Simulation of Natural Convection in a Complicated Enclosure with Two Wavy Vertical Walls

Similar documents
/99 $10.00 (c) 1999 IEEE

Available online Journal of Scientific and Engineering Research, 2016, 3(6): Research Article

SHORT WAY SYMMETRY/SYMMETRICAL SYNTHETIC TREAD TELEVISION VERTICAL VITREOUS VOLUME. 1 BID SET No. Revisions / Submissions Date CAR

Differentiation of allergenic fungal spores by image analysis, with application to aerobiological counts

Asynchronous Training in Wireless Sensor Networks

Econometric modelling and forecasting of intraday electricity prices

Fuzzy Reasoning and Optimization Based on a Generalized Bayesian Network

2 u Du, k Hu Dv Hu, y H. u Cu j u qu u. Nv. v uy. Cu Hu F A H. qu Cu.. Cu j 1980, u V, v Nu My O k. v u u. A G C. My u v k, 2.5 H v v u / u v u v k y

BLUE LINE TROLLEY STATION IMPROVEMENTS

CONSTRUCTION DOCUMENTS

Solutions to Homework 3

Mouse-Human Experimental Epigenetic Analysis Unmasks Dietary Targets and Genetic Liability for Diabetic Phenotypes

13 Congruent Circles in a Circle

S J M I PAC T A F CT R O : CR E D EP

A Step by Step Guide Chris Dew: Clinical Indicators Programme Manager Health and Social Care Information Centre

Computer Graphics. Viewing & Projections

T H E S C I E N C E B E H I N D T H E A R T

Three Phase Asymmetrical Load Flow for Four-Wire Distribution Networks

THIS PAGE DECLASSIFIED IAW E

On Hamiltonian Tetrahedralizations Of Convex Polyhedra

FilfidatiPm 51mazi6umn1I40171mhz4nnin15miTtiuvintfr, b 1,1411.1

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MATHEMATICS ACADEMIC YEAR / EVEN SEMESTER QUESTION BANK

Lecture Notes in Mathematics. A First Course in Quasi-Linear Partial Differential Equations for Physical Sciences and Engineering Solution Manual

R a. Aeolian Church. A O g C. Air, Storm, Wind. P a h. Affinity: Clan Law. r q V a b a. R 5 Z t 6. c g M b. Atroxic Church. d / X.

Chapter 5: Quantization of Radiation in Cavities and Free Space

A TYP A-602 A-304 A-602 A-302 GRADE BEAM SEE 95% COMPACTED STRUCTURAL FILL A '-0"

Summer 2017 MATH Solution to Exercise 5

Math 220A - Fall 2002 Homework 5 Solutions

N C GM L P, u u y Du J W P: u,, uy u y j S, P k v, L C k u, u GM L O v L v y, u k y v v QV v u, v- v ju, v, u v u S L v: S u E x y v O, L O C u y y, k

FH6 GENERAL CW CW CHEMISTRY # BMC10-4 1BMC BMC10-5 1BMC10-22 FUTURE. 48 x 22 CART 1BMC10-6 2NHT-14,16,18 36 X x 22.

duct end blocks filters lamps filters duct end blocks filters lamps filters metric

68X LOUIE B NUNN PKWYLOUIE B NUNN PKWY NC

Integrodifferential Hyperbolic Equations and its Application for 2-D Rotational Fluid Flows

WELL-POSEDNESS FOR HYPERBOLIC PROBLEMS (0.2)

Lecture two. January 17, 2019

MASSALINA CONDO MARINA

A L A BA M A L A W R E V IE W

Exam 2, Solution 4. Jordan Paschke

Contents FREE!

BUILDER SERIES BALL KNOBSETS

Distributed Set Reachability

INVITATION FOR BID Exploratory Geothermal Drilling Services Department of Natural Resources (DNR)

Review. To solve ay + by + cy = 0 we consider the characteristic equation. aλ 2 + bλ + c = 0.

