Supporting Information. Model Predictions of Realgar Precipitation by Reaction of As(III) with Synthetic

Similar documents
Arsenic Eh ph diagrams at 25 C and 1 bar

How Arsenic Chemistry Determines Remediation Efficacy as well as Fate and Transport Russ Gerads Business Development Director

Redox transformation of arsenic. by Fe(II)-activated goethite (α-feooh)

Green rust articles (key and from the consortium marked with *)

Structure & properties of water

Speciation of arsenic in sulfidic waters

EXPERIMENTAL STUDY OF STIBNITE SOLUBILITY IN AQUEOUS SULFIDE SOLUTIONS FROM 25 TO 90ºC

Reaction path modelling in the As S system: a case study for geothermal As transport

Stability and solubility of arsenopyrite, FeAsS, in crustal fluids.

Redox reactions.

Oxidation States. 1. Redox potential Oxic vs. anoxic Simple electrochemical cell Redox potential in nature

Lecture 11: Petrology of Mineralizing Aqueous Solutions GY303 Igneous & Metamorphic Petrology

Arsenic and Other Trace Elements in Groundwater in the Southern San Joaquin Valley of California

A Raman spectroscopic study of arsenite and thioarsenite species in aqueous solution at 25 uc

MACROSCOPIC AND SPECTROSCOPIC INVESTIGATION OF INTERACTIONS OF ARSENIC WITH SYNTHESIZED PYRITE. A Dissertation EUN JUNG KIM

INTRODUCTION TO GEOCHEMICAL AND REACTIVE TRANSPORT MODELING. Ondra Sracek

1. INTRODUCTION Arsenic has been linked to various diseases including skin and bladder cancer (Smith et al. 2002). While some arsenic pollution is

Microbial Biogeochemistry & Global Change SWES 410/510 Dr. Jon Chorover 1/31/14

17. E - ph (Pourbaix) Diagrams Module

Geology 560, Prof. Thomas Johnson, Fall 2007 Class Notes: 3-6: Redox #2 Eh-pH diagrams, and practical applications

Lecture 5. More Aqueous Geochemistry of Natural Waters OXIDATION/REDUCTION (aka Redox)

Arsenite sorption on troilite (FeS) and pyrite (FeS 2 )

CEE 370 Environmental Engineering Principles. Equilibrium Chemistry

Arsenic mobility in the ambient sulfidic environment: Sorption of arsenic(v) and arsenic(iii) onto disordered mackinawite

CHEM 10123/10125, Exam 3

Chemical Equilibrium. What is the standard state for solutes? a) 1.00 b) 1 M c) 100% What is the standard state for gases? a) 1 bar b) 1.

Week 9 Solubility & Redox

Chemistry 2000 (Spring 2014) Problem Set #7: Redox Reactions and Electrochemistry Solutions

Interaction of Sb(III) under sulfide-rich reducing environment and brief introduction of landslide research in Korea

3. [7 points] Which of the following slightly soluble salts has the largest molar solubility in aqueous solution?

(10/03/01) Univ. Washington. Here are some examples of problems where equilibrium calculations are useful.

Lecture Summary. Physical properties of water exert profound control on nutrient cycling and NPP in lakes

ph = pk a + log 10 {[base]/[acid]}

ph = pk a + log 10{[base]/[acid]}

predictive mineral discovery*cooperative Research Centre A legacy for mineral exploration science Mineral Systems Q3 Fluid reservoirs

Supporting Information

Geochemical Investigation of Naturally Occurring Arsenic in Upper Midwest Ground Water

Water Quality Impacts from Remediating Acid Mine Drainage with Alkaline Addition

Week 9 Solubility & Intro electrochem

p A = X A p A [B] = k p B p A = X Bp A T b = K b m B T f = K f m B = [B]RT G rxn = G rxn + RT ln Q ln K = - G rxn/rt K p = K C (RT) n

OCN 623 pe and ph. OCN 623 Chemical Oceanography. Thermodynamics applied to redox speciation

X212F Which of the following is a weak base in aqueous solution? A) H 2 CO 3 B) B(OH) 3 C) N 2 H 4 D) LiOH E) Ba(OH) 2

CHEM Dr. Babb s Sections Exam #4 Review Sheet

AGGREGATE EXPANSIVITY DUE TO SULFIDE OXIDATION - I. REACTION SYSTEM AND RATE MODEL

1. Forming a Precipitate 2. Solubility Product Constant (One Source of Ions)

Chemical Equilibrium

Chapter 12: Acids and Bases: Ocean Carbonate System James Murray 4/30/01 Univ. Washington

Chemical Equilibrium Modeling for Magnetite-Packed Crevice Chemistry in a Nuclear Steam Generator

Learning Outcomes: At the end of this assignment, students will be able to:

Chemistry in Sediments: Aerobic to Anaerobic Diagenesis

Geol. 656 Isotope Geochemistry

OCN 623 pe and ph. OCN 623 Chemical Oceanography

Formation of jarosite-bearing deposits through aqueous oxidation of pyrite at Meridiani Planum, Mars

Create custom rock (Rock1) and fluid (Fluid1) compositions. 1. Copy the folder Module3 to your project folder located in Library\Gems3\projects.

