Estimation of Diffuse Solar Radiation for Yola, Adamawa State, North- Eastern, Nigeria

Similar documents
OPTIMIZATION OF GLOBAL SOLAR RADIATION OF TILT ANGLE FOR SOLAR PANELS, LOCATION: OUARGLA, ALGERIA

Estimation of Solar Radiation at Ibadan, Nigeria

Direct Normal Radiation from Global Radiation for Indian Stations

Evaluation of monthly total global and diffuse solar radiation in Ibi, Taraba state, Nigeria

Average Monthly Solar Radiations At Various Places Of North East India

Estimation of Seasonal and Annual Albedo of the Earth s Atmosphere over Kano, Nigeria

Journal of Asian Scientific Research

Estimation of Hourly Solar Radiation on Horizontal and Inclined Surfaces in Western Himalayas

Correlation of Cloudiness Index with Clearness Index for Four Selected Cities in Nigeria.

CHARACTERIZATION OF SKY CONDITIONS USING CLEARNESS INDEX AND RELATIVE SUNSHINE DURATION FOR ISEYIN, NIGERIA

SURFACE ORIENTATIONS AND ENERGY POLICY FOR SOLAR MODULE APPLICATIONS IN DHAKA, BANGLADESH

PROJECTING THE SOLAR RADIATION IN NASARAWA-NIGERIA USING REITVELD EQUATION

Correlation Between Sunshine Hours and Global Solar Radiation in Warri, Nigeria.

Solar radiation in Onitsha: A correlation with average temperature

Application of Artificial Neural Networks for Global Solar Radiation Forecasting With Temperature

A New Temperature-Based Model for Estimating Global Solar Radiation in Port-Harcourt, South-South Nigeria.

4. Solar radiation on tilted surfaces

XI. DIFFUSE GLOBAL CORRELATIONS: SEASONAL VARIATIONS

Citation for the original published paper (version of record):

AVAILABILITY OF DIRECT SOLAR RADIATION IN UGANDA

Performance Assessment of Hargreaves Model in Estimating Global Solar Radiation in Sokoto, Nigeria

Optimum Collector Tilt Angles For Low Latitudes

Modeling of the Optimum Tilt of a Solar Collector to Receive Maximum Radiation

Research Article Comparative Study of Ground Measured, Satellite-Derived, and Estimated Global Solar Radiation Data in Nigeria

ANALYSIS OF RATIO OF GLOBAL TO EXTRA-TERRESTRIAL RADIATION (CLEARNESS INDEX) AT SOME TROPICAL LOCATIONS IN INDIA

WHEN IS IT EVER GOING TO RAIN? Table of Average Annual Rainfall and Rainfall For Selected Arizona Cities

Solar Radiation in Port Harcourt: Correlation with Sunshine Duration.

Chapter 2 Available Solar Radiation

Estimation Of The Albedo Of The Earth s Atmosphere At Makurdi, Nigeria

Prediction of optimum angle of inclination for flat plate solar collector in Zaria, Nigeria

Empirical Models for the Correlation of Global Solar Radiation with Meteorological Data for Iseyin, Nigeria.

International Journal of Marine, Atmospheric & Earth Sciences, 2017, 5(1): 1-19 International Journal of Marine, Atmospheric & Earth Sciences

Agricultural Science Climatology Semester 2, Anne Green / Richard Thompson

Generation of an Annual Typical Meteorological Solar Radiation for Armidale NSWAustralia

DETERMINATION OF OPTIMAL TILT ANGLE FOR MAXIMUM SOLAR INSOLATION FOR PV SYSTEMS IN ENUGU-SOUTHERN NIGERIA

Correlation for estimation of hourly solar radiation

Generation of an Annual Typical Meteorological Solar Irradiance on Tilted Surfaces for Armidale NSW,Australia

Estimation of Hourly Global Solar Radiation for Composite Climate

An Empirical Method for Estimating Global Solar Radiation over Egypt S. A. Khalil, A. M. Fathy

Study of the variability of atmospheric parameters for Yola

The Effect of Cloudy Days on the Annual Typical Meteorological Solar Radiation for Armidale NSW, Australia

ESTIMATION OF GLOBAL SOLAR RADIATION AT CALABAR USING TWO MODELS

Empirical Models for the Correlation of Global Solar Radiation with Meteorological Data for Enugu, Nigeria.

Evaluation of Clearness Index and Diffuse Ratio of Some Locations In South Western, Nigeriausing Solar Radiation Data.