Math 342 Partial Differential Equations «Viktor Grigoryan

T e c h n i c u e. SOUTH'S LIVEST COLLEGE WEEKLY Georgia School of Technology. Phi Kappa Tau Frat Installed With WeekEnd of Activity mm

Net Wt. 15 lbs. (6.8 kg) Covers 5,000 Sq. Ft. CAUTION CAUTION L AW N Storage and Disposal KEEP OUT OF REACH OF CHILDREN. Spreader Directions

MAHARASHTRA STATE POWER GENERATION COMPANY LIMITED [Plot No. G-9, Prakashgad, Bandra (E), Mumbai ] Website:

Trade Patterns, Production networks, and Trade and employment in the Asia-US region

First order wave equations. Transport equation is conservation law with J = cu, u t + cu x = 0, < x <.

D ON MY HONOR, I WILL TRY.. AISI S E R S O DASS A B BR AM OWNI S E R S I GIRL SCOUTS! JUN SENIO IORS CAD E TTES

144 Chapter 3. Second Order Linear Equations

Data, frameworks, and financial instrument identification


Dierential Geometry Curves and surfaces Local properties Geometric foundations (critical for visual modeling and computing) Quantitative analysis Algo

LEVEL 2 ASSESSMENT TASK. WRITING Can write a Personal Response

The Hilltopper-20 a compact 20M CW transceiver. Offered by the 4-State QRP Group

A BRIEF INTRODUCTION INTO SOLVING DIFFERENTIAL EQUATIONS

LOCAL NEWS. PAVBBS any at this offioe. TAKE NOT IUE. AH accounts due the. firm qf MORRIS A' III HE mutt be paid to

Lecture Notes for Math 251: ODE and PDE. Lecture 13: 3.4 Repeated Roots and Reduction Of Order

GALERKIN TIME STEPPING METHODS FOR NONLINEAR PARABOLIC EQUATIONS

PwC Middle East Spa Benchmarking Survey January - August 2012

READ T H E DATE ON LABEL A blue m a r k a r o u n d this notice will call y o u r attention to y o u r LOWELL. MICHIGAN, THURSDAY, AUGUST 29.

LOWELL JOURNAL. MUST APOLOGIZE. such communication with the shore as Is m i Boimhle, noewwary and proper for the comfort

kind read i i i i i i

Solutions to Homework 1, Introduction to Differential Equations, 3450: , Dr. Montero, Spring y(x) = ce 2x + e x

A symmetry-based method for constructing nonlocally related partial differential equation systems

Partial Differential Equations

Math 266 Midterm Exam 2

Mathematical and Information Technologies, MIT-2016 Mathematical modeling

. p.1/31. Department Mathematics and Statistics Arizona State University. Don Jones

Partial Differential Equations, Winter 2015

2 Lx H h , ug ,. Lx, h yph p g j g - pg g, pg g h h uy h, k. h p Uvy ' P g gz, u hy u u g h y h. P' k h, guy hh u, v u,. p p u h WW v

Synthesizing and Modeling Human Locomotion Using System Identification

The Model and Preliminaries Problems and Solutions

129.00' Pond EXIST. TREES 100' WETLAND REVIEW LINE PROPOSED RESIDENCE EXIST. TREE TO REMAIN PROPOSED 4' HT. GATE 76'

Winnie flies again. Winnie s Song. hat. A big tall hat Ten long toes A black magic wand A long red nose. nose. She s Winnie Winnie the Witch.

MIDTERM 1 PRACTICE PROBLEM SOLUTIONS

Evaluation of The Necessary of Agriculture Public Expenditure for Poverty Reduction and Food Security in Benin

Exhibit 2-9/30/15 Invoice Filing Page 1841 of Page 3660 Docket No

Discovery Guide. And now, the fight you came for. Welcome to Center Theatre Group and The Royale by Marco Ramirez

Carleson measures and elliptic boundary value problems Abstract. Mathematics Subject Classification (2010). Keywords. 1.

arxiv: v1 [math.pr] 19 Aug 2014

The first order quasi-linear PDEs

Fall 2001, AM33 Solution to hw7

nd A L T O SOLO LOWELL. MICHIGAN. THURSDAY. APRIL Spring Activities Heads Up and Forward (Editorial By " T h e Committee'')

Numerical Methods for Conservation Laws WPI, January 2006 C. Ringhofer C2 b 2

Section 2.4 Linear Equations

Map A-2. Riparian Reserves, Late-Successional Reserves, and Adaptive Management Area Land Management Allocations.

