var [ g ] g E [ g ] 6

Mon Carlo Esma Esmaor: An smaor s a funcon of h sampls. I producs an sma of h unknown paramr of h samplng dsrbuon. Gvn..d. sampls S gˆ T T S h M oncarlo sma of g S S E T drawn from [g] s gvn by : 7

Eampl: Mon Carlo sma Gvn: A dsrbuon = 0.3 0.7. g = 40 f quals 0 = 50 f quals. Esma E [g]=400.3+500.7=47. Gnra k sampls from : 0000 gˆ 40# sampls 0 50# # sampls sampls 40 4 506 0 46 8

Ouln Dfnons and Background on Sascs Thory of mporanc samplng Lklhood wghng Sa-of-h-ar mporanc samplng chnqus 9

Imporanc samplng: Man da Eprss qury as h pcd valu of a random varabl w.r.. o a dsrbuon Q. Gnra random sampls from Q. Esma h pcd valu from h gnrad sampls usng a mon carlo smaor avrag. 0

Imporanc samplng for ˆ : ] [ \ Z Q z w T z w E z Q z E z Q z Q z z z Q z E Z L T Q Q z z whr z M oncarlo sma as : w can rwr Thn 0 0 sasfyng proposaldsrbuon L QZb a

roprs of IS sma of Convrgnc: by law of larg numbrs Unbasd. Varanc: ˆ T a. s w z. for T T Var E Q Q [ ˆ ] ˆ Var Q T N w z Var Q [ w z] T

roprs of IS sma of Man Squard Error of h smaor MSE Q ˆ E ˆ Q E ˆ [ ] Var ˆ Q Q ˆ Var Var Q Q [ w ] T Ths quany nclosd n h bracks s zro bcaus h pcd valu of h smaor quals h pcd valu of g

Esmang 4 E basd : Esma s ˆ ˆ Rao sma: IS. Ida : Esma numraor and dnomnaor by and 0 ohrws. z conans whch s f drac - dla funcon z b a L T k T k wz wz z z Q z E z Q z z E z z z k k k Q Q z z

roprs of h IS smaor for Convrgnc: By Wak law of larg numbrs as T Asympocally unbasd Varanc lm T E Hardr o analyz [ ] Lu suggss a masur calld Effcv sampl sz 5

Gnrang sampls from Q No rsrcons on how o Typcally prss Q n produc form: QZ=QZ QZ Z.QZ n Z..Z n- Sampl along h ordr Z..Z n Eampl: Z QZ =0.0.8 Z QZ Z =0.0.90.0.8 Z 3 QZ 3 Z Z =QZ 3 =0.50.5

Ouln Dfnons and Background on Sascs Thory of mporanc samplng Lklhood wghng Sa-of-h-ar mporanc samplng chnqus 7

Lklhood Wghng Fung and Chang 990; Shachr and o 990 Is an nsanc of mporanc samplng! Clampng vdnc+ logc samplng+ wghng sampls by vdnc lklhood Works wll for lkly vdnc! 8

Lklhood Wghng: Samplng Sampl n opologcal ordr ovr! Clamp vdnc Sampl pa pa s a look-up n CT! 9

Lklhood Wghng: roposal Dsrbuon 30 E E j j E E E E j j n E j j pa pa pa pa Q w Wghs pa E Q.. : : \ \ \ \ Gvn a sampl Q. Evdnc and Baysan nwork: Gvn a : Eampl 3 3 3 3 Noc: Q s anohr Baysan nwork

Lklhood Wghng: Esmas 3 T w T ˆ Esma : zro ohrws and quals f ˆ ˆ ˆ T T g w g w Esma osror Margnals:

Lklhood Wghng Convrgs o ac posror margnals Gnras Sampls Fas Samplng dsrbuon s clos o pror spcally f E Laf Nods Incrasng samplng varanc Convrgnc may b slow Many sampls wh =0 rjcd 3

Ouln Dfnons and Background on Sascs Thory of mporanc samplng Lklhood wghng Error smaon Sa-of-h-ar mporanc samplng chnqus 33

absolu

Ouln Dfnons and Background on Sascs Thory of mporanc samplng Lklhood wghng Sa-of-h-ar mporanc samplng chnqus 38

roposal slcon On should ry o slc a proposal ha s as clos as possbl o h posror dsrbuon. smaor zro- varanc o hav a 0 ] [ ˆ z z Q z Q z z Q z z Q z Q z N T z w Var Var Z z Q Q

rfc samplng usng Buck Algorhm: Elmnaon Run Buck lmnaon on h problm along an ordrng o= N... Sampl along h rvrs ordrng:.. N A ach varabl rcovr h probably... - by rfrrng o h buck.