Chem 101 Review. Fall 2012

The simultaneously extracted

Describing Chemical Reactions

International Summer Water Resources Research School. Competitive adsorption of As(III) and As(V) on goethite By Erik Lidén

TYPES OF CHEMICAL REACTIONS

3. Which of the following compounds is soluble? The solubility rules are listed on page 8.

2 EQUILIBRIUM 2.1 WHAT IS EQUILIBRIUM? 2.2 WHEN IS A SYSTEM AT EQUILIBRIUM? 2.3 THE EQUILIBRIUM CONSTANT

Chapter 19. Solubility and Simultaneous Equilibria p

Chemical Equilibrium. Introduction

Chemical reaction equilibria

Redox, ph, pe OUTLINE 9/12/17. Equilibrium? Finish last lecture Mineral stability Aquatic chemistry oxidation and reduction: redox

Chem 4501 Introduction to Thermodynamics, 3 Credits Kinetics, and Statistical Mechanics. Fall Semester Homework Problem Set Number 12 Solutions

REMOVAL OF ARSENIC, CHROMIUM AND LEAD FROM SIMULATED GROUNDWATER WITH REACTIVE NANOSCALE IRON PARTICLES

CHAPTER 4 TYPES OF CHEMICAL REACTIONS & SOLUTION STOICHIOMETRY

Solution chemistry of carbon dioxide in sea water

22. What is the maximum concentration of carbonate ions that will precipitate BaCO 3 but not MgCO 3 from a solution that is 2.

Qualitative Chemical Analysis

The make-up of a natural solution.

Chemistry 12. Resource Exam B. Exam Booklet

11.3 Reactions in Aqueous Solution. Chapter 11 Chemical Reactions Reactions in Aqueous Solution

Acid Production from Mixed Sulfide Minerals: The Mixture Pyrite/Arsenopyrite

ph = pk a + log 10{[base]/[acid]}

Data Repository Item. Thermodynamic model and properties for the Au-Bi. melt under hydrothermal conditions

What are Metal Leaching and Acid Rock Drainage and Why are They Important to Mining?

Arsenopyrite: a spectroscopic investigation of altered surfaces

Kai Anttila August 10, ORC-J

Groundwater chemistry

DR Heinrich et al. Magmatic vapor contraction and the transport of gold from the porphyry environment to epithermal ore deposits

Adsorption of Sb(V) on Goethite: Effect of ph, Ionic Strength, and Competition with Phosphate

Chemical Reactions. Burlingame High School Chemistry 1

FRONT PAGE FORMULA SHEET - TEAR OFF

11/3/09. Aqueous Solubility of Compounds. Aqueous Solubility of Ionic Compounds. Aqueous Solubility of Ionic Compounds

Possible contribu.ons from the Solubility Data Project for arsenic and carbon dioxide environmental impacts mi.ga.on

Chapter 4 Notes Types of Chemical Reactions and Solutions Stoichiometry A Summary

Exam 3. Objectives: Nomenclature

Exam III Material Chapter 7-CHEMICAL REACTIONS, continued

Chapter 17: Solubility Equilibria

AP Chemistry. Slide 1 / 39. Slide 2 / 39. Slide 3 / 39. Equilibrium Part C : Solubility Equilibrium. Table of Contents

BCIT Winter Chem Exam #2

General Chemistry. Contents. Chapter 5: Introduction to Reactions in Aqueous Solutions. Electrolytes. 5.1 The Nature of Aqueous Solutions

AN Fe-BERTHIERINE FROM A CRETACEOUS LATERITE: PART II. ESTIMATION OF Eh, ph AND pco: CONDITIONS OF FORMATION

2 nd Semester Study Guide 2016

Department of Geological Sciences and Geological Engineering, Queen s University, Kingston, ON 2

AP Chemistry Note Outline Chapter 4: Reactions and Reaction Stoichiometry:

1. DRA-31. SIMPLE MODELS OF ACID-BASE BALANCE: CONTROLS ON PYRITE OXIDATION AND NEUTRALIZATION BY CARBONATES AND SILICATES

Chapter 17 Additional Aspects of

Transcription:

1 Supporting Information 2 3 Model Predictions of Realgar Precipitation by Reaction of As(III) with Synthetic Mackinawite Under Anoxic Conditions 4 by 5 Tanya J. Gallegos, Young-Soo Han, Kim F. Hayes 6 7 Number of pages: 22 8 Table S-1. Gibbs free energy values for principal components 9 Table S-2. Gibbs free energy of formation values for all species used in the model 10 Table S-3. Tableau listing aqueous species used in the MINEQL+ model 11 Table S-4. Tableau listing dissolved solids used in the model 12 Table S-5. Arsenic reactions used in the model 13 Table S-6. Equations used to generate pe-ph diagram for the Fe-S-As-H 2 O system 14 Table S-7. Comparison of pe values for ph edge simulations 15 Table S-8. Eh measured as a function of ph and mackinawite concentration 16 Table S-9. Sensitivity Analysis for model fit 17 Figure S-1. Fe-As-S-H 2 O pe-ph diagram S1

18 19 Figure S-2. Total iron concentrations measured in 0.1, 0.5, 1, and 10 g/l FeS after equilibration with 1.3 10-5 M As(III) and in the absence of arsenite (1g/L system only) S2

Model Input Data. In order to incorporate the e- in the reactions and allow for conversion of oxidation states based on pe, the reactions were recast in terms of principal components: H 2 O, H +, AsO 3-3, HS -, Fe 2+, Cl -, Na + and e - and their respective formation constants re-computed in light of updated values for Gibbs free energy values of formation resulting from a literature review. The stability constants for all reactions were calculated from G values for all species that best represented the system using the following relationships: G rxn 0 = G f( 0 prod) - G f( 0 react) (S-1) G rxn 0 = RT ln K (S-2) where R = 8.314 J/(mol*K), T=298 K and G 0 0 0 rxn (kj/mol), G f( prod) (kj/mol), and G f( react) (kj/mol), represent the Gibbs free energy of formation values for the reaction, products and reactants, respectfully. G 0 f values for the principal components are listed in Table S-1. The 0 0 G f( prod) and G f( react) are listed in Table S-2. The resulting log K values are listed in Table S-3 and S-4. S3

