Viewing angle controllable displays with a blue-phase liquid crystal cell

Similar documents
Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite

Zigzag Electrodes for Suppressing the Color Shift of Kerr Effect-Based Liquid Crystal Displays Linghui Rao, Zhibing Ge, and Shin-Tson Wu, Fellow, IEEE

Emerging Liquid Crystal Displays Based on the Kerr Effect

Continuous viewing angle-tunable liquid crystal display using temperature-dependent birefringence layer

Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite

Polarization independent blue-phase liquid crystal cylindrical lens with a resistive film

A Fast-Response A-Film-Enhanced Fringe Field Switching LCD

Design of polarization-insensitive multi-electrode GRIN lens with a blue-phase liquid crystal

First published on: 11 November 2010

Online publication date: 11 February 2010 PLEASE SCROLL DOWN FOR ARTICLE

Online publication date: 22 March 2011

Dopant-Enhanced Vertical Alignment of Negative Liquid Crystals

FAST-RESPONSE LIQUID CRYSTAL DISPLAYS

Invited Paper ABSTRACT 1. INTRODUCTION. phone ; fax ;

Low Voltage Blue Phase Liquid Crystal Displays

Polarization-independent adaptive lens with two different blue-phase liquid-crystal layers

Materials Chemistry C

Depolarization effect in liquid crystal displays

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

Optics of Liquid Crystal Displays

Dual Structure of Cholesteric Liquid Crystal Device for High Reflectance

Hysteresis-free and submillisecond-response polymer network liquid crystal

Materials Chemistry C

Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications

Low-voltage and fast-response polymerstabilized hyper-twisted nematic liquid crystal

Fast-Response Infrared Ferroelectric Liquid Crystal Phase Modulators

Blue-phase-polymer-templated nematic with sub-millisecond broad-temperature range electro-optic switching

Optimized blue-phase liquid crystal for fieldsequential-color displays

Simulations of liquid-crystal Fabry Perot etalons by an improved 4Ã4 matrix method

Enhancing the laser power by stacking multiple dye-doped chiral polymer films

Optimizing the Nematic Liquid Crystal Relaxation Speed by Magnetic Field

Liquid crystal-directed polymer nanostructure for vertically-aligned nematic cells

Submillisecond-response nematic liquid crystals for augmented reality displays

Polymer-Stabilized Blue Phase Liquid Crystals for Photonic Applications

Low voltage polymer network liquid crystal for infrared spatial light modulators

Fast-response infrared phase modulator based on polymer network liquid crystal

Reprint. Journal. of the SID

High performance LCD for augmented reality and virtual reality displays

Polarization independent VOA based on dielectrically stretched liquid crystal droplet

High-speed infrared phase modulators using short helical pitch ferroelectric liquid crystals

Optical array generator based on blue phase liquid crystal Dammann grating

Optically-isotropic nanoencapsulated liquid crystal displays based on Kerr effect

Submillisecond-response Blue Phase Liquid Crystals For Display Applications

5. Liquid Crystal Display

ECE185 LIQUID CRYSTAL DISPLAYS

ABSTRACT 1. INTRODUCTION

Vertical alignment of high birefringence and negative dielectric anisotropic liquid crystals for projection displays

Switchable Polarization-Independent Liquid- Crystal Fabry-Perot Filter

BISTABLE twisted nematic (BTN) liquid crystal displays

Liquid Crystals IAM-CHOON 1(1100 .,4 WILEY 2007 WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION. 'i; Second Edition. n z

Fast-response liquid crystal phase modulators for augmented reality displays

beam (as different VSP One element from 400 to 1500nm diffraction, No segments

Chapter 9 Electro-optic Properties of LCD

26.3: A Novel Method for the Formation of Polymer Walls in Liquid Crystal/Polymer Displays

(12) Patent Application Publication (10) Pub. No.: US 2017/ A1

Advanced Liquid Crystal Materials For Display And Photonic Applications

Anchoring Energy And Pretilt Angle Effects On Liquid Crystal Response Time

Dye-doped dual-frequency nematic cells as fast-switching polarization-independent shutters

DYE DOPED NEMATIC LIQUID CRYSTAL REORIENTATION IN A LINEAR POLARIZED LASER FIELD: THRESHOLD EFFECT

Polymer-stabilized nanoparticle-enriched blue phase liquid crystals

Modeling liquid-crystal devices with the three-dimensional full-vector beam propagation method