MATH 220: Problem Set 3 Solutions

TH THE 997 M EETING OF THE BRODIE CLUB th The 997 meeting of The Brodie Club was held on Nov. 15, R amsay Wright Zoological Laboratories at the Univer

(1 + 2y)y = x. ( x. The right-hand side is a standard integral, so in the end we have the implicit solution. y(x) + y 2 (x) = x2 2 +C.

Crowds of eager worshippers trooping into the venue

Math 308 Exam I Practice Problems

Definition 3 (Continuity). A function f is continuous at c if lim x c f(x) = f(c).

Probe fire that killed 23

Diff. Eq. App.( ) Midterm 1 Solutions

r R N S Hobbs P J Phelan B E A Edmeaes K D Boyce 2016 Membership ams A P Cowan D D J Robinson B J Hyam J S Foster A NAME MEMBERSHIP NUMBER

Lecture 13 The Fundamental Forms of a Surface

Estimation of State Noise for the Ensemble Kalman filter algorithm for 2D shallow water equations.

Transcription:

A Mtt S, V. 6, 2012,. 57, 2833-2842 Sut Ntu Cvt Ct Eu wt Tw Wvy Vt W P S Dtt Mtt, Futy S K K Uvty, K K 40002, T Ct E Mtt CHE, S Ayutty R., B 10400, T y 129@t. Sut Wtyu 1 Dtt Mtt, Futy S K K Uvty, K K 40002, T ut w@u..t Att Ntu vt u u v tw wvy vt w tu. A u wt u-tut u. A vty t ty tt w w w t t w ttu. T tv t tuy t t w, ttu tut t t t vty w vu Dy u, Ry u wv tu. T yz t, t v t ut uy t t FPDE 6.17 P w t t u u v. F t tuy ut, Dy Ry u t tt vt. I t, t tu ttu t tut. I t wv tu, t w tty tut y ut t t tu. Kyw: Ft Et Mt, Ntu Cvt, Pu M 1 C Aut.

2834 P. S S. Wtyu 1 Itut T tuy tu vt tw- u wt utut u v t ttt t y tt y t. My tuy t t u wt vu uy t. Mt t y, tu, tz tu. Du t u t t u y, t v, ut u, u ut, t ut, t., t vt t t vty tu t ut t yt. I vty wt u, B t. [1] tu t tu vt w tz u u u u t tt w u tt tw vt w t t tt ttu w t t w ut. B t. [2] vtt t t u -u t w tu vt w wt tu u. T ut u ut y ty t t y wt -ut t. K t. [3] t tu w tt w t ty w t ttu w t t w u ttu t t w. I t, tu u u t t tutu t tuy t t t. A N [4],[5] vtt t t t, Ry u t t t t vt t tu -t u u wt t y u t vu tt ut tu. P Sut [6] yz t w ttu tut tt t-tu u u tt t w t t. I t vty, D D [7],[8],[9] tu t tu vt u u v t t w wvy t vt w t, tw t uut. Fut, Ozt t. [10] tu t tu vt t t wvy-w u t t t u t t wv t y u t-vu t. Itt t t t t Ry u t tu wvy w. T t tuy tu vt u u u tt tw vt w wvy. T u-tut u t t. Btt w t ty w w t t w ttu. T tv t vtt t vt t t vty w Dy u, Ry u wv tu v y u t t t. I t 2, t tt tt u tuut t. St 3 vv t

Sut tu vt t u 2835 t ut u. Fy, w vut t utt ut t u u. 2 Ntt P Ctt T w tt tuut t. AR t t, AR = H/L D Dy u t u t vty ( 1 ) H t t u () L t t u () Nu Nut u u (P) P u P Pt u R Ry u T ttu (C) T H ttu t w T C ttu w u uut λ wv tu γ ty t θ ttu ν t vty ( 2 1 ) ρ ty ( 3 ) ψ t ut K ty t u u φ t ut,y Ct t () u,v,y t vty U,V,y t vty X,Y t,y t T tv t t vtt t w, ttu tut t t u t tu vt u u v tw wvy vt w. T u-tut u Nwt t u. H, u, Pt u t tt t 0.71, t u t. Bu t u tw wvy vt w, t t t wvy w v y (1) (2), tvy. 1 (y) =1 λ + λ (2π(1 y)) (1) 2 (y) =1 λ + λ (2πy). (2) Dt vu ttu t uy. Btt w t ty, T H, w w t t w ttu, T C. T ttu t tt wtt T () =T C + T [ ( )] H T C 2π 1. (3) 2 L Vty w z (u = v = 0). At t utt t z. It t t t t