Exercise 6. Solar Panel Orientation EXERCISE OBJECTIVE DISCUSSION OUTLINE. Introduction to the importance of solar panel orientation DISCUSSION

Global Climates. Name Date

Optimum Tilt Angle for Fixed-Array Solar Panels at a Constant Latitude of 29 to Receive the Maximum Sunlight

Outline. The Path of the Sun. Emissivity and Absorptivity. Average Radiation Properties II. Average Radiation Properties

Jackson County 2013 Weather Data

Evaluation of Incident Solar Radiation on Inclined Plane by Empirical Models at Kuching, Sarawak, Malaysia

Hourly solar radiation estimation from limited meteorological data to complete missing solar radiation data

Chiang Rai Province CC Threat overview AAS1109 Mekong ARCC

Assessment of the Impact of El Niño-Southern Oscillation (ENSO) Events on Rainfall Amount in South-Western Nigeria

Monthly Magnetic Bulletin

Global Solar Radiation

Estimation of clearness index from different meteorological

Page 1. Name:

Solar radiation analysis and regression coefficients for the Vhembe Region, Limpopo Province, South Africa

The Climate of Bryan County

Comparison of meteorological data from different sources for Bishkek city, Kyrgyzstan

Analysis of Rainfall and Other Weather Parameters under Climatic Variability of Parbhani ( )

Variability and trends in daily minimum and maximum temperatures and in diurnal temperature range in Lithuania, Latvia and Estonia

LAB 3: THE SUN AND CLIMATE NAME: LAB PARTNER(S):

Estimation of solar radiation at Uturu, Nigeria

P7.7 A CLIMATOLOGICAL STUDY OF CLOUD TO GROUND LIGHTNING STRIKES IN THE VICINITY OF KENNEDY SPACE CENTER, FLORIDA

Drought in Southeast Colorado

Time Series Model of Photovoltaic Generation for Distribution Planning Analysis. Jorge Valenzuela

PROJECT REPORT (ASL 720) CLOUD CLASSIFICATION

TILT, DAYLIGHT AND SEASONS WORKSHEET

International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014 ISSN

GAMINGRE 8/1/ of 7

IJSER. f(φ). Duffie and Beckman [1] recommended that optimum. Figure 1: beam radiation on horizontal and tilted surfaces [1]. local latitude.

The Climate of Marshall County

Prediction of Global Horizontal Radiation in Vellore using Clearness Index Model

COMPARISON OF MEASURED AND ESTIMATED SOLAR RADIATION DATA: A CASE STUDY FOR ISTANBUL

Monthly Cluster of Hourly Solar Irradiation in Kumasi-Ghana

Jackson County 2018 Weather Data 67 Years of Weather Data Recorded at the UF/IFAS Marianna North Florida Research and Education Center

Application of Artificial Neural Networks to Predict Daily Solar Radiation in Sokoto

Life Cycle of Convective Systems over Western Colombia

Evaluation of solar fraction on north partition wall for various shapes of solarium by Auto-Cad

The Climate of Texas County

The Climate of Pontotoc County

Solar Radiation in Thailand:

The Climate of Grady County

Statistical Analysis of Temperature and Rainfall Trend in Raipur District of Chhattisgarh

The Climate of Payne County

2016 Meteorology Summary

The Climate of Kiowa County

ME 430 Fundamentals of Solar Energy Conversion for heating and Cooling Applications

Assessment of global solar radiation absorbed in Maiduguri, Nigeria

JOURNAL OF INTERNATIONAL ACADEMIC RESEARCH FOR MULTIDISCIPLINARY Impact Factor 1.393, ISSN: , Volume 2, Issue 4, May 2014

Experimental and Theoretical Study on the Optimal Tilt Angle of Photovoltaic Panels

The Climate of Seminole County

The Climate of Murray County

Estimation of global solar radiation using clear sky radiation in Yemen

Generation of a reduced temperature year as an input data for building climatization purposes: an application for Palermo (Italy)

Asian Journal on Energy and Environment

Constructing a typical meteorological year -TMY for Voinesti fruit trees region and the effects of global warming on the orchard ecosystem

Geostatistical Analysis of Rainfall Temperature and Evaporation Data of Owerri for Ten Years

LECTURE ONE The Astronomy of Climate

Transcription:

International Research Journal of Engineering and Technology (IRJET) e-issn: - Volume: Issue: Nov- www.irjet.net p-issn: - Estimation of Diffuse Solar Radiation for Yola, Adamawa State, North- Eastern, Nigeria D. O. Akpootu and W. Mustapha Department of Physics, Usmanu Danfodiyo University, Sokoto, Nigeria. Nigerian Meteorological Agency, NIMET, Abuja, Nigeria. ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - This present study evaluates the performance of four well-established models to estimate the diffuse solar radiation on a horizontal surface. The diffuse solar radiation using measured global solar radiation during the period of thirty one years ( for Yola, North Eastern, Nigeria (Latitude. N, Longitude. E and altitude. m above sea level) has been estimated by using the following models; Page, Liu and Jordan, Colleras- Pereira and Rabi and Chandrasekeran and Kumar. The reliability of the estimated diffuse solar radiation based on coefficient of determination for all the considered models gives values greater than. The monthly average ratio of daily diffuse to global solar radiation and the values of the clearness index reveals that Yola enjoys clear sky conditions for most of the year which attests to the abundant of solar energy and its potential to produce clean energy sources in this area and its environs. Key Words: global solar radiation, diffuse solar radiation, clear sky conditions, clearness index, Yola.. INTRODUCTION Solar energy is one of the most promising renewable sources, this is because it is environmentally friendly, abundant and easy to utilize. This shows that among the renewable resources, solar energy has the greatest potentiality, availability and is free from environmental hazards. The knowledge of the amount of the available solar energy and its variability over any geographical region is very paramount for solar energy utilization, especially in the absence and scarcity of reliable monthly solar radiation data. The global solar radiation is divided into two components; diffuse solar radiation, which results from scattering of solar radiation caused by gases in the Earth s atmosphere, dispersed water droplets and particulates while direct solar radiation, sometimes called beam radiation is used to describe solar radiation travelling on a straight line from the sun down to the surface of the Earth. That is, one that have not been scattered. Global solar radiations in Nigeria are measured at some stations while diffuse solar radiation is not observed experimentally in any meteorological station of the country. However, empirical correlations are usually used to extract diffuse and direct solar radiation from the global solar radiation obtained over a horizontal surface from the location under study. The monthly average daily diffuse solar radiation is usually estimated using an empirical formula developed by Page [] which correlates the diffuse components of the solar radiation to the daily measured total radiation. [] proposed a model relating the ratio of diffuse to global solar radiation incident on a horizontal surface with the clearness index and developed by []. In another study, [] proposed a fourth order polynomial relation using data from five stations in United States. Similarly, [] proposed another fourth order polynomial relation using data from India. [] used measurements of global and diffuse solar radiations at the Earth s surface, in the city of Sao Paulo, Brazil to develop correlation models to estimate hourly, daily and monthly diffuse solar radiation on horizontal surfaces. The objective of this paper is to examine a comparative study for estimating diffuse solar radiation for Yola during the period of thirty one years ( based on four relevant existing well-known proposed models.. METHODOLOGY The measured monthly average daily global solar radiation covering a period of thirty one years (- for Yola, Adamawa State, North Eastern, Nigeria was obtained from the Nigeria Meteorological Agency (NIMET), Oshodi, Lagos, Nigeria. Monthly averages over the thirty one years of the data in preparation for correlation are presented in Table. The monthly average daily extraterrestrial radiation on a horizontal surface ( ) in can be calculated for days giving average of each month [] and [ - ] from the following equation [] and []:, IRJET ISO : Certified Journal Page

International Research Journal of Engineering and Technology (IRJET) e-issn: - Volume: Issue: Nov- www.irjet.net p-issn: -. RESULTS AND DISCUSSION () where is the solar constant (= Wm - ), is the latitude of the site, is the solar declination and is the mean sunrise hour angle for the given month and is the number of days of the year starting from of January to of December. The solar declination, and the mean sunrise hour angle, can be calculated using the following equation [] and []: () () [] Proposed a model for estimating diffuse solar radiation which is given by the relation () [] Proposed a correlation which was developed by [] and is given by the relation () [] proposed a fourth order polynomial relation using data from five stations in United States and is given by the relation () [] Proposed another fourth order polynomial relation using data from India and is given by the relation () From equations ( ) is the diffuse solar radiation, is the global solar radiation is the clearness index. The clearness index ( ) is calculated using [] as () The global solar radiation diffuse solar radiation and direct solar radiation are related by the equation: () where, is the global solar radiation, is the diffuse solar radiation and is the direct solar radiation., and are measured in In this study, equations ( ) are the four existing models to be examined. Table : Input parameters for estimation of monthly average daily diffuse solar radiation for Yola ( Month H (MJm - day - ) H mea(mjm - day - ) H/H Jan... Feb... Mar... Apr... May... Jun... Jul... Aug... Sep... Oct... Nov... Dec... Table : The diffuse solar radiation for Yola ( based on the considered models, equations ( ) Month H d(page) H d(l&j) H d(c&r) H d(c&k) Jan.... Feb.... Mar.... Apr.... May.... Jun.... Jul.... Aug.... Sep.... Oct.... Nov.... Dec.... In Table H d(page), H d(l&j), H d(c&r) and H d(c&k) are measured in, IRJET ISO : Certified Journal Page