Table S-1. Gibbs free energy values ( G ) for principal components used to recast all species in terms of principal components. Species G component (kj/mol) Reference e(-) 0.00 Zero reference state H 2 O -237.20 (1) H(+) 0.00 Zero reference state AsO 3 (3-) -447.70 (2) Cl(-) -131.26 (3) Fe(2+) -78.87 (4) Na(+) -261.87 (4) HS(-) 12.59 (1) Table S-2. Gibbs free energy of formation values for all species used in model G species (KJ/mol) Reference Species Charge -157.30 1 OH- (-1) -615.00 2 Fe(OH) 3 - (-1) -441.00 2 Fe(OH) 2 (0) -277.40 2 FeOH + (+1) -524.27 11-2 HAsO 3 (-2) -639.75 11 H 3 AsO 3 (0) -587.03 11 - H 2 AsO 3 (-1) - 17 + H 4 AsO 3 (+1) -648.53 11 AsO 4 (-3) -714.64 11 HAsO 4-2 (-2) -753.14 11 H 2 AsO 4 - (-1) -766.11 11 H 3 AsO 4 (0) -27.60 3 H 2 S (0) -119.24 4 Fe(HS) 2 (0) -118.83 4 Fe(HS)3- (-1) -518.80 5 S 2 O 3 (-2) -744.63 2 SO 4 (-2) -756.01 2 HSO 4 (-1) -823.49 2 FeSO 4 (0) -772.80 2 Fe(III)SO 4 (+1) S4

-1524.60 2 Fe(SO 4 ) 2 (-1) -4.60 2 Fe(III) (+3) 79.50 2 S 2 (-2) 73.60 2 S 3 (-2) 69.00 2 S 4 (-2) 65.70 2 S 5 (-2) 67.20 6 S 6 (-2) -529.10 5 H 2 S 2 O 3 (0) -525.60 5 HS 2 O 3 (-1) -527.810 2 HSO 3 (-1) -486.60 2 SO 3 (-2) -4.60 2 Fe(III) (+3) -229.41 2 FeOH (+2) -438.10 2 Fe(OH) 2 (+1) -481.45 5 Fe 2 (OH) 2 (+4) -653.64 5 Fe(OH) 3 (0) -963.28 5 Fe 3 (OH) 4 (+5) -842.20 2 Fe(OH) 4 (-1) -242.50 8 AsS(OH)(SH) (-1) -440.15 14 As(OH) 2 (SH) (-1) -410.80 14 As(OH) 2 S- (-1) -190.40 14 As(OH)S 2 (-2) 36.64 14 AsS 3 (-3) -8.37 14 HS 3 As (-2) -88.51 14 As(HS) 4 (-1) -120.00 7 FeHS (+1) -125.60 8 (SH) 2 As 3 S 4 (-1) -353.30 5 Fe(II)Cl 2 (0) -143.90 2 Fe(III)Cl (+2) -291.50 5 Fe(III)Cl 2 (+1) -415.02 5 Fe(III)Cl 3 (0) -334.97 5 Fe(III)C l3 (molysite) (0) -93.30 12 MACKINAWITE (0) 0 1 As(s) (0) -76.80 8 As 2 S 3 (am) (0) -575.90 10 ARSENOLITE (0) -576.57 11 CLAUDETITE (0) -84.30 8 ORPIMENT (0) -486.60 2 Fe(OH) 2 (0) -83.70 12 FeS (ppt) (0) -393.04 2 HALITE (0) 0 8 Sulfur (0) -490.00 16 FeOOH(goethite) (0) -1015.36 2 Fe 3 O 4 (magnetite) (0) -1921.40 5 Fe 3 (OH) 8 (0) -712.95 5 Fe(OH)3 soil (0) -726.97 5 Fe 2 O 3 (maghemite) (0) -311.96 13 Fe 3 S 4 (Greigite) (0) S5

-748.50 2 Fe 7 S 8 (pyrrhotite) (0) -820.61 5 FeSO 4 (0) -2510.13 5 Fe 2 (SO4) 3 (0) -2145.00 20 Fe 4 (OH) 8 Cl (0) -3790.00 20 Fe 6 (OH) 12 SO 4 (0) -1799.70 19 Fe 3 (OH) 7 (0) -708.16 5 Fe(OH) 3 (am) (0) -1244.10 19 Fe 2 (OH) 5 (0) -50.00 3 FeAsS(arsenopyrite) (0) -35.57 15 AsS (0) -20.90 15 Fe 2 As (0) -28.03 15 FeAs (0) -52.30 21 FeAs 2 (lollingite) (0) -276.34 2 WUSTITE (-0.11) -162.26 5 PYRITE (0) -483.25 5 Fe(OH) 3 (0) (lepidocrocite) -742.20 2 Fe 2 O 3 (hematite) (0) -100.34 5 FeS 1.053 (pyrhotite) (0) 0 17 Fe(0) metal (0) -158.28 5 FeS 2 (marcasite) (0) -97.91 5 FeS (troilite) (0) -278.40 5 Fe 2 S 3 (0) -251.45 16 FeO (0) -705.54 2 Fe(OH) 3 (c) (0) -1010.39 5 NaSO 4 (0) -1265.70 2 Na 2 SO 4 (0) -359.23 2 FeOCl (0) 1. (5), 2. (4), 3. (6), 4. (7), 5. (3), 6.(8), 7. (9), 8. (10), 9. (11), 10. (12), 11. (2), 12. (13), 13. (14), 14.(15), 15. (16), 16. (17), 17. Original MINEQL+ database, 18. (18), 19. (19), 20. (20), 21. (21) S6

