( r) E (r) Phasor. Function of space only. Fourier series Synthesis equations. Sinusoidal EM Waves. For complex periodic signals

Similar documents
ECE 107: Electromagnetism

9.4 Absorption and Dispersion

Bethe-Salpeter Equation Green s Function and the Bethe-Salpeter Equation for Effective Interaction in the Ladder Approximation

WAKEFIELD UNDULATOR RADIATION

1 Lecture: pp

Chapter 9 Transient Response

Advanced Queueing Theory. M/G/1 Queueing Systems

Wave Superposition Principle

Frequency Response. Response of an LTI System to Eigenfunction

Lecture 23. Multilayer Structures

Chapter 8. Diffraction

Field due to a collection of N discrete point charges: r is in the direction from

Lecture 5. Plane Wave Reflection and Transmission

OUTLINE FOR Chapter 2-2. Basic Laws

Noll (2004) MRI Notes 2: page 1. Notes on MRI, Part II

t the propensity to consume the resource good. Maximizing U t in (9) subject to the budget constraint (8) yields

EQUATION SHEETS FOR ELEC

Lecture 2: Bayesian inference - Discrete probability models

L...,,...lllM" l)-""" Si_...,...

CHAPTER 10: LINEAR DISCRIMINATION

The Variance-Covariance Matrix

5-1. We apply Newton s second law (specifically, Eq. 5-2). F = ma = ma sin 20.0 = 1.0 kg 2.00 m/s sin 20.0 = 0.684N. ( ) ( )

Summary: Solving a Homogeneous System of Two Linear First Order Equations in Two Unknowns

Appendix. In the absence of default risk, the benefit of the tax shield due to debt financing by the firm is 1 C E C

Theoretical Seismology

Consider a system of 2 simultaneous first order linear equations

Part I- Wave Reflection and Transmission at Normal Incident. Part II- Wave Reflection and Transmission at Oblique Incident

Ash Wednesday. First Introit thing. * Dómi- nos. di- di- nos, tú- ré- spi- Ps. ne. Dó- mi- Sál- vum. intra-vé-runt. Gló- ri-

EE105 Fall 2015 Microelectronic Devices and Circuits. LTI: Linear Time-Invariant System

DSP-First, 2/e. This Lecture: LECTURE #3 Complex Exponentials & Complex Numbers. Introduce more tools for manipulating complex numbers

s = rθ Chapter 10: Rotation 10.1: What is physics?

Phys Nov. 3, 2017 Today s Topics. Continue Chapter 2: Electromagnetic Theory, Photons, and Light Reading for Next Time

Partial Fraction Expansion

innovations shocks white noise

Die Mounted Cam Unit General Description of KGSP

Chapter 3: Vectors and Two-Dimensional Motion

Chapter 7 Stead St y- ate Errors

L4:4. motion from the accelerometer. to recover the simple flutter. Later, we will work out how. readings L4:3

Chapters 2 Kinematics. Position, Distance, Displacement

Lecture 20. Transmission Lines: The Basics

h : sh +i F J a n W i m +i F D eh, 1 ; 5 i A cl m i n i sh» si N «q a : 1? ek ser P t r \. e a & im a n alaa p ( M Scanned by CamScanner

PHYS 1443 Section 001 Lecture #4

T h e C S E T I P r o j e c t

Supplementary Figure 1. Experiment and simulation with finite qudit. anharmonicity. (a), Experimental data taken after a 60 ns three-tone pulse.

Analysis of Laser-Driven Particle Acceleration from Planar Transparent Boundaries *

Lecture Set 6 Brushless DC Machines

COMPSCI 230 Discrete Math Trees March 21, / 22

( ) ( ) ( ) 0. Conservation of Energy & Poynting Theorem. From Maxwell s equations we have. M t. From above it can be shown (HW)

5- Scattering Stationary States

ECE Spring Prof. David R. Jackson ECE Dept. Notes 5

CptS 570 Machine Learning School of EECS Washington State University. CptS Machine Learning 1

EE 529 Remote Sensing Techniques. Review

Aakash. For Class XII Studying / Passed Students. Physics, Chemistry & Mathematics

NEGATIVE-ORDER FORMS FOR THE CALOGERO-BOGOYAVLENSKII-SCHIFF EQUATION AND THE MODIFIED CALOGERO-BOGOYAVLENSKII-SCHIFF EQUATION

Lecture Y4: Computational Optics I

2 shear strain / L for small angle

Lecture 12: Introduction to nonlinear optics II.

cos kd kd 2 cosθ = π 2 ± nπ d λ cosθ = 1 2 ± n N db

k of the incident wave) will be greater t is too small to satisfy the required kinematics boundary condition, (19)

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 )

4/12/2018. PHY 712 Electrodynamics 9-9:50 AM MWF Olin 105. Plan for Lecture 34: Review radiating systems

State Observer Design

(,,, ) (,,, ). In addition, there are three other consumers, -2, -1, and 0. Consumer -2 has the utility function