Diluter Effects on Polymer-Stabilized Blue Phase Liquid Crystals

7 Optical modulators. 7.1 Electro-optic modulators Electro-optic media

Low viscosity, high birefringence liquid crystalline compounds and mixtures

Liquid crystal parameter analysis for tunable photonic bandgap fiber devices

Control of Polymer Structures in Phase-Separated Liquid Crystal-Polymer Composite Systems

MP5: Soft Matter: Physics of Liquid Crystals

A Highly Tunable Sub-Wavelength Chiral Structure for Circular Polarizer

56.2: Invited Paper: Pixel-Isolated Liquid Crystal Mode for Plastic Liquid Crystal Displays

High efficiency cholesteric liquid crystal lasers with an external stable resonator

Alignment of Liquid Crystals by Ion Etched Grooved Glass Surfaces. Yea-Feng Lin, Ming-Chao Tsou, and Ru-Pin Pan

liquid crystal films*

From the theory of liquid crystals to LCD-displays

Near-perfect modulator for polarization state of light

Liquid-Crystal-based Electrically tunable THz Optical devices

Phase diagrams of mixtures of flexible polymers and nematic liquid crystals in a field

Tuning of photonic bandgaps by a field-induced structural change of fractal metamaterials

Birefringent Thin Films for LCDs. Pochi Yeh

Optics and Optical Design. Chapter 6: Polarization Optics. Lectures 11 13

Controlling the alignment of liquid crystals by nanoparticle-doped and UV-treated polyimide alignment films

High-frame-rate liquid crystal phase modulator for augmented reality displays

Tuning of 2-D Silicon Photonic Crystals

ALCT Measurement Principles

Two-photon polymerization enabled multi-layer liquid crystal phase modulator

Large birefringence smectic-a liquid crystals for high contrast bistable displays

Evolution of Disclinations in Cholesteric Liquid Crystals

Numerical Modeling of Polarization Gratings by Rigorous Coupled Wave Analysis

High contrast homeotropic alignment of difluorotolane liquid crystals

Anchoring Effect on the Stability of a Cholesteric Liquid Crystal s Focal Conic Texture

Three-Dimensional Dye Distribution in Photo- Oriented Liquid-Crystal Alignment Layers

Design of waveguide grating with ultrafast tunable index contrast

Fully continuous liquid crystal diffraction grating with alternating semi-circular alignment by imprinting

Research on the Wide-angle and Broadband 2D Photonic Crystal Polarization Splitter

Lecture 4: Anisotropic Media. Dichroism. Optical Activity. Faraday Effect in Transparent Media. Stress Birefringence. Form Birefringence

Modelling and design of complete photonic band gaps in two-dimensional photonic crystals

Anchoring Energy Measurements: a Practical Approach

Introduction to Polarization

Polarization-independent Pancharatnam-Berry phase lens system

Ultrasensitive tactile sensors based on planar liquid crystalgated-organic field-effect transistor with polymeric dipole control layer

High Birefringence and Low Viscosity Liquid Crystals with Negative Dielectric Anisotropy

Transcription:

Viewing angle controllable displays with a blue-phase liquid crystal cell Linghui Rao, Zhibing Ge, and Shin-Tson Wu* College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, USA *swu@mail.ucf.edu Abstract: We demonstrate a controllable viewing angle liquid crystal display (LCD) using an inserted blue-phase liquid crystal (BPLC) cell. The BPLC layer functions as a tunable positive C-film or a negative C-film, depending on whether the employed LC has a positive or negative dielectric anisotropy. Therefore, the viewing angle of the LCD panel can be controlled continuously by the applied voltage of the BPLC cell. 2010 Optical Society of America OCIS codes: (160.3710) Liquid crystals; (230.3720) Liquid-crystal devices References and links 1. R. A. Soref, Transverse field effects in nematic liquid crystals, Appl. Phys. Lett. 22(4), 165 166 (1973). 2. S. H. Lee, S. L. Lee, and H. Y. Kim, Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching, Appl. Phys. Lett. 73(20), 2881 2883 (1998). 3. A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, A super-high-image-quality multi-domain vertical alignment LCD by new rubbing-less technology, SID Symposium Digest of Technical Papers 29, 1077 1080 (1998). 4. K. H. Kim, K. Lee, S. B. Park, J. K. Song, S. N. Kim, and J. H. Souk, Domain divided vertical alignment mode with optimized fringe field effect, Proc. 18th Int l Display Research Conference, pp. 383 386 (1998). 5. K. W. Chien, Y. J. Hsu, and H. M. Chen, Dual light source for backlight systems for smart viewing-adjustable LCDs, SID Symposium Digest of Technical Papers 37, 1425 1427 (2006). 6. K. Takatoh, S. Kobayashi, S. Kimura, N. Okada, T. Kanetsuna, N. Hirama, S. Kurogi, S. Sekiguchi, and K. Uemura, New peeping prevention technology to control viewing angle properties of TFT-LCDs, SID Symposium Digest of Technical Papers 37, 1340 1343 (2006). 7. P. G. de Gennes, and J. Prost, The Physics of Liquid Crystals, 2 nd Ed. (Oxford: Clarendon, 1993). 8. S. Meiboom, J. P. Sethna, W. P. Anderson, and W. F. Brinkman, Theory of the blue phase cholesteric liquid crystals, Phys. Rev. Lett. 46(18), 1216 1219 (1981). 9. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, Polymer-stabilized liquid crystal blue phases, Nat. Mater. 1(1), 64 68 (2002). 10. J. Kerr, A new relation between electricity and light: Dielectrified media birefringent, Philos. Mag. 50, 337 348 (1875). 11. Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, Electro-optics of polymer-stabilized blue phase liquid crystal displays, Appl. Phys. Lett. 94(10), 101104 (2009). 12. P. P. Crooker, Chirality in Liquid Crystals, Editors: H. S. Kitzerow and C. Bahr. (Springer, New York, 2001). 13. E. Jeong, Y. J. Lim, J. M. Rhee, S. H. Lee, G.-D. Lee, K. Ho Park, and H. C. Choi, Viewing angle switching of vertical alignment liquid crystal displays by controlling birefringence of homogenously aligned liquid crystal layer, Appl. Phys. Lett. 90(5), 051116 (2007). 14. L. Rao, Z. Ge, S. T. Wu, and S. H. Lee, Low voltage blue-phase liquid crystal displays, Appl. Phys. Lett. 95(23), 231101 (2009). 15. K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, Submillisecond gray-level response time of a polymerstabilized blue-phase liquid crystal, J. Display Technol. 6(2), 49 51 (2010). 16. J. E. Bigelow, and R. A. Kashnow, Poincaré sphere analysis of liquid crystal optics, Appl. Opt. 16(8), 2090 2096 (1977). 17. Z. Ge, L. Rao, S. Gauza, and S. T. Wu, Modeling of blue phase liquid crystal displays, J. Display Technol. 5(7), 250 256 (2009). 18. X. Zhu, Z. Ge, and S. T. Wu, Analytical solutions for uniaxial-film-compensated wide-view liquid crystal displays, J. Display Technol. 2(1), 2 20 (2006). 1.Introduction Liquid crystal displays (LCDs) are now widely used in cell phones, computer screens, TVs and so on. Wide viewing angle is a critical requirement for high-end LCDs. To realize wideview, various LC modes such as in-plane switching (IPS) [1], fringe-field switching (FFS) [2], multi-domain vertical alignment (MVA) [3] and patterned vertical alignment (PVA) [4] (C) 2010 OSA 1 February 2010 / Vol. 18, No. 3 / OPTICS EXPRESS 3143