4 Buck Elmnaon 0 0 a a d b c c b b a d a c a b a a 0 0 d c b b a d c b a b a c a 0 Elmnaon Ordr: dbc Qury: D: E: B: C: A: d D b a d b a f b a d c b 0 c b c b f E b E D B c b f b a f a b c a f 0 a f A p a C a a c c B C c a f a c a f a b DAB EBC BAC CA A b a f D c b f E c a f B f C a A D E C B Buck Tr D E B C A Orgnal Funcons Mssags Tm and spac pw*

buck B: buck C: buck D: buck E: buck A: Buck lmnaon BE Algorhm lm-bl Dchr 996 CA a b BA DBA BC h B ADC h C AD h D A h E a Elmnaon opraor S 4 B C D E A

Samplng from h oupu of BE Dchr 00 buck B: S A a D dc c n h buck Sampl : B b QB a d B a d BA DBA BC B a b c buck C: CA h B ADC S A a D d n h buck Sampl :C c QC a d C A h B a d C buck D: h C AD S A a n h buck Sampl:D d QD a h C ad buck E: h D A Evdnc buck :gnor buck A: A h E A QA A h E A Sampl : A a QA S 43

Mn-bucks: local nfrnc Compuaon n a buck s m and spac ponnal n h numbr of varabls nvolvd Thrfor paron funcons n a buck no mn-bucks on smallr numbr of varabls Can conrol h sz of ach mn-buck yldng polynomal comply. S 44

Mn-Buck Elmnaon buck B: Σ B BC Mn-bucks Σ B BA DBA Spac and Tm consrans: Mamum scop sz of h nw funcon gnrad should b boundd by buck C: buck D: CA h B C h B AD BE gnras a funcon havng scop sz 3. So canno b usd. buck E: h C A buck A: A h E A h D A Appromaon of S 45 45

Samplng from h oupu of MBE buck B: BC BA DBA buck C: CA h B C buck D: h B AD buck E: buck A: h E A h C A h D A Samplng s sam as n BE-samplng cp ha now w consruc Q from a randomly slcd mnbuck S 46 46

IJG-Samplng Goga and Dchr 005 Irav Jon Graph ropagaon IJG A Gnralzd Blf ropagaon schm Ydda al. 00 IJG ylds br appromaons of E han MBE Dchr Kask and Mascu 00 Oupu of IJG s sam as mn-buck clusrs Currnly h bs prformng IS schm!

Currn Rsarch quson Gvn a Baysan nwork wh vdnc or a Markov nwork rprsnng funcon gnra anohr Baysan nwork rprsnng a funcon Q from a famly of dsrbuons rsrcd by srucur such ha Q s closs o. Currn approachs Mn-bucks Ijgp Boh Eprmnd bu nd o b jusfd horcally.

Algorhm: Approma Samplng Run IJG or MBE A ach branch pon compu h dg probabls by consulng oupu of IJG or MBE Rjcon roblm: Som assgnmns gnrad ar non soluons

k ˆ R ' UpdaQ N ˆ ˆE Q... z Gnra sampls z o k do For 0 ˆ... Q roposal Inal k N E urn End Q Q k Q z w E from E Z pa Z Q Z pa Z Q Z Q Z k k N j k k n n Adapv Imporanc Samplng

Adapv Imporanc Samplng Gnral cas Gvn k proposal dsrbuons Tak N sampls ou of ach dsrbuon Approma ˆ k k j Avg wgh jh proposal

Esmang Q'z ' Q Z Q' Z whr ach Q'Z Q' Z Z.. Z pa Z s smad by mporanc samplng -... Q' Z pa n Z n

Ovrvw. robablsc Rasonng/Graphcal modls. Imporanc Samplng 3. Markov Chan Mon Carlo: Gbbs Samplng 4. Samplng n prsnc of Drmnsm 5. Rao-Blackwllsaon 6. AND/OR mporanc samplng