Diffuse Solar Radiation (MJm - day - ) Diffuse Solar Radiation (MJm - day - ) International Research Journal of Engineering and Technology (IRJET) e-issn: - Volume: Issue: Nov- www.irjet.net p-issn: - HdPage HdCR HdLJ HdCK Figure : Monthly average daily diffuse solar radiation based on adopted models for Yola (- with coefficient of determination for Page model, Liu and Jordan model, Colleras-Pereira and Rabi and Chandrasekeran and Kumar model. The measured clearness index data for Yola lie within the range with the lowest and highest values recorded in the months of July and November respectively. Yola like most other regions in Nigeria are known to observe two distinct weather conditions, that is, the rainy season and the dry season. The rainy season months are from April to October, while the dry season months are from November to March. This implies that the lowest clearness index was recorded during the rainy season and the highest during the dry season. HdpPage HdPage The monthly average daily diffuse solar radiation (DSR) is computed for Yola using the adopted models in equations ( ) using the measured clearness index during the period of thirty one years (. The resulting monthly average of daily DSR is shown in Figure. It is clear from the figure that the highest values of DSR was recorded for Chandrasekeran and Kumar model, except in the month of November where the Colleras-Pereira and Rabi overestimated that of the Chandrasekeran and Kumar model. The Page and the Liu and Jordan models produce the lowest values of DSR. Diffuse Solar Radiation/H m............... HdPageHm HdLJHm HdCRHm HdCKHm...... Figure : Comparison between the predicted diffuse solar radiation and the Page model for Yola (- Figure shows the comparison between the Page model and the predicted diffuse solar radiation based on the developed regression equations, it can be seen that a perfect correlation existed between them as both has the same values of the DSR. Clearness Index, H m /H Figure : Ratio of diffuse to global solar radiation as a function of Clearness index for Yola (- Figure shows the plots of the diffuse to global solar radiation ratio verses the clearness index for the aforementioned models. All the four considered models for the diffuse solar radiation have nearly linear trends, IRJET ISO : Certified Journal Page

Diffuse Solar Radiation (MJm - day - ) Predicted Diffuse Solar Radiation (MJm - day - ) Diffuse Solar Radiation (MJm - day - ) Diffuse Solar Radiation (MJm - day - ) International Research Journal of Engineering and Technology (IRJET) e-issn: - Volume: Issue: Nov- www.irjet.net p-issn: -. HdpLJ. HdLJ.............. HdpCK HdCK Figure : Comparison between the predicted diffuse solar radiation and the L & J model for Yola (- Figure shows the comparison between the Liu and Jordan model and the predicted diffuse solar radiation based on the developed regression equations, it can be seen that a good correlation existed between them, though, a noticeable overestimation of the Liu and Jordan model can be seen in the month of November. Figure : Comparison between the predicted diffuse solar radiation and the C&K model for Yola (- Figure and gives a fairly good correlation between the predicted diffuse solar radiation and the models. It can be observed from the figures that there are noticeable underestimation and overestimation in the predicted values. HdpCR HdCR Figure : Comparison between the predicted diffuse solar radiation and the C & R model for Yola (- HdpPage HdpCR HdpLJ HdpCK Figure : Predicted monthly average Diffuse Solar Radiation for Yola (- The predicted average daily diffuse solar radiation computed based on developed models using the measured clearness index for the respective months are displayed in figure, IRJET ISO : Certified Journal Page