have been developed. With proper phase compensation, the light leakage at oblique angles is dramatically suppressed, resulting in a wide viewing angle. In the meantime, the protection of privacy is becoming more important nowadays and thus an on-demand controllable viewing angle is highly desirable. Several approaches have already been proposed to control the viewing angle by using dual backlight system [5], or pixel division method [6]. In this paper, we propose a method using a blue phase liquid crystal (BPLC) layer to control the viewing angle. It is applicable to all the LCD modes without affecting the on-state transmittance. The viewing angle can be tuned continuously with a fast response time. 2. Device structure and operation mechanism Blue phase is a type of liquid crystal that appears in a very narrow temperature range (~2 C) between chiral nematic and isotropic phase [7] [8]. With polymer stabilization, the temperature range can be expanded to ~60 C including room temperature [9]. BPLCs are comprised of double-twist cylinders arranged in a cubic lattice with periods of several hundred nanometers. The coexistence with disclination lines stabilizes such three-dimensional periodic structures. When there is no electric field applied, the symmetric cubic structure in a BPLC appears to be optically isotropic as shown in Fig. 1(a). When a strong field is applied, the anisotropy is induced along the electric field direction. Macroscopically it can be treated as Kerr effect, which is a type of quadratic electro-optic effect caused by an electric-field-induced ordering of polar molecules in an optically isotropic medium. The induced birefringence (δn) by the Kerr effect is directly proportional to the square of the electric field E as [10,11]: δ n= λke 2. (1) Here, λ is the wavelength and K is the Kerr constant. In Eq. (1), the induced birefringence follows the linear relationship to E 2 in the low field regime but will gradually saturate to the intrinsic birefringence (δn) o of the host LC composite as E increases. Consequently, the isotropic sphere will appear as an elongated (Fig. 1(b)) or a flattened (Fig. 1(c)) ellipsoid, depending on whether the host LC has a positive or negative dielectric anisotropy ( ε) [12]. Fig. 1. Electro-optical effect on BPLC refractive index ellipsoid: (a) BPLC without an electric field, (b) positive ε BPLC with an electric field, and (c) negative ε BPLC with an electric field. Therefore, we can use the BPLC cell to control the viewing angle of a LCD. The viewing angle can be tuned continuously by adjusting the applied voltage. Depicted in Fig. 2 is the proposed device structure for the viewing angle controllable display with a BPLC layer. In Fig. 2(a), the LCD panel is originally well-compensated and can be of any modes, such as IPS, and MVA, etc. The BPLC layer can be sandwiched above or below the initially wideview LCD. When there is no external electric field, the BPLC cell is optically isotropic and will not affect the viewing angle of the display. With a voltage, the BPLC cell will act as an additional positive or negative C-film to disturb the well-compensated wide-view LCD. The actual viewing angle will depend on the applied voltage. (C) 2010 OSA 1 February 2010 / Vol. 18, No. 3 / OPTICS EXPRESS 3144

Compared to other dual cell approaches, such as homogenous cell [13], the blue phase cell exhibits two major advantages: 1) simple fabrication: The blue-phase LC cell does not require any surface alignment layer and, moreover, the electric fields are in longitudinal direction. This can be achieved easily by planar ITO electrodes on both substrates. Such an electrode configuration is much simpler than that used in a blue-phase LCD, in which lateral fields are needed and the IPS electrodes are more complicated to fabricate [14]. 2) Blue-phase LC exhibits submillisecond gray-to-gray response time [15], which is at least 10X faster than the corresponding homogeneous cell. Fig. 2. (a) Device configuration for a viewing angle controllable LCD; (b) Poincaré sphere representation. Poincaré sphere representation is an elegant geometrical means for solving problems involving the propagation of polarized light through birefringent and optically active media [16]. The mechanism of the proposed device can be explained by the Poincaré sphere depicted in Fig. 2(b). The unpolarized light from backlight unit passing through the bottom polarizer (point P) will become linearly polarized with its polarization state locating at point T. At oblique view, the absorption axes of polarizer (point P) and analyzer (point A) do not locate on the S 2 axis. For an uncompensated LCD panel, point T deviates from point A, but a wellcompensated LC layer will then move the polarization state T to the absorption axis of the analyzer (point A), so a good dark state is achieved. When the light hits the BPLC layer whose ε is positive, it will act like a positive C-film and rotate point A clockwise around the CO axis to point G. On the other hand, if the BPLC has a negative ε it will act like a negative C-film and rotate point A counterclockwise around the CO axis to point H. As a result, point G or H deviates again from the absorption axis of the analyzer (point A). The well-compensated wide-view LCD can be switched gradually to be narrow-view according to the voltage applied. Because the BPLC layer is an isotropic medium at V=0, so the light remains in point A and the good dark state will not be affected. This method works equally well for all the display modes. In addition, BPLCs have a sub-millisecond response time that enables a rapid transition between wide view and narrow view. What is more, the fabrication of the BPLC cell is also simple because no alignment layer is needed [17]. 3. Results and discussion To prove concept, we conducted device simulations using a nematic IPS cell as an example. The cell parameters are listed as follows: cell gap d IPS =4 µm, electrode width w=5 µm, electrode spacing l =10 µm, LC n=0.096 and wavelength λ=550 nm. The BPLC cell is comprised of plane ITO electrode on both substrates with a cell gap d BP =5 µm. The electric field is in the longitudinal direction. The BPLC material we used has a Kerr constant K=12.68 nm/v 2 at λ=550 nm. Figure 3(a) shows the isocontrast plot for an IPS cell without any compensation film. The viewing angle is relatively poor; the 10:1 contrast ratio (CR) only extends to ~65 polar angle. This is due to the large dark-state light leakage along the bisectors. Figure 3(b) is the (C) 2010 OSA 1 February 2010 / Vol. 18, No. 3 / OPTICS EXPRESS 3145