Markov Chan 3 4 A Markov chan s a dscr random procss wh h propry ha h n sa dpnds only on h currn sa Markov ropry:... If - dos no dpnd on m homognous and sa spac s fn hn s ofn prssd as a ranson funcon aka ranson mar 54

Eampl: Drunkard s Walk a random walk on h numbr ln whr a ach sp h poson may chang by + or wh qual probably 3 D {0...} n n 0.5 n 0.5 ranson mar 55

Eampl: Wahr Modl ran ran ran sun ran D { rany sunny} rany sunny rany 0.9 0.5 sunny 0. 0.5 ranson mar 56

Mul-Varabl Sysm } D dscr { 3 sa s an assgnmn of valus o all h varabls fn + + 3 3 + {... n } 57

Baysan Nwork Sysm Baysan Nwork s a rprsnaon of h jon probably dsrbuon ovr or mor varabls + + 3 3 3 + { 3 } { } 3 58

Saonary Dsrbuon Esnc If h Markov chan s m-homognous hn h vcor s a saonary dsrbuon aka nvaran or qulbrum dsrbuon aka fd pon f s nrs sum up o and sasfy: D Fn sa spac Markov chan has a unqu saonary dsrbuon f and only f: Th chan s rrducbl All of s sas ar posv rcurrn j j 59

Irrducbl A sa s rrducbl f undr h ranson rul on has nonzro probably of movng from o any ohr sa and hn comng back n a fn numbr of sps If on sa s rrducbl hn all h sas mus b rrducbl Lu Ch. pp. 49 Df... 60

Rcurrn A sa s rcurrn f h chan rurns o wh probably L M b h pcd numbr of sps o rurn o sa Sa s posv rcurrn f M s fn Th rcurrn sas n a fn sa chan ar posv rcurrn. 6

Saonary Dsrbuon Convrgnc Consdr nfn Markov chan: n n 0 If h chan s boh rrducbl and aprodc hn: lm n n Inal sa s no mporan n h lm Th mos usful faur of a good Markov chan s s fas forgfulnss of s pas Lu Ch.. 0 n 6

Aprodc Dfn d = g.c.d.{n > 0 s possbl o go from o n n sps}. Hr g.c.d. mans h gras common dvsor of h ngrs n h s. If d= for hn chan s aprodc osv rcurrn aprodc sas ar rgodc 63

Markov Chan Mon Carlo How do w sma.g.? Gnra sampls ha form Markov Chan wh saonary dsrbuon = Esma from sampls obsrvd sas: vsd sas 0 n can b vwd as sampls from dsrbuon T T lm T 64

MCMC Summary Convrgnc s guarand n h lm Inal sa s no mporan bu ypcally w hrow away frs K sampls - burn-n Sampls ar dpndn no..d. Convrgnc mng ra may b slow Th srongr corrlaon bwn sas h slowr convrgnc! 65

Gbbs Samplng Gman&Gman984 Gbbs samplr s an algorhm o gnra a squnc of sampls from h jon probably dsrbuon of wo or mor random varabls Sampl nw varabl valu on varabl a a m from h varabl s condonal dsrbuon:..... } \ n Sampls form a Markov chan wh saonary dsrbuon 66

Gbbs Samplng: Illusraon Th procss of Gbbs samplng can b undrsood as a random walk n h spac of all nsanaons of = rmmbr drunkard s walk: In on sp w can rach nsanaons ha dffr from currn on by valu assgnmn o a mos on varabl assum randomzd choc of varabls.

Ordrd Gbbs Samplr Gnra sampl + from : In shor for = o N: 68 \ sampld from............ 3 3 N N N N N N rocss All Varabls In Som Ordr

Transon robabls n BN Gvn Markov blank parns chldrn and hr parns s ndpndn of all ohr nods \ \ Markov blank: markov pa ch pa markov pa j ch Compuaon s lnar n h sz of Markov blank! : j pa j ch j j j 69

Ordrd Gbbs Samplng Algorhm arl988 Inpu: E= Oupu: T sampls { } F vdnc E= nalz 0 a random. For = o T compu sampls. For = o N loop hrough varabls 3. + markov 4. End For 5. End For