Table S-3. Tableau- Aqueous Species (type III) (*species not included in final model) Aqueous Phases H 2 O H+ Fe 2+ AsO 3 3- e- HS- Cl- Na+ log K OH(-1) 1-1 -14.005 Iron Species Fe(OH) 3 (-1) 3-3 1-30.756 Fe(OH) 2 (aq) 2-2 1-19.679 FeOH(+1) 1-1 1-6.778 Fe(III)(+3) 0 1-1 -13.019 FeOH(+2) 1-1 1-1 -15.190 Fe(OH) 2 (+1) 2-2 1-1 -20.187 Fe2(OH) 2 (+4) 2-2 2-2 -26.413 Fe(OH) 3 (aq) 3-3 1-1 -23.983 Fe3(OH) 4 (+5) 4-4 3-3 -38.935 Fe(OH) 4 (-1) 4-4 1-1 -32.509 FeHS(+1) * 0 1 1 9.413 FeOCl(aq) 1-2 1-1 1-15.442 Fe(II)Cl 2 (aq) 0 1 2 2.088 Fe(II)Cl(+1) 0 1 1 26.460 Fe(III)Cl(+2) 0 1-1 1-11.609 Fe(III)Cl2(+1) 0 1-1 2-8.745 Sulfur Species S(-2) 0-1 1-12.926 H 2 S(aq) 0 1 1 7.041 Fe(HS) 2( aq) 0 1 2 11.483 Fe(HS)3(-1) 0 1 3 13.615 S 2 O 3 (-2) 3-8 -8 2-29.387 SO 4 (-2) 4-9 -8 1-33.583 S7

HSO 4 (-1) 4-8 -8 1-31.588 FeSO 4 (aq) 4-9 1-8 1-33.585 Fe(III)SO 4 (+1) 4-9 1-9 1-42.470 Fe(SO 4 ) 2 (-1) 8-18 1-17 2-74.797 S 2 (-2) 0-2 -2 2-9.529 S 3 (-2) 0-3 -4 3-6.291 S 4 (-2) 0-4 -6 4-3.281 S 5 (-2) 0-5 -8 5-0.500 S 6 (-2) 0-6 -10 6 1.441 H 2 S 2 O 3 (aq) 3-6 -8 2-27.582 HS 2 O 3 (-1) 3-7 -8 2-28.195 HSO 3 (-1) 3-6 -6 1-30.011 SO 3 (-2) 3-7 -6 1-37.235 NaSO 4 (-1) 4-9 -8 1 1 13.002 Arsenic Species HAsO 3 (-2) 0 1 1 13.422 H 3 AsO 3 (aq) 0 3 1 33.665 H 2 AsO 3 (-1) 0 2 1 24.423 H 4 AsO 3 (+1) 0 4 1-78.477 AsS(OH)(SH)(-1) -2 4 1 2 51.594 As(OH) 2 (SH) -1 4 1 1 42.458 As(OH) 2 S(-1) -1 3 1 1 37.314 As(OH)S 2 (-2) -2 3 1 2 42.462 AsS 3 (-3) -3 3 1 3 46.445 HS 3 As(-2) -3 4 1 3 54.335 As(HS) 4 (-1) -3 6 1 4 70.586 (SH) 2 As 3 S 4 (-1) -9 14 3 6 174.01 S8

Table S-4. Tableau - Dissolved Solids (Type V) (*species not included in final model) Solid Phases H 2 O H + Fe 2+ AsO 3 3- e- HS- Cl- Na+ Log K Fe(III)Cl 3 (aq) 0 1-1 3-10.102 Fe(III)Cl 3 (molysite) 0 1-1 3-24.134 FeOOH(goethite) 2-3 1-1 -11.089 Fe 3 O 4 (magnetite) 4-8 3-2 -29.806 Fe 3 (OH) 8 8-8 3-2 -33.285 Fe(OH) 3 (soil) 3-3 1-1 -13.587 Fe 2 O 3 (maghemite) 3-6 2-2 -24.954 Fe 3 S 4 (Greigite) 0-4 3-2 4 22.022 WUSTITE(-0.11) 1-2 0.95 0-6.273 PYRITE * 0-2 1-2 2 19.024 Fe(OH) 3 3-3 1-1 -53.851 (lepidicrocite) Fe 2 O 3 (hematite) 3-6 2-2 -22.285 FeS 1.053 (pyrrhotite)* 0-1.1 0.95-0 1 6.657 Fe(0)metal* 0-2 1 2 2-9.418 FeS 2 (marcasite)* 0-2 1-2 2 18.327 FeS(troilite)* 0-1 1 0 1 5.541 Fe 2 S 3 * 0-3 2-2 3 27.761 FeO 1-2 1 0-11.326 Fe(OH) 3 ( c) 3-3 1-1 -14.886 Na 2 SO 4 4-9 -8 1 2 57.755 MACKINAWITE 0-1 1 1 4.734 Fe(OH) 2 2-2 1-11.685 FeS(ppt) 0-1 1 1 3.050 S9

HALITE 0 1 1 45.888 Sulfur 0-1 -2 1 2.203 Fe 7 S 8 (pyrrhotite) * 0-8 7-2 8 52.056 FeSO 4 4-9 1-8 1-34.090 Fe 4 (OH) 8 Cl 8-8 4-1 1-34.938 Fe 6 (OH) 12 SO 4 16-21 6-10 1-81.649 Fe 3 (OH) 7 * 7-7 3-1 -17.053 Fe(OH) 3 (am) 3-3 1-1 -14.427 Fe 2 (OH) 5 5-5 2-1 -17.463 Arsenic Solids AsS(realgar) -3 5 1 1 1 54.281 FeAsS(arsenopyrite) -3 5 1 1 3 1 43.400 AsS -3 5 1 1 1-54.69 Fe 2 As -3 6 2 1 7 23.521 FeAs -3 6 1 1 5 37.346 FeAs 2 (lollingite) -6 12 1 2 8 87.858 As(s)(native) -3 6 1 3 46.258 As 2 S 3 (am) -6 9 2 3 112.588 ARSENOLITE -6 12 4 36.510 CLAUDETITE -6 12 4 36.628 ORPIMENT -6 9 2 3 113.903 The MINEQL + database was updated by consideration of the thermodynamic data presented by Nordstrom and Archer (2003), recent literature and databases distributed with the Geochemist's Workbench to acquire missing thermodynamic data for solids describing As-Fe, S-Fe and As-S aqueous and solid species. The selection of data for the model was not meant to be a S10