isocontrast plot of a well-compensated IPS-LCD by a biaxial film with d(n x -n y )=λ/2, and Nz=0.5. The BPLC layer is optically isotropic at V=0. The CR of the well-compensated IPS- LCD is high. The display is in the wide-view mode. When the voltage is gradually increased from 0V rms (Fig. 3(b)), 5V rms (Fig. 3(c)), 8V rms (Fig. 3(d)), 10V rms (Fig. 3(e)), to 20V rms (Fig. 3(f)), the viewing angle gets narrower. Comparing Fig. 3(b) with Fig. 3(f), we find that the viewing angle can go far below the original display without compensation film. However, as shown in Fig. 3(f), although the privacy protection is still imperfect along the horizontal and vertical directions, the region is getting smaller as the voltage increases. Depicted in Fig. 4 are the isocontrast ratio plots for a viewing angle controllable display with a negative BPLC layer. This BPLC layer functions like a negative C-film. When the voltage is gradually increased from 5V rms (Fig. 4(a)) to 8V rms (Fig. 4(b)), 10V rms (Fig. 4(c)) and 20V rms (Fig. 4(d)), the polar angles for CR=100:1 decrease from 60 to 40, 30 and then 15. And for CR=10:1, in Figs. 4(b), 4(c) and 4(d), the polar angles are 60, 50 and 25. This again demonstrates the outstanding performance of the proposed viewing angle controllable displays. Besides, the symmetry of the contrast ratio contour is also remarkable. According to Eq. (1), if we replace the electric field E with VBP / d BP, here V BP is the applied voltage and d BP is the thickness of the BPLC layer, we will have the following expression for the C-film like BPLC layer: 2 2 VBP 2 VBP dbpδ n= dbpλke = dbpλk( ) = λk. (2) dbp dbp On one hand, if we keep on increasing the voltage V BP, the induced birefringence will be larger and the resulted viewing angle will become narrower. Although there is saturation on the induced the birefringence, new blue phase material can always be developed to match the design requirement. On the other hand, by adjusting the thickness of the BP layer d BP, the operation voltage needed to change the viewing angles can be modified. That is, a thinner BPLC cell will experience a stronger vertical electric field and thus a lower voltage is needed. To further lower the operation voltage V BP, we can use a blue phase material with a larger Kerr constant K. From Eq. (2), the induced birefringence can be tuned continuously by the voltage. Therefore, to obtain a specific view angel for the display, we just need to find out the induced birefringence needed, and then simply apply the corresponding voltage. The induced birefringence here is uniformly distributed all over the BPLC cell, which adds to the accurateness of the control. Moreover, the overall transmittance of the original panel will not be affected by the uniform BPLC layer. A tradeoff is the increased panel thickness and weight. Aside from the IPS example we discussed above, the proposed configuration in Fig. 2(a) works equally well for other display modes, such as FFS, MVA and PVA, in which different compensation schemes with uniaxial or biaxial films have been proposed [18]. Therefore, as long as the LCD is initially well-compensated, the viewing angle can always be controlled by the applied voltage of the inserted BPLC layer. (C) 2010 OSA 1 February 2010 / Vol. 18, No. 3 / OPTICS EXPRESS 3146

Fig. 3. Isocontrast plots of (a) an IPS-LCD without compensation film, and viewing angle controllable IPS with a biaxial film and a positive BPLC layer at (b) V=0, (c) V=5V rms, (d) V=8V rms, (e) V=10V rms, and (f) V=20V rms. λ=550nm. (C) 2010 OSA 1 February 2010 / Vol. 18, No. 3 / OPTICS EXPRESS 3147

5. Conclusion Fig. 4. Isocontrast plots of viewing angle controllable IPS cell with a negative BPLC layer at (a) V=5V rms, (b) V=8V rms, (c) V=10V rms, and (d) V=20V rms. λ=550 nm. We have demonstrated a method to control the display viewing angles using an inserted blue phase liquid crystal cell. This method works well for all the LCD panels originally compensated by uniaxial or biaxial films. The viewing angle can be tuned continuously by electronically controlling the induced birefringence of the blue phase LC layer. Moreover, the BPLC layer has a simple fabrication process without alignment layer and submillisecond response time. The transmittance of the original LCD panel will not be affected by the BPLC cell. It is believed that this approach will have a strong potential for future display applications. Acknowledgement The authors are indebted to AFOSR for partial financial support under Contract No. FA95550-09-1-0170. (C) 2010 OSA 1 February 2010 / Vol. 18, No. 3 / OPTICS EXPRESS 3148