Gbbs Samplng Eampl - BN {... 9} E { 9} 3 6 = 0 6 = 6 0 = 0 5 8 7 = 7 0 3 = 3 0 4 7 9 8 = 8 0 4 = 4 0 5 = 5 0 7

Gbbs Samplng Eampl - BN {... 9} E { 9} 3 6 0 0... 8 9 5 8 0... 8 9 4 7 9 7

Answrng Qurs =? Mhod : coun # of sampls whr = hsogram smaor: T markov T T T Drac dla f-n Mhod : avrag probably mur smaor: Mur smaor convrgs fasr consdr smas for h unobsrvd valus of ; prov va Rao-Blackwll horm

Rao-Blackwll Thorm Rao-Blackwll Thorm: L random varabl s b composd of wo groups of varabls R and L. Thn for h jon dsrbuon RL and funcon g h followng rsul appls Var[ E{ g R L} Var[ g R] for a funcon of nrs g.g. h man or covaranc Caslla&Robr996 Lu. al. 995. horm maks a wak proms bu works wll n pracc! mprovmn dpnds h choc of R and L 74

Imporanc vs. Gbbs T T T Q g T g Q g T g ˆ ˆ ˆ w Gbbs: Imporanc:

Gbbs Samplng: Convrgnc Sampl from ` Convrgs ff chan s rrducbl and rgodc Inuon - mus b abl o plor all sas: f and j ar srongly corrlad =0 j =0 hn w canno plor sas wh = and j = All condons ar sasfd whn all probabls ar posv Convrgnc ra can b characrzd by h scond gn-valu of ranson mar 76

Gbbs: Spdng Convrgnc Rduc dpndnc bwn sampls auocorrlaon Skp sampls Randomz Varabl Samplng Ordr Employ blockng groupng Mulpl chans Rduc varanc covr n h n scon 77

Blockng Gbbs Samplr Sampl svral varabls oghr as a block Eampl: Gvn hr varabls YZ wh domans of sz group Y and Z oghr o form a varabl W={YZ} wh doman sz 4. Thn gvn sampl y z compu n sampl: y z w y z w Y Z + Can mprov convrgnc graly whn wo varabls ar srongly corrlad! - Doman of h block varabl grows ponnally wh h #varabls n a block! 78

Gbbs: Mulpl Chans Gnra M chans of sz K Each chan producs ndpndn sma m : 79 M m M ˆ K m K \ Tra m as ndpndn random varabls. Esma as avrag of m :

Gbbs Samplng Summary Markov Chan Mon Carlo mhod Glfand and Smh 990 Smh and Robrs 993 Trny 994 Sampls ar dpndn form Markov Chan Sampl from whch convrgs o Guarand o convrg whn all > 0 Mhods o mprov convrgnc: Blockng Rao-Blackwllsd 80

Ovrvw. robablsc Rasonng/Graphcal modls. Imporanc Samplng 3. Markov Chan Mon Carlo: Gbbs Samplng 4. Samplng n prsnc of Drmnsm 5. Rao-Blackwllsaon 6. AND/OR mporanc samplng

Samplng: rformanc Gbbs samplng Rduc dpndnc bwn sampls Imporanc samplng Rduc varanc Achv boh by samplng a subs of varabls and ngrang ou h rs rduc dmnsonaly aka Rao-Blackwllsaon Eplo graph srucur o manag h ra cos 8

Smallr Subs Sa-Spac Smallr sa-spac s asr o covr { 3 4} { } D 64 D 6 83

Smoohr Dsrbuon 3 4 0-0. 0.-0. 0.-0.6 0-0. 0.-0. 0.-0.6 0. 0. 0. 0 00 0 0 0 0 00 0. 0 0 0 84

Spdng Up Convrgnc Man Squard Error of h smaor: MSE Q BIAS Var Q In cas of unbasd smaor BIAS=0 MSE Q ˆ [ ˆ] VarQ [ ˆ] EQ EQ[ ] Rduc varanc spd up convrgnc! 85

Rao-Blackwllsaon 86 } { ~ ]} [ { } { } { ˆ ]} [ { } { ]} {var[ ]} [ { } { ]} [ ] [ { ~ } { ˆ g Var T l h E Var T h Var g Var l g E Var g Var l g E l g E Var g Var l h E l h E T g h h T g L R T T Lu Ch..3