2836 P. S S. Wtyu u = v = T = 0 H u = v = 0, T = Su L Fu 1: A vty wt tw wvy vt w uy t. vt w t t t tt w (AR = H/L). A y u u v w F.1. 3 Gv Eut Ntu vt y t ut vt, tu y ([11]). T w ut tw t y t u wt u u t tt t t ty t uyy. T v ut ty tw- tu vt w t u vty : u + v =0, (4) y u u + v u u v + v v y = 1 ρ y = 1 ρ + ν y + ν u T + v T y = α ( 2 v + 2 v 2 y 2 ( 2 u + 2 u 2 y 2 ) ( 2 T 2 + 2 T y 2 ) ν u, (5) K ν K v + β (T T C), (6) wt w uy t: u( 1 (y),y)=u( 2 (y),y)=u(, 0) = u(, y) =0, v( 1 (y),y)=v( 2 (y),y)=v(, 0) = v(, y) =0, T ( 1 (y),y)=t( 2 (y),y)=t(, y) =T C =0, T (, 0) = T H = T C + T H T C 2 ) [ 1. (7) ( 2π L )].

Sut tu vt t u 2837 T v v ut t t - y u t w v: X = L, Y = y L, U = ul α, V = vl α, θ = T T C T H T C P = L2 ρα, P = ν 2 α, R = β (T H T C ) L 3 P, D = K ν 2 L. 2 T ut (4)-(7) t : U X + V Y U U X + V U Y = P ( 2 ) X + P U X + 2 U 2 Y 2 U V X + V V ( 2 ) Y = P Y + P V X + 2 V 2 Y 2 =0, (8) P U, (9) D P V + RPθ, (10) D U θ X + V θ ( 2 ) Y = θ X + 2 θ. (11) 2 Y 2 S t t w t tuy t w, t u t y y u t t ut w U = ψ ψ V =. Tu, Y X E.(8) t E.(12) 2 ψ X 2 + 2 ψ Y 2 = U Y V X. (12) T t t u P, w u t ty t t t wt ty t γ u tt P = γ ( U + ) V X Y ([12]). Suttut P t E.(9) (10) y E.(13) (14). U U X + V U Y = γ ( U X X + V ) ( 2 ) U + P Y X + 2 U 2 Y 2 U V X + V V Y = γ Y P U, (13) D ( U X + V ) ( 2 ) V + P Y X + 2 V P 2 Y 2 D V + RPθ. (14) T t uy t : U( 1 (Y ),Y)=U( 2 (Y ),Y)=U(X, 0) = U(X, Y )=0, V ( 1 (Y ),Y)=V ( 2 (Y ),Y)=V (X, 0) = V (X, Y )=0, (15)

2838 P. S S. Wtyu θ( 1 (Y ),Y)=θ( 2 (Y ),Y)=θ(X, Y )=0, θ(x, 0) = 1 (1 (2πX)). 2 T vuz t t t y u w, tut tw- vt [13] 2 φ X + 2 φ 2 Y = (Uθ) (Vθ) 2 Y X. (16) Wt w uy t: φ(x, 0) = π (πx) φ( 1 (Y ),Y)=φ( 2 (Y ),Y)=φ(X, Y )=0. (17) 4 Rut Du T yz t u ut, t v ut t vuy t FPDE 6.17 P. FPDE tw w t t y t tu t t t ut yt t t t. T, t v t yt t tu utut t ut. I t t, t tt t Dy u, Ry u wv tu. T ut t vy vu t t y y t, t t w utut FPDE t w u vu. I t tuy, t t tz t t t vu D, R λ. Cutt v ut vu D =10 4 10 2 R =10 10 5 v w t ([1],[9]). A, t wv tu 0.01 0.1 v tu ([9]). T t t,ar, u uut t 1 2, tvy. Buy t w tut v y E.(15),(16) (17). St, t t t vy tt t w t utt u ut t t t vty. F.2. w t ut D w F.2()-2() t ut D =10 2 F.2()-2() D =10 4. St utt tt u ut yt wt t t t vt t ψ =0.0 u tt t t tv vu t t tv. T t t t t u wy tt tv tv v t-w w ut tt, tvy. T w v w t t tt t w tt w D. T u vu t ut F.2() ψ =7.5 tuy t ψ =0.16