comprehensive critical review, but an attempt to include new information regarding As species and data necessary for the other S and Fe species required to recalculate log K values to assure a self-consistent database. Solid Arsenic Species. Selection of arsenic solid phases for inclusion in the model is limited due to availability of thermodynamic data. Although a number of arsenic sulfide phases and their respective polymorphs are thought to exist in As-S-Fe system such as duranusite, dimorphite, uzonite, and parrarealgar, there is presently no available or known thermodynamic data to describe these formation reactions. Thus, the model database was updated to include Fe 2 As (-20.92 kj/mol= G 0 f ), FeAs (-28.03 kj/mol= G 0 f ) and lollingite (FeAs 2 ) (-52.30 kj/mol= G 0 f ) (16) and As(0) (0.0 kj/mol= G 0 f ), As 2 S 3 (am) (-76.8 kj/mol= G 0 f ) (10), arsenopyrite of G 0 0 0 f = -50.0 kj/mol (6), orpiment ( G f =-84.3 kj/mol) (2, 10) and realgar ( G f =-35.57 kj/mol) (16). Although the thermodynamic free energy of formation constant for arsenopyrite of G 0 f = -50.0 kj/mol (6) used in this study falls at the high end of the spectrum for reported values ranging from G f 0 = -141.6±6 kj/mol (22) to -42 kj/mol (23), it was appropriately selected in comparison to the values for As 2 S 3 (am) ( G f 0 =-76.8 kj/mol) (10), As 2 S 3 ( G f 0 =-84.3 kj/mol) (2, 10) and AsS ( G f 0 =-35.57 kj/mol) (16) to reflect that arsenopyrite does not predominate over the arsenic sulfide solid species that were previously identified by XAS and XPS (24). Table S-5A lists the solid arsenic reactions and respective equilibrium constants included in the model. Table S-5A. Arsenic reactions included in the thermodynamic model for solid species S11

Species and Reaction log K Solid Species 3H 2 O + AsO 3 (3-) + Fe(2+) = 3e- + 2H(+) + FeAsO 4 *2H 2 O (SCORODITE) -22.207 H 2 O + AsO 3 (3-) + Fe(2+) = FeAsO 4 +3e- + 2H(+) 4.899 2H 2 O + 2 AsO 3 (3-) + 3Fe(2+) = Fe 3 (AsO 4 ) 2 +4e- + 4H(+) 51.576 2H(+) + 2 AsO 3 (3-) = H 2 O + 4e- + As 2 O 5 23.262 6H(+) + 4 AsO 3 (3-) = 6H 2 O + As 4 O 6 (ARSENOLITE) 141.736 12H(+) + 4 AsO 3 (3-) = 6H 2 O + As 4 O 6 ( CLAUDETITE) 142.041 6H(+) + AsO 3 (3-) + 3e- = 3H 2 O + As(s) 48.55 5H(+) + AsO3(3-)+ Fe(2+) + HS(-) + 3e-= 3H 2 O + FeAsS (ARSENOPYRITE) 55.796 6H(+) + AsO 3 (3-) + 2Fe(2+) + 7e- = 3H 2 O + Fe2As 21.722 12H(+) + 2AsO 3 (3-) + Fe(2+) + 8e- = 6H 2 O + FeAs 2 (LOLLINGITE) 94.562 9H(+) + 2 AsO 3 (3-) + 3HS(-) = 6H2O + As 2 S 3 (ORPIMENT) 122.855 e(-) + 5H(+) + AsO 3 (3-) + HS(-) = 3H 2 O + AsS (REALGAR) 59.25 Aqueous Arsenic Species. In the absence of sulfur and depending on pe and ph, arsenic is expected to form either arsenate (As(V)) or arsenite (As(III)) and their respective protonated species based on the pk a values. Gibbs free energy of formation for each species was taken from the same source for consistency (2): HAsO -2 3 (-524.27 kj/mol= G 0 f ), H 3 AsO 3 (-639.75 kj/mol= G f 0 ), H 2 AsO 3 - (587.03 kj/mol= G f 0 ), AsO 4 3- (-648.54 kj/mol= G f 0 ), HAsO 4-2 (- 714.64 kj/mol= G 0 f ), H 2 AsO - 4 (-753.14 kj/mol= G 0 f ), and H 3 AsO 4 (-766.11 kj/mol= G 0 f ). Although, the log K values for the formation reactions for each species were recomputed using the above free energy values to achieve self consistent database, the results represented little change from the original MINEQL + database log K formation values. S12