Rao-Blackwllsaon Carry ou analycal compuaon as much as possbl - Lu =RL Imporanc Samplng: Var Q R L { } Var Q R L Q R { } Q R Lu Ch..5.5 Gbbs Samplng: auocovarancs ar lowr lss corrlaon bwn sampls f and j ar srongly corrlad =0 j =0 only nclud on fo hm no a samplng s 87

Blockng Gbbs Samplr vs. Collapsd Y Z Fasr Convrgnc Sandard Gbbs: y z y z z y Blockng: y z y z Collapsd: y y 3 88

Collapsd Gbbs Samplng Gnrang Sampls Gnra sampl c + from c : 89 \............ 3 3 c c c c C c c c c c C c c c c c C c c c c c C K K K K K K sampldfrom In shor for = o K:

Collapsd Gbbs Samplr Inpu: C E= Oupu: T sampls {c } F vdnc E= nalz c 0 a random. For = o T compu sampls. For = o N loop hrough varabls 3. c + C c \c 4. End For 5. End For

Calculaon Tm Compung c c \c s mor pnsv rqurs nfrnc Tradng #sampls for smallr varanc: gnra mor sampls wh hghr covaranc gnra fwr sampls wh lowr covaranc Mus conrol h m spn compung samplng probabls n ordr o b mffcv! 9

Eplong Graph roprs Rcall compuaon m s ponnal n h adjusd nducd wdh of a graph w-cus s a subs of varabl s.. whn hy ar obsrvd nducd wdh of h graph s w whn sampld varabls form a w-cus nfrnc s pw.g. usng Buck Tr Elmnaon cycl-cus s a spcal cas of w-cus Samplng w-cus w-cus samplng! 9

Wha If C=Cycl-Cus? c 0 0 0 { 5 } E { 9} 5 9 can compu usng Buck Elmnaon 3 3 4 5 6 4 6 7 8 9 7 8 9 5 9 compuaon comply s ON 93

Compung Transon robabls 94 : 0 : 9 3 9 3 BE BE 7 5 4 9 8 3 6 0 0 0 9 3 3 9 3 3 9 3 9 3 Compu jon probabls: Normalz:

Cus Samplng-Answrng Qurs Qury: c C c =? sam as Gbbs: ˆ c T T c c \ c compud whl gnrang sampl usng buck r lmnaon Qury: \C =? T c T compu afr gnrang sampl usng buck r lmnaon 95

Cus Samplng vs. Cus Condonng 96 c c T c coun c c T C D c C D c T Cus Condonng Cus Samplng c c C D c

Cus Samplng Eampl Esmang for samplng nod : 4 5 3 6 3 0 5 5 5 9 9 9 Sampl Sampl Sampl 3 7 8 9 9 3 0 5 9 5 5 9 9 97

Cus Samplng Eampl 98 } { } { } { 9 3 5 3 3 3 5 3 3 9 5 3 5 9 5 3 5 c c c Esmang 3 for non-sampld nod 3 : 7 6 5 4 9 8 3 3 9 3 5 3 3 9 5 3 9 5 3 9 3

CCS54 Ts Rsuls CCS54 n=54 C=5 E=3 CCS54 n=54 C=5 E=3 0.004 Cus Gbbs 0.0008 Cus Gbbs 0.003 0.0006 0.00 0.0004 0.00 0.000 0 0 000 000 3000 4000 5000 # sampls 0 0 5 0 5 0 5 Tmsc MSE vs. #sampls lf and m rgh Ergodc =54 D = C=5 E=3 Eac Tm = 30 sc usng Cus Condonng 99

CCS79 Ts Rsuls CCS79 n=79 C=8 E=35 CCS79 n=79 C=8 E=35 0.0 Cus Gbbs Cus Gbbs 0.0 0.0 0.008 0.006 0.004 0.0 0.008 0.006 0.004 0.00 0.00 0 00 500 000 000 3000 4000 # sampls 0 0 0 40 60 80 Tmsc MSE vs. #sampls lf and m rgh Non-Ergodc drmnsc CT nry = 79 C = 8 <= D <=4 E = 35 Eac Tm = sc usng Cus Condonng 00