Sut tu vt t u 2839 w F.2(). T ttu tut t tt. I F.2(), t t t t u w t tu tut t w D w F.2(). D D y t t. Ht F.2 w tt t w t tt t t t t w t tut t t tt. t v y z A D E B C w u E : 7.50 D : 7.00 C : 6.50 B : 6.00 A : 5.50 z : 5.00 y : 4.50 : 4.00 w : 3.50 v : 3.00 : -3.00 : -3.50 : -4.00 : -4.50 : -5.00 : -5.50 :-6.00 : -6.50 :-7.00 :-7.50 t u : 1.00 t : 0.95 : 0.90 : 0.85 : 0.80 : 0.75 : 0.70 : 0.65 :0.60 : 0.55 : 0.50 : 0.45 : 0.40 : 0.35 : 0.30 : 0.25 : 0.20 : 0.15 : 0.10 : 0.05 : 0.00 v : 3.30 u : 3.00 t : 2.70 : 2.40 : 2.10 : 1.80 : 1.50 : 1.20 : 0.90 : 0.60 : -0.30 : -0.60 : -0.90 : -1.20 : -1.50 : -1.80 : -2.10 : -2.40 : -2.70 : -3.00 () () () : 0.16 : 0.14 : 0.12 : 0.10 :0.08 : 0.06 : 0.04 : 0.02 : 0.00 :-0.02 :-0.04 : -0.06 :-0.08 :-0.10 : -0.12 :-0.14 :-0.16 u : 1.00 t : 0.95 : 0.90 : 0.85 : 0.80 : 0.75 : 0.70 : 0.65 :0.60 : 0.55 : 0.50 : 0.45 : 0.40 : 0.35 : 0.30 : 0.25 : 0.20 : 0.15 : 0.10 : 0.05 : 0.00 u t v : 3.30 u : 3.00 t : 2.70 : 2.40 : 2.10 : 1.80 : 1.50 : 1.20 : 0.90 : 0.60 : 0.30 : 0.00 : -0.30 : -0.60 : -0.90 : -1.20 : -1.50 : -1.80 : -2.10 : -2.40 : -2.70 : -3.00 () () () Fu 2: St (t), t () t (t) R =10 5, λ =0.05, D =10 2 (v), D =10 4 (tt). A R t 10 3 (F.3), t v tt t tty ut t t vu wt R =10 5 (F.2()). S t t D, t tu ttu t tut w R u. T ut t vy wv tu y y t (F.4). It t tt t w tw vt wvy w tt u t t t u. Mv, t w tt wt vu wv tu. F λ = 0.02, t u vu t ut ψ =9.0 ψ =5.5 w λ t 1.0.

