Math 40510, Algebraic Geometry

Similar documents
Math 418 Algebraic Geometry Notes

ALGEBRAIC GROUPS. Disclaimer: There are millions of errors in these notes!

Integer-Valued Polynomials

Algebraic Varieties. Chapter Algebraic Varieties

Summer Algebraic Geometry Seminar

10. Noether Normalization and Hilbert s Nullstellensatz

12. Hilbert Polynomials and Bézout s Theorem

Chapter-2 Relations and Functions. Miscellaneous

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 2: HILBERT S NULLSTELLENSATZ.

Commutative Algebra. Andreas Gathmann. Class Notes TU Kaiserslautern 2013/14

Rings If R is a commutative ring, a zero divisor is a nonzero element x such that xy = 0 for some nonzero element y R.

Math 203A - Solution Set 1

Resolution of Singularities in Algebraic Varieties

Resultants. Chapter Elimination Theory. Resultants

Writing proofs for MATH 51H Section 2: Set theory, proofs of existential statements, proofs of uniqueness statements, proof by cases

Local properties of plane algebraic curves

CHAPTER 1. AFFINE ALGEBRAIC VARIETIES

Math 203A - Solution Set 3

ALGEBRAIC GEOMETRY (NMAG401) Contents. 2. Polynomial and rational maps 9 3. Hilbert s Nullstellensatz and consequences 23 References 30

Math 203A - Solution Set 1

ne varieties (continued)

Math 4370 Exam 1. Handed out March 9th 2010 Due March 18th 2010

A Harvard Sampler. Evan Chen. February 23, I crashed a few math classes at Harvard on February 21, Here are notes from the classes.

On Invariants of Complex Filiform Leibniz Algebras ABSTRACT INTRODUCTION

Pure Math 764, Winter 2014

NOTES ON FINITE FIELDS

Institutionen för matematik, KTH.

3. The Sheaf of Regular Functions

ALGEBRAIC GEOMETRY HOMEWORK 3

MATH 115, SUMMER 2012 LECTURE 12

Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra

DIVISORS ON NONSINGULAR CURVES

MATH 243E Test #3 Solutions

Algebraic function fields

Introduction to Arithmetic Geometry Fall 2013 Lecture #15 10/29/2013

Sets and Functions. (As we will see, in describing a set the order in which elements are listed is irrelevant).

INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 1. Contents 1. Commutative algebra 2 2. Algebraic sets 2 3. Nullstellensatz (theorem of zeroes) 4

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 27

D-MATH Algebra I HS18 Prof. Rahul Pandharipande. Solution 6. Unique Factorization Domains

2. Prime and Maximal Ideals

LECTURE Affine Space & the Zariski Topology. It is easy to check that Z(S)=Z((S)) with (S) denoting the ideal generated by elements of S.

On Inflection Points of Plane Curves

8 Appendix: Polynomial Rings

Lecture Notes Math 371: Algebra (Fall 2006) by Nathanael Leedom Ackerman

LECTURE 5, FRIDAY

Elliptic Curves and Public Key Cryptography

MATH 101B: ALGEBRA II PART A: HOMOLOGICAL ALGEBRA

be any ring homomorphism and let s S be any element of S. Then there is a unique ring homomorphism

WEAK NULLSTELLENSATZ

Theorem 5.3. Let E/F, E = F (u), be a simple field extension. Then u is algebraic if and only if E/F is finite. In this case, [E : F ] = deg f u.