CCS360b Ts Rsuls CCS360b n=360 C= E=36 CCS360b n=360 C= E=36 Cus Gbbs Cus Gbbs 0.0006 0.0006 0.000 0.000 0.00008 0.00008 0.00004 0.00004 0 0 00 400 600 800 000 # sampls 0 3 5 0 0 30 40 50 60 Tmsc MSE vs. #sampls lf and m rgh Ergodc = 360 D = C = E = 36 Eac Tm > 60 mn usng Cus Condonng Eac Valus oband va Buck Elmnaon 0

Random Nworks RANDOM n=00 C=3 E=5-0 Cus Gbbs 0.0035 0.003 0.005 0.00 0.005 0.00 0.0005 0 0 00 400 600 800 000 00 # sampls 0.00 0.0008 0.0006 0.0004 0.000 0 RANDOM n=00 C=3 E=5-0 Cus Gbbs 0 3 4 5 6 7 8 9 0 Tmsc MSE vs. #sampls lf and m rgh = 00 D =C = 3 E = 5-0 Eac Tm = 30 sc usng Cus Condonng 0

Codng Nworks Cus Transforms Non-Ergodc Chan o Ergodc 3 4 Codng Nworks n=00 C=-4 u u u 3 u 4 0. IB Gbbs Cus p p p 3 p 4 0.0 y y y 3 y 4 0.00 0 0 0 30 40 50 60 Tmsc MSE vs. m rgh Non-Ergodc = 00 D = C = 3-6 E = 50 Sampl Ergodc Subspac U={U U U k } Eac Tm = 50 sc usng Cus Condonng 03

Non-Ergodc Halfndr HalFndr n=56 C=5 E= HalFndr n=56 C=5 E= 0. Cus Gbbs Cus Gbbs 0.0 0. 0.0 0.00 0.00 0.000 0 500 000 500 # sampls 0.000 3 4 5 6 7 8 9 0 Tmsc MSE vs. #sampls lf and m rgh Non-Ergodc = 56 C = 5 <=D <= E = 0 Eac Tm = sc usng Loop-Cus Condonng 04

CCS360b - MSE cpcs360b N=360 E=[0-34] w*=0 MSE 0.00005 0.0000 Gbbs IB C=6fw=3 C=48fw= 0.00005 0.0000 0.000005 0 0 00 400 600 800 000 00 400 600 Tm sc MSE vs. Tm Ergodc = 360 C = 6 D = Eac Tm = 50 mn usng BTE 05

Cus Imporanc Samplng Apply Imporanc Samplng ovr cus C T T w T Q c c T ˆ T w c c T c T w c T whr c s compud usng Buck Elmnaon Goga & Dchr 005 and Bdyuk & Dchr 006

Lklhood Cus Wghng LCS Z=Topologcal Ordr{CE} Gnrang sampl +: For If Z Z z Els z End If End For Z E do : z z Z z... z KL[C QC+ KL* Q] compud whl gnrang sampl usng buck r lmnaon can b mmozd for som numbr of nsancs K basd on mmory avalabl 07

ahfndr 08

ahfndr 09

Lnk 0

Summary Imporanc Samplng..d. sampls Unbasd smaor Gnras sampls fas Sampls from Q Rjc sampls wh zro-wgh Improvs on cus Gbbs Samplng Dpndn sampls Basd smaor Gnras sampls slowr Sampls from ` Dos no convrg n prsnc of consrans Improvs on cus

MSE CCS360b.E-0.E-03 cpcs360b N=360 LC=6 w*= E=5 LW AIS-BN Gbbs LCS IB.E-04.E-05 0 4 6 8 0 4 Tm sc LW lklhood wghng LCS lklhood wghng on a cus

MSE CCS4b.0E-0.0E-03 cpcs4b N=4 LC=47 w*= E=8 LW AIS-BN Gbbs LCS IB.0E-04.0E-05 0 0 0 30 40 50 60 Tm sc LW lklhood wghng LCS lklhood wghng on a cus 3

MSE Codng Nworks.0E-0.0E-0 codng N=00 =3 LC=6 w*= LW AIS-BN Gbbs LCS IB.0E-03.0E-04.0E-05 0 4 6 8 0 Tm sc LW lklhood wghng LCS lklhood wghng on a cus 4