- Double consonant - Wordsearch 3

Basic Electrical Engineering for Welding [ ] --- Introduction ---

AQUIFER DRAWDOWN AND VARIABLE-STAGE STREAM DEPLETION INDUCED BY A NEARBY PUMPING WELL

Chapter Lagrangian Interpolation

European and American options with a single payment of dividends. (About formula Roll, Geske & Whaley) Mark Ioffe. Abstract

Boyce/DiPrima 9 th ed, Ch 7.6: Complex Eigenvalues

MCTDH Approach to Strong Field Dynamics

Background Transfer Function (4A) Young Won Lim 4/20/15

2/20/2013. EE 101 Midterm 2 Review

Solutions to Supplementary Problems

Modelling of A Helicopter System

Conventional Hot-Wire Anemometer

PH672 WINTER Problem Set #1. Hint: The tight-binding band function for an fcc crystal is [ ] (a) The tight-binding Hamiltonian (8.

The far field calculation: Approximate and exact solutions. Persa Kyritsi November 10th, 2005 B2-109

Name of the Student:

Fourier transforms (Chapter 15) Fourier integrals are generalizations of Fourier series. The series representation

I-POLYA PROCESS AND APPLICATIONS Leda D. Minkova

Measurement of Lift-off with Variable Amplitude Excitation in Pulsed Eddy Current Testing

Wave Equation (2 Week)

Conventional Paper-I (a) Explain the concept of gradient. Determine the gradient of the given field: ( )

Chapter 5 Transmission Lines

Unit 3: Transistor at Low Frequencies

On the Determination of Capital Charges in a Discounted Cash Flow Model. Eric R. Ulm Georgia State University

Time to Recruitment for a Single Grade Manpower System with Two Thresholds, Different Epochs for Inter-Decisions and Exits Having Correlated Wastages

Density Matrix Description of NMR BCMB/CHEM 8190

Chapter 7: Plane Electromagnetic Waves and Wave Propagation

Lect. 12: Oblique Incidence at Dielectric Interface

FIRST PART OF BOXER NAME FIRST PART OF BOXER NAME FIRST PART OF BOXER NAME FIRST PART OF BOXER NAME. Find the initial of your first name!

A L A BA M A L A W R E V IE W

Chapter 13 Laplace Transform Analysis

Lecture 4 : Backpropagation Algorithm. Prof. Seul Jung ( Intelligent Systems and Emotional Engineering Laboratory) Chungnam National University

Introduction to Inertial Dynamics

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b

STRIPLINES. A stripline is a planar type transmission line which is well suited for microwave integrated circuitry and photolithographic fabrication.

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören

w m -,. t o o p f 0. p 0 we , 44-4 c , 0 0 k 1 0 P ) TIC 0 0 PAM Sc.._ a4C44 IsaA.r a.% Oc Or

P a g e 3 6 of R e p o r t P B 4 / 0 9

Transcription:

Inoducon Snusodal M Was.MB D Yan Pllo Snusodal M.3MB 3. Snusodal M.3MB 3. Inoducon Inoducon o o dsgn h communcaons sd of a sall? Fqunc? Oms oagaon? Oms daa a? Annnas? Dc? Gan? Wa quaons Sgnal analss Wa quaons & Fou analss 3 Po budg? Lnd o & Ponng co Snusodal M.3MB 3.3 Snusodal M.3MB 3. Scon Conns Snusodal m aaon Fou snaon Phasos Mall quaons n haso foms Plan a oagaon has loc Po flo and Ponng co Poagaon n mda Poagaon n conduc mda Poagaon n Good dlcc Poagaon n Good conduco Sn Dh Po loss n mal Fqunc analss Tm doman Podc sgnal: sum of hamoncall lad snusods. Fqunc doman ng a fquncs mull of h fundamnal fqunc Snusodal M.3MB 3.5 Snusodal M.3MB 3.

Fou ss Snhss quaons Fo coml odc sgnals Snusodal M Was W a nsd n h bhaou of snusodal as of h fom: R a ω o amoncall lad coml onnals Fou Analss Phaso. Funcon of sac onl. Φ u Φ Snusodal M.3MB 3.7 Snusodal M.3MB 3. Snusodal M Was Gomc naon Imagna as Φ Φ R Φ Ral as R R R Φ Φ cos Φ Snusodal M.3MB 3.9 Snusodal M.3MB 3. Gomc naon Imagna as Coml Numbs ul s laon!" R Φ Φ Ral as cosω ω ω cos ω snω ω snω ω ω Snusodal M.3MB 3. Snusodal M.3MB 3.