Solar Radiation (MJm - day - ) International Research Journal of Engineering and Technology (IRJET) e-issn: - Volume: Issue: Nov- www.irjet.net p-issn: - Diffuse Solar Radiation/H. HdPgH HdLJH.. HdCRH HdCKH................. Figure : Monthly average daily ratio of diffuse to extra-terrestrial solar radiation for Yola ( Figure shows the ratio of diffuse to extraterrestrial solar radiation for Yola during the period of thirty one years (. It is interesting to note that the contribution of the diffuse solar radiation does not exceed. The highest being during the month of July for Chandrasekeran and Kumar model and the lowest as in the month of November, the Page and Liu and Jordan models underestimated the diffuse radiation. However, in the absence of measured values of diffuse radiation it is difficult to establish the superiority of one over the other in terms of the best predicting model (Chandrasekeran and Kumar, or Page and Liu and Jordan models). Figure shows the monthly average ratio of daily diffuse to global solar radiation for Yola during the period of thirty one years (. Based on the Page model the diffuse radiation does not exceed during the month of July with a low value of in February. This implies that the direct solar radiation in Yola will be between in July and in February. Similarly, based on Chandrasekeran and Kumar model the diffuse radiation does not exceed during the month of July with a low value of in November. This implies also that the direct solar radiation in Yola will be between in July and in November. Hence, it can be estimated that Yola enjoys clear sky weather condition of at least during the rainy season and at least during the dry season throughout the year. GlobalSR DiffuseSR DirectSR Diffuse Solar Radiation/H m............... HdPgHm HdCRHm HdLJHm HdCKHm Figure : Monthly average of diffuse to global Solar Radiation for Yola (- Figure : Comparison between the Global, Diffuse and Direct Solar Radiation for Yola. Figure shows the variation of the global, diffuse and direct solar radiation. It is interesting to note from the figure that the lowest global and direct solar radiation was recorded in the month of July and August; this is the period of heavy rainfall in Yola, Nigeria. On the other hand, the maximum diffuse solar radiation was recorded in the months of July and August. The global and direct solar radiation depicts almost the same pattern while the diffuse solar radiation shows almost opposite or inverse pattern. The overall results shows that the global solar radiation has the highest values of solar radiation as compared to that of the direct and diffuse solar radiations while diffuse solar radiation has the least values. Though, this is expected as the global solar radiation is the sum of the direct and diffuse solar radiation., IRJET ISO : Certified Journal Page

International Research Journal of Engineering and Technology (IRJET) e-issn: - Volume: Issue: Nov- www.irjet.net p-issn: -. CONCLUSIONS The daily diffuse solar radiation for Yola during the period of thirty one years ( has been estimated based on four well-known existing models namely; Page, Liu and Jordan, Colleras-Pereira and Rabi and Chandrasekeran and Kumar. However, due to the absence of measurement of diffuse solar radiation to carry out the statistical test analysis, the best predicting models has not been established (Chandrasekeran and Kumar or Page, Liu and Jordan models). The coefficient of determination for all the models shows values greater than. The diffuse solar radiation was correlated with the measured global solar radiation and the extraterrestrial solar radiation. The ratio of diffuse solar radiation to measured global solar radiation gives minimum values of in February for Page model and in November for Chandrasekeran and Kumar model. The maximum values were recorded in the month of July as and for Page and Chandrasekeran and Kumar respectively. The variation of global, direct and diffuse solar radiation reveals global solar radiation to have the highest value of solar radiation and diffuse solar radiation as the least; this is expected for Yola and shows a very strong platform for energy strategists and planners to utilize the solar energy potential for Yola and its environs. [] A. P. Oliveira, J. F. Escobedo, A. J. Machado, and J. Soares, Correlation models of diffuse solar-radiation applied to the city of Sao Paulo, Brazil, Applied Energy., (),.. [] J. K. Page, The Estimation of monthly mean values of daily total short-wave radiation on vertical and inclined surfaces from sunshine records of latitudes N S. Proceeding of the UN Conference on New Sources of Energy., vol., no., pp -.. [] R. Saidur, H. H. Masjuki, and M. Hassanuzzaman, Performance of an Improved Solar car Ventilator, International Journal of Mechanical and Materials Engineering., (), -.. [] S. Zekai, Solar energy fundamentals and modeling techniques: atmosphere, Environment, climate change and renewable energy, first ed. Springer, London.. ACKNOWLEDGEMENT The authors are grateful to the management and staff of the Nigerian Meteorological Agency (NIMET), Oshodi, Lagos for providing all the necessary data used in this study. REFERENCES [] J. Chadrasekaran, and S. Kumar, :Hourly diffuse fraction correlation at a tropical Location, Solar Energy, (),.. [] M. Collares-Pireira, and A. Rabi, The average distribution of solar radiation correlation between diffuse and hemispherical and between daily and hourly insolation values, Solar Energy,, pp,. [] J. A. Duffie, and W. A. Beckman, Solar Engineering of thermal Processes, John Wiley & Sons. New York.. [] M. Iqbal, An introduction to solar radiation, first ed. Academic Press, New York.. [] S. A. Klein, Calculation of monthly average insolation on tilted surface, Solar Energy, vol., pp.. [] B. H. Liu, and R. C. Jordan, The interrelationship and characteristics distribution of direct, diffuse and total solar radiation from meteorological data, Solar Energy,, ()., IRJET ISO : Certified Journal Page