While dissolved iron has not been reported to form important aqueous species with arsenic, thioarsenates and thioarsenites are known to exist in solution. Thioarsenites have recently been studied for their prevalence and stability in As-S systems (15, 25, 26). Nordstrom and Archer (10) suggested refining the values of AsS(OH - )(SH - 0 - ) (( G f = 45.1 kj/mol), and As 3 S 4 (SH) 2 0 ( G f = 31.4 kj/mol)), based on earlier work (26, 27). The values have been adopted here in addition to thermodynamic data from Wilkin et al., which demonstrate a progressive conversion from sulfur-rich to oxygen-rich species depending on S-concentration (15). Although the Gibbs free energy values were not explicitly given, they were derived from formation reaction log K values leading to the following: As(OH)(SH) - 0 ( G f = -242.5 kj/mol), As(OH) 2 (SH) - 0 ( G f = - 440.15 kj/mol), As(OH) 2 S - 0 ( G f = -410.80 kj/mol), As(OH)S 2-0 2 ( G f = -190.40 kj/mol), AsS 3-0 3 ( G f = 36.64 kj/mol), HAsS 2-0 ( G f = -8.37 kj/mol= G 0 f ), As(SH) - 0 4 ( G f = -88.51 kj/mol). The inclusion of these thioarsenite species is important as their presence can prevent the formation of arsenic sulfide solids. Table S-5B lists the aqueous arsenic reactions and respective equilibrium constants included in the model. S13

Table S-5B. Arsenic reactions included in the thermodynamic model for aqueous species Aqueous Species and Reaction log K As(III) species H(+) + AsO 3 (3-) = HAsO 3 (-2) 13.414 3H(+) + AsO 3 (3-) = H 3 AsO 3 34.744 2H(+) + AsO 3 (3-) = H 2 AsO 3 (-) 25.454 4H(+) + AsO 3 (3-) = H 4 AsO 3 (+) 34.439 H 2 O + AsO 3 (3-) = 2H(+) + 2e- + AsO 4 (-2) -5.716 H 2 O + AsO 3 (3-) = H(+) + 2e- + HAsO 4 (-2) 6.084 H 2 O + AsO 3 (3-) = 2e- + H 2 AsO 4 (-) 13.094 H 2 O + H(+) + AsO 3 (3-) = 2e- + H 3 AsO 4 (0) 15.394 Thioarsenite species 14H(+) + 3AsO 3 (3-) + 6HS(-) = As 3 S 4 (SH) 2 (-) + 9 H 2 O 174.01 4H(+) + AsO 3 (3-) + 2HS(-) = AsS(OH)(SH)(-) + 2 H 2 O 51.594 4H(+) + AsO 3 (3-) + HS(-) = As(OH) 2 (SH)(aq)+ H 2 O 42.458 3H(+) + AsO 3 (3-) + HS(-) = As(OH) 2 S(-1) + H 2 O 37.314 3H(+) + AsO 3 (3-) + 2HS(-) = As(OH)S 2 (-2)+ 2 H 2 O 42.462 3H(+) + AsO 3 (3-) + 3HS(-) = AsS 3 (-3) + 3 H 2 O 46.445 4H(+) + AsO 3 (3-) + 3HS(-) = HS 3 As(-2) + 3 H 2 O 54.335 6H(+) + AsO 3 (3-) + 4HS(-) = As(HS) 4 (-1) + 3 H 2 O 70.586 S14

Table S-6. Equations used to generate pe-ph diagram for Fe-As-S-H 2 O system. Note that the numbering/lettering of the equations correspond to those shown on the pe-ph diagram in Figure S-1. 1. Lower Stability Limit for water: H + /H 2 (g) H + + e- = ½ H 2 (g) log K = 0.00 pe = -ph ½ log P H2(g) 2. AsS/As 2 S 3 (<ph 7) 2e- + 2H + + As 2 S 3 = 2AsS + H 2 S log K = 2.53 pe = 1.26 1/2log(H 2 S) - ph 3. AsS/As 2 S 3 (>ph 7) 2e- + 2H + + As 2 S 3 = 2AsS + HS- log K = -4.51 pe = -2.25 1/2 log(hs-) 1/2pH 4. AsS /As 0 ph<6 2e- + 2H + + AsS = As 0 + H 2 S log K = -1.4 pe = -0.70-1/2log(H 2 S) ph 5. AsS + FeS/As 0 <ph7 2e- + 4H + + AsS +FeS = As 0 + 2H 2 S + Fe 2+ log K = 0.91 pe = -0.5log(Fe 2+ ) - log(h 2 S) + 0.46-2 ph 6. AsS + FeS/As 0 >ph7 2e- + 2H + + AsS +FeS = As 0 + 2HS- + Fe 2+ log K = 75.14 pe = -6.59-0.5log(Fe 2+ )-log(hs - )-ph 7. FeS/Fe 2 (OH) 5 (>ph7) e- + 3H + + Fe 2 (OH) 5 + 2HS - = 2FeS + 5H 2 O log K = 26.92 pe=26.92-3ph + 2log(HS - ) 8. Fe 2 (OH) 5 /Fe 3 S 4 (HS-region ph>7) e-+ 2Fe 3 S 4 + 15H 2 O=3Fe 2 (OH) 5 + 8HS- + 7H + log K = -96.44 S15

pe = -96.44-8log(HS-) + 7pH 9. FeS/ Fe 3 S 4 (<ph7) 3FeS+ H 2 S =Fe 3 S 4 + 2H + + 2e- log K = 0.78 pe=-0.39-0.5log(h 2 S) - ph 10. FeS/ Fe 3 S 4 (>ph7) (HS- region) 3FeS+ HS - =Fe 3 S 4 +H + + 2e- log K = 7.82 pe= -3.911-0.5log(HS-) - 0.5pH 11. Fe 2 (OH) 5 /Fe 3 S 4 (SO 4 -region) 63e- + 79H + + 8SO 4 2- + 3Fe 2 (OH) 5 = 2Fe 3 S 4 + 47H 2 O log K = 365.13 pe = 5.7-(79/63)pH+(8/63)log(SO 4 2- ) A. AsS/H 3 AsO 3 6H 2 O + 2AsS = 2H 3 AsO 3 + 2HS - + 4H + + 2e - log K = -42.06 pe =21.03 + log(h 3 AsO 0 3 ) +log(hs-) - 2pH - B. AsS/H 2 AsO 3 6H 2 O + 2AsS = 2H 2 AsO - 3 + 2HS - + 6H + + 2e - log K = -60.55 pe =30.27 + log(h 2 AsO - 3 ) + log(hs-) - 3pH 0 C. As 2 S 3 /H 3 AsO 3 18H 2 O + As 2 S 3 = 2H 3 AsO 3 + 3SO 2-4 + 30H + + 24e - log K = -147.3 pe =6.14 + 1/12(log(H 3 AsO 0 3 )) + 1/8(log(SO 2-4 )) - 1.25pH D. FeS/Fe 2+ and H 2 S (<ph7) (pe is independent of ph) 2H + + FeS = H 2 S + Fe 2+ log K = 2.31 S16