# $ % # & $ % & # % & $ # ' : ' ' 3 - - Mall s quaons n haso noaon Mall s quaons n haso noaon aml D J Bcoms R J R D R $ { J D% } R Fnall ha B D J. D ρ. B ρ.j B - J D-.. D. ρ /. B/. J ρ & J D D B J 3 Snusodal M.3MB 3.3 Snusodal M.3MB 3. Plan a n haso fom Plan a n haso fom Souc f non-conduc mdum: 9 9 : h 5 5 lmhol quaon 7 7 Fqunc analss aang Snusodal M.3MB 3.5 Snusodal M.3MB 3. Plan a n haso fom Plan a n haso fom Soluon? C C δ f f δ δ δ R R C C R C C Af Bf.... -. -. -. -. ; / < / Phas loc A Wa oagang n and - dcons Snusodal M.3MB 3.7 -...3..5..7..9. Snusodal M.3MB 3. 3

??? Plan a n haso fom Plan a n haso fom.... -. -. -. -. Walngh λ: ndndn of m and oson n sac Chaacsc of a a / > / λ A λ A λ λ π λ π λ π A π f λ π λ π λ π fλ π λ c Wa numb Walngh Phas loc -...3..5..7..9. π f fλ Snusodal M.3MB 3.9 Snusodal M.3MB 3. Whn do ha lan as? Whn do ha lan as? Consan has fons 9 5 3 D Pon souc Plan a hn: D > λ aml: m annna and f G λ 3 cm and mn. ms 7 3 33 Consan has fons Mull small cs samlng qualn o on lag annna Snusodal M.3MB 3. Snusodal M.3MB 3. Annnas Wa Po mdanc Flo 5 N d λ/ 9 3 3 Sdlobs N d λ/ 9 5 3 S Ponng co 33 33 Was a no snusodal and h nsananous o s lss usful DNd d 3 3 7 7 9 9 5 3 5 3 33 33 3 3 7 7 N d λ/ N d λ Snusodal M.3MB 3.3 Alasng lcc analog W Vˆ Î Vˆ RV Î RI R V θ θ R I V cos θ I cos θ Snusodal M.3MB 3.

5 Snusodal M.3MB 3.5 Wa mdanc Po Flo [ ] cos cos V I cos I V cos Î Vˆ W θ θ θ θ θ θ Null aag o a od θ θ θ cos V I cos V I W a Vm V V θ Snusodal M.3MB 3. Wa mdanc Po Flo sn θ V I W ac ac a W W V I VI W θ lcc @ @ @ m Was and a h hasos quan R a A A A Im ac B B B Snusodal M.3MB 3.7 Wa mdanc Po Flo Bu η Snusodal M.3MB 3. Wa mdanc Po Flo lcc ng dns n h a? M S nos Magnc ng dns n h a? M S nos Toal ng dns? Th o flo n a lan a s us h aag ng dns ms h a loc Snusodal M.3MB 3.9 Poagaon n conduc mda C C C Gnal a quaon fo conducng mdum D D D W assum a moon along h as F F F Snusodal M.3MB 3.3 Poagaon n conduc mda In haso fom bcoms G G G I I γ lmhol fom h γ β γ Wh > Soluon? γ J J Wha f <?

K L K L L Poagaon n conduc mda Poagaon n conduc mda γ β γ R γ R β R [ ] ac fomula! Tallng a n h dcon anuad b a faco As n h loss-lss cas h has loc s gn b: π h β β λ β Im [ ] β ac fomula! Snusodal M.3MB 3.3 Snusodal M.3MB 3.3 s calld h dssaon faco Good Dlcc cas: << aml: Mca a ado fquncs. o Talo anson Good Dlcc cas: << β Pfc Cocon dlcc m η [ η 377Ω] Wa loc β Snusodal M.3MB 3.33 Snusodal M.3MB 3.3 n a mcoa ang ~3 G Good Conduco cas: >> 3.5 fo Co Good Conduco cas: >> Co cas Whn >> can γ 5 γ β Wa loc β β Snusodal M.3MB 3.35 Snusodal M.3MB 3.3

M M M N Wa mdanc Good Wa Dlcc mdanc cas: Wa Imdanc η η γ B γ η β η β Good dlcc: << η Innsc mdanc Small ac comonn Snusodal M.3MB 3.37 Snusodal M.3MB 3.3 Good Wa conduco mdanc cas: Wa Sn mdanc Dh no nglgabl η β Good conduco: >> η 5 R N β anuaon Dfnon: h sn dh δ s dfnd as h dsanc n h dcon of oagaon n hch h a has bn anuad b 37% δ Good conduco δ Snusodal M.3MB 3.39 Snusodal M.3MB 3. Wa Sn mdanc Dh no nglgabl Wa Sn mdanc Dh no nglgabl Poagaon n oo conduco a Poagaon n good conduco co 5 Sm - 5. 7 Sm - Snusodal M.3MB 3. Snusodal M.3MB 3. 7

Wa Sn mdanc Dh no nglgabl Po Wa Loss mdanc n Mal Poagaon n good conduco co W ha sn bounda condons 5. 7 Sm - δ Good conduco f Mh δ -7 π -7 5. π π 7.7mm Pfc dlcc A Vod a an an d >> δ Mal an an η η an an mal η mal mal 5 R a an an Snusodal M.3MB 3.3 Snusodal M.3MB 3. Po Wa Loss mdanc n Mal an an η mal η mal 5 a R η η an mal an mal an an an an cos π / Snusodal M.3MB 3.5