2840 P. S S. Wtyu : 4.50 : 4.00 : 3.50 : 3.00 : 2.50 : 2.00 : 1.50 : 1.00 : 0.50 : 0.00 : -0.50 :-1.00 :-1.50 : -2.00 : -2.50 : -3.00 : -3.50 :-4.00 : -4.50 S = -2 u : 1.00 t : 0.95 : 0.90 : 0.85 : 0.80 : 0.75 : 0.70 : 0.65 : 0.60 : 0.55 : 0.50 : 0.45 : 0.40 : 0.35 : 0.30 : 0.25 : 0.20 : 0.15 : 0.10 : 0.05 : 0.00 v : 3.30 u : 3.00 t : 2.70 : 2.40 : 2.10 : 1.80 : 1.50 : 1.20 : 0.90 : 0.60 : 0.30 : 0.00 : -0.30 : -0.60 : -0.90 : -1.20 : -1.50 : -1.80 : -2.10 : -2.40 :-2.70 : -3.00 () () () Fu 3: St (t), t () t (t) D =10 2, λ =0.05, R =10 3. : 9.00 : 8.00 : 7.00 : 6.00 : 5.00 : 4.00 : 3.00 : 2.00 : 1.00 : 0.00 : -1.00 :-2.00 :-3.00 : -4.00 : -5.00 :-6.00 : -7.00 :-8.00 : -9.00 z t w u y v C A B C : 7.00 A : 6.00 y : 5.00 w : 4.00 u : 3.00 : 2.00 : 1.50 : 1.00 : 0.50 : 0.00 : -0.50 :-1.00 : -1.50 : -2.00 : -3.00 : -4.00 : -5.00 : -6.00 : -7.00 u t v w w : 5.50 v : 5.00 t : 4.00 : 3.00 : 2.50 : 2.00 : 1.50 : 1.00 : 0.50 : 0.00 : -0.50 : -1.00 : -1.50 :-2.00 :-2.50 : -3.00 :-4.00 :-5.00 : -5.50 () () () Fu 4: St t wv tu R = 10 5, D = 10 2, λ =0.02, 0.06, 1.0, tvy. S t t t t, t ut t w. 5 Cu T t w vtt t tu vt u u u tt tw vt w wvy. T u-tut u t t. H, t u. T t tuy t t t Dy u, Ry u wv tu tu vt y t ut vt,

Sut tu vt t u 2841 tu y. T yz t, t v ut t tw FPDE 6.17 P. Itt ut t y y t, t t. T vu Ry Dy u v w ty. T R v 10 10 5. I t u wt u, D u t t w t. I t v ty, t D tw 10 4 10 2. St w vu t utt tt t D t tt vt. I t, t tu t t tt wt w D. I t R, t uvt t uyy v w. It v tt R t tt t u w. T wv tu t t w tty t vty, tt, t w tut y ut t t tu. T wvy w t ttu t tut. ACKNOWLEDGEMENTS. T (ty) ut y Ct E Mtt, t C H Eut, T. T ut wu t t Dtt Mtt, Futy S, K K Uvty (T) utt u y t w. R [1] T. B, S. Ry, A. S I. P, Ft t ut tu vt w tz u wt u u u t u -u t, Itt Ju Ht M T, 52 (2009), 70-78. [2] T. B, S. Ry, B. K A.R. B, Ft t y tu vt w tu u u t u -u t t t w, Itt Ju Ht M T, 51 (2008), 4496-4505. [3] A. K, H.A. Ozt Y. B, T t Pt u tu vt tu u wt z t w, Itt Ju Ht M T, 34 (2007), 511-519. [4] H. A L. N, L tu vt t tu -t: u y uy t, Ey Bu, 33 (2000), 69-73.

2842 P. S S. Wtyu [5] H. A L. N, Nu ut uyt w tu -t u wt y uy t, Ey Bu, 33 (2000), 753-757. [6] P. S S. Wtyu, Nu tuy tu vt tu w t ttu ut t t, L Ju A S, 2 (2011), 391-397. [7] A. D M.K. D, L tu vt t vty wt ty v w ttu, Itt Ju Ht M T, 48 (2005), 3833-3854. [8] A. D M.K. D, Ntu vt vty wt wvy w t w uy t t t, ASME Ju Ht T, 128 (2006), 717-725. [9] A. D M.K. D, Ht t t vuzt tu vt t vty, Itt Ju Ht M T, 51 (2008), 263-272. [10] H.F. Ozt, E. Au-N, Y. V A. C, Ntu vt wvy u wt vut t u, Itt Ju T S, 50 (2011), 502-514. [11] M. Styty, T. B, S. Ry I. P, Sty tu vt w u vty wt u u y t w(), Itt Ju Ht M T, 50 (2007), 1892-1901. [12] J.N. Ry, A tut t t t t t, MGw-H, Nw Y, 1993. [13] T. B, G. Av S. Ry, Vuzt t w u t tu vt wt tu vt u B t t, Itt Ju Ht M T, 52 (2009), 2824-2833. Rv: Juy, 2012