ph = -0.5log(H 2 S )- 0.5log(Fe 2+ ) + 1.15 E. Fe 3 S 4 /Fe 2+ 3Fe 2+ + 4H 2 S= Fe 3 S 4 + 8H + + 2e- log K = 6.14 pe =3.07-3/2(log(Fe 2+ )) - 2log(H 2 S) - 4pH i. SO 2-4 / HS - 8e- + 9H + + SO 2-4 = HS - + 4 H 2 O log K = 33.04 pe= 1/8(log(SO 2-4 )) -1/8(log(HS - )) + 4.13-9/8pH ii. SO 2-4 / H 2 S 8e- + 10H + + SO 2-4 = H 2 S + 4 H 2 O log K = 40.62 pe = -1/8(log(H 2 S)) + 5.08-5/4pH + 1/8(log(SO 2-4 )) iii. H 2 S /HS - HS - + H + = H 2 S log K = 7.042 ph =-log(h 2 S) + log(hs - ) + 7.04 iv. H 2 AsO - 3 /H 3 AsO 3 H 2 AsO - 3 + H + = H 3 AsO 3 log K = 9.24 ph=9.24 + log(h 2 AsO - 3 ) - log( H 3 AsO 3 ) Table S-7. Comparison of pe values for ph edge simulations [FeS] Acidic Region Alkaline Region (g/l) (mol/l) ph 5 ph 8 ph 9 ph 10 40 0.4550-5.0-8.62-9.59-10.8 10 0.1137-4.5-7.5-8.45-10.1 1 0.0114-3.7-6.7-7.85-10.0 0.5 0.0057-3.0-6.0-7.74-9.98 0.1 0.0011-2.5-5.4-7.63-9.96 S17

Table S-8. E h measured as a function of ph and mackinawite concentration ph 5 ph 7 ph 9 g FeS/L Eh(mV) pe (Eh*0.0169) 0.1-127.4-2.15 0.2-180.5-3.05 0.5-209.8-3.55 1-225 -3.80 5-261.1-4.41 10-251.5-4.25 g FeS/L Eh(mV) pe (Eh*0.0169) 0.1-234.5-3.96 0.2-240.6-4.07 0.5-273.5-4.62 1-276.4-4.67 5-331.9-5.61 10-360.2-6.09 g FeS/L Eh(mV) pe (Eh*0.0169) 0.1-371 -6.27 0.2-371.4-6.28 0.5-391.9-6.62 1-411.8-6.96 5-436.8-7.38 10-454.7-7.69 Table S-9. Sensitivity Analysis for model fits. Deviation from best fit Sample + 0.01 pe - 0.01 pe + 0.02 pe - 0.02 pe 0.1g/L (acidic) 3.0% 3.0% 3.0% 3.0% 1g/L (acidic) 0.08% 0.08% 0.04% 0.05% 10g/L (acidic) 0.01% 0.01% 0.01% 0.01% 0.1 g/l (alkaline) 4.0% 3.0% 8.0% 7.0% 1 g/l (alkaline) 3.0% 3.0% 6.0% 6.0% 10 g/l (alkaline) 2.0% 2.0% 4.0% 4.0% S18

pe-ph diagram for Fe-As-S-H 2 O system Figure S-1. pe-ph diagram for Fe-As-S-H 2 O system corresponding to equations in Table S-6. Boxed numbers indicate boundary between solids, boxed uppercase letters indicate stability between aqueous and solid phases and roman lowercase numerals indicate boundary between dissolved species. See Table S-6 for list of reactions corresponding to the letters/numbers shown in the boxes. pe -1-3 -5-7 -9-11 As 2 S 3 Fe 2+ + Fe 2+ + AsS 4 1 Fe 2+ + H 2 S As 0 E 2 C D 5 9 ii 3 iii Fe 3 S 4 AsS H 3 AsO 3 SO 4 2- Fe 2 (OH) 5 6 FeS AsS Fe 2+ + HS - As 0 i H 2 AsO - 3 HS - Fe 2 (OH) 5 5 6 7 8 9 10 10 11 A 8 7 iv B ph S19

Figure S-2. Total iron concentrations measured in 0.1, 0.5, 1, and 10 g/l FeS after equilibration with 1.3 10-5 M As(III) and in the absence of arsenite (1g/L system only). S20

References 1. Snoeyink, V. L.; Jenkins, D., Water Chemistry. 1st ed.; John Wiley & Sons, Inc.: New York, NY, 1980; p 463. 2. Vink, B. W., Stability relations of antimony and arsenic compounds in the light of revised and extended Eh-pH diagrams. Chemical Geology 1996, 130, (1-2), 21-30. 3. Lindsay, W. L., Chemical Equilibria in Soils. In Sons, J. W. a., Ed. New York, NY, 1979. 4. Bard, A. J., Standard potentials in aqueous solution. M. Dekker.: New York, NY, 1985; p 834 p. 5. Garrels, R. M.; Christ, C. L., Solutions, Minerals, and Equilibria. Harper & Row: New York, NY, 1965; p 450. 6. Wagman, D. D.; Evans, W. H.; Parker, V. B.; Schumm, R. H.; Halow, I.; Bailey, S. M.; Churney, K. L.; Nuttall, R. L., The Nbs Tables of Chemical Thermodynamic Properties - Selected Values for Inorganic and C-1 and C-2 Organic-Substances in Si Units. Journal of Physical and Chemical Reference Data 1982, 11, 1-&. 7. Naumov, G. B.; Ryzhenko, B. N.; Khodakovsky, I. I. Handbook of Thermodynamic Data; Pb-226, 722/7GA; U.S. Department of Commerce National Technology Information Service: 1974; p 328. 8. Kamyshny, A.; Gun, J.; Rizkov, D.; Voitsekovski, T.; Lev, O., Equilibrium distribution of polysulfide ions in aqueous solutions at different temperatures by rapid single phase derivatization. Environmental Science & Technology 2007, 41, (7), 2395-2400. 9. Porter, S. K.; Scheckel, K. G.; Impellitteri, C. A.; Ryan, J. A., Toxic metals in the environment: Thermodynamic considerations for possible immobilization strategies for Pb, Cd, As, and Hg. Critical Reviews in Environmental Science and Technology 2004, 34, (6), 495-604. 10. Nordstrom, K. D.; Archer, D. G., Arsenic thermodynamic data and environmental geochemistry. In Arsenic in Ground Water: Geochemistry and Occurrence, Welch, A. H.; Stollenwerk, K. G., Eds. Dluwer Academic Publishers: Norwell, MA, 2003; pp 1-25. 11. Benning, L. G.; Wilkin, R. T.; Barnes, H. L., Reaction pathways in the Fe-S system below 100 degrees C. Chemical Geology 2000, 167, (1-2), 25-51. 12. Pokrovski, G.; Gout, R.; Schott, J.; Zotov, A.; Harrichoury, J. C., Thermodynamic properties and stoichiometry of As(III) hydroxide complexes at hydrothermal conditions. Geochimica Et Cosmochimica Acta 1996, 60, (5), 737-749. 13. Berner, R. A., Thermodynamic stability of sedimentary iron sulfides. American Journal of Science 1967, 265, 773-785. S21

14. Kulik, D. A.; Kersten, M.; Heiser, U.; Neumann, T., Application of Gibbs energy minimization to model early-diagenetic solid-solution aqueous-solution equilibria involving authigenic rhodochrosites in anoxic Baltic Sea sediments. Aquatic Geochemistry 2000, 6, (2), 147-199. 15. Wilkin, R. T.; Wallschlager, D.; Ford, R. G., Speciation of arsenic in sulfidic waters. Geochemical Transactions 2003, 4, 1-7. 16. Barton, P. B., Thermochemical Study of System Fe-as-S. Geochimica Et Cosmochimica Acta 1969, 33, (7), 841-&. 17. Welham, N. J.; Malatt, K. A.; Vukcevic, S., The effect of solution speciation on ironsulphur-arsenic-chloride systems at 298 K. Hydrometallurgy 2000, 57, (3), 209-223. 18. Refait, P.; Bon, C.; Simon, L.; Bourrie, G.; Trolard, F.; Bessiere, J.; Genin, J. M. R., Chemical composition and Gibbs standard free energy of formation of Fe(II)-Fe(III) hydroxysulphate green rust and Fe(II) hydroxide. Clay Minerals 1999, 34, (3), 499-510. 19. Bourrie, G.; Trolard, F.; Genin, J. M. R.; Jaffrezic, A.; Maitre, V.; Abdelmoula, M., Iron control by equilibria between hydroxy-green Rusts and solutions in hydromorphic soils. Geochimica Et Cosmochimica Acta 1999, 63, (19-20), 3417-3427. 20. Refait, P.; Genin, J. M. R., The Oxidation of Ferrous Hydroxide in Chloride-Containing Aqueous-Media and Pourbaix Diagrams of Green Rust One. Corrosion Science 1993, 34, (5), 797-819. 21. Robie, R. A.; Hemingway, B. S., Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures,. U.S. Geol. Surv. Bull. Rept. B 2131 1995, 461 pp. 22. Pokrovski, G. S.; Kara, S.; Roux, J., Stability and solubility of arsenopyrite, FeAsS, in crustal fluids. Geochimica Et Cosmochimica Acta 2002, 66, (13), 2361-2378. 23. Zviadadze, G. N.; Rtskhiladze, V. G., Thermodynamics of the dissociation of arsenopyrite. Soobsch. Acad. Nauk Gruz. (in Russian) 1964, 33, 175 181. 24. Gallegos, T. J.; S.P. Hyun; Hayes, K. F., Spectroscopic Investigation of the Uptake of Arsenite from Aqueous Solution by Synthetic Mackinawite. Environmental Science & Technology 2007, 41, (22), 7781-7786. 25. Bostick, B. C.; Fendorf, S.; Brown, G. E., In situ analysis of thioarsenite complexes in neutral to alkaline arsenic sulphide solutions. Mineralogical Magazine 2005, 69, (5), 781-795. 26. Eary, L. E., The Solubility of Amorphous As 2 S 3 from 25 to 90-Degrees-C. Geochimica Et Cosmochimica Acta 1992, 56, (6), 2267-2280. 27. Helz, G. R.; Tossell, J. A.; Charnock, J. M.; Pattrick, R. A. D.; Vaughan, D. J.; Garner, C. D., Oligomerization in As(III) Sulfide Solutions - Theoretical Constraints and Spectroscopic Evidence. Geochimica Et Cosmochimica Acta 1995, 59, (22), 4591-4604. S22