8. Prime Factorization and Primary Decompositions

Math 203A - Solution Set 1

MATH 2400 LECTURE NOTES: POLYNOMIAL AND RATIONAL FUNCTIONS. Contents 1. Polynomial Functions 1 2. Rational Functions 6

Math 762 Spring h Y (Z 1 ) (1) h X (Z 2 ) h X (Z 1 ) Φ Z 1. h Y (Z 2 )

4.4 Noetherian Rings

MATH 220 (all sections) Homework #12 not to be turned in posted Friday, November 24, 2017

Math 121 Homework 2 Solutions

Coordinates for Projective Planes

Spring 2016, lecture notes by Maksym Fedorchuk 51

INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 14

CPSC 536N: Randomized Algorithms Term 2. Lecture 9

MIT Algebraic techniques and semidefinite optimization February 16, Lecture 4

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include

15. Polynomial rings Definition-Lemma Let R be a ring and let x be an indeterminate.

Projective Varieties. Chapter Projective Space and Algebraic Sets

ALGEBRA QUALIFYING EXAM SPRING 2012

Lecture I: Introduction to Tropical Geometry David Speyer

2. Intersection Multiplicities

CHAPTER 10: POLYNOMIALS (DRAFT)

Homework 2 - Math 603 Fall 05 Solutions

Math 113 Homework 5. Bowei Liu, Chao Li. Fall 2013

Math 115 Spring 11 Written Homework 10 Solutions

(x + 3)(x 1) lim(x + 3) = 4. lim. (x 2)( x ) = (x 2)(x + 2) x + 2 x = 4. dt (t2 + 1) = 1 2 (t2 + 1) 1 t. f(x) = lim 3x = 6,

V (v i + W i ) (v i + W i ) is path-connected and hence is connected.

π X : X Y X and π Y : X Y Y

P1 Chapter 3 :: Equations and Inequalities

Reid 5.2. Describe the irreducible components of V (J) for J = (y 2 x 4, x 2 2x 3 x 2 y + 2xy + y 2 y) in k[x, y, z]. Here k is algebraically closed.

9. Integral Ring Extensions

When a function is defined by a fraction, the denominator of that fraction cannot be equal to zero

Introduction to Real Analysis Alternative Chapter 1

88 CHAPTER 3. SYMMETRIES

ADVANCED TOPICS IN ALGEBRAIC GEOMETRY

THE ALGEBRAIC GEOMETRY DICTIONARY FOR BEGINNERS. Contents

Number Theory Math 420 Silverman Exam #1 February 27, 2018

10. Smooth Varieties. 82 Andreas Gathmann

Supplementary Material for MTH 299 Online Edition

Absolute Values and Completions

MATH 115, SUMMER 2012 LECTURE 4 THURSDAY, JUNE 21ST

Factorization of integer-valued polynomials with square-free denominator

Math 480 The Vector Space of Differentiable Functions

Generalized eigenspaces

Algebraic Varieties. Notes by Mateusz Micha lek for the lecture on April 17, 2018, in the IMPRS Ringvorlesung Introduction to Nonlinear Algebra

D-MATH Algebraic Geometry FS 2018 Prof. Emmanuel Kowalski. Solutions Sheet 1. Classical Varieties

Describing the Real Numbers

ADVANCED COMMUTATIVE ALGEBRA: PROBLEM SETS

MATH 631: ALGEBRAIC GEOMETRY: HOMEWORK 1 SOLUTIONS

Math 1060 Linear Algebra Homework Exercises 1 1. Find the complete solutions (if any!) to each of the following systems of simultaneous equations:

Math 210B. Artin Rees and completions

Algebraic Geometry. Instructor: Stephen Diaz & Typist: Caleb McWhorter. Spring 2015

Tangent spaces, normals and extrema

Transcription:

Math 40510, Algebraic Geometry Problem Set 1, due February 10, 2016 1. Let k = Z p, the field with p elements, where p is a prime. Find a polynomial f k[x, y] that vanishes at every point of k 2. [Hint: Recall from MATH 30710 that for any a k (including 0), we have a p = a in k. We did a problem similar to this one in class.] f(x, y) = x p + (p 1)x + y p + (p 1)y. 2. Let k be any field. If V 1,..., V s are (finitely many) affine varieties in k n, prove that V 1 V s is again an affine variety. (FYI: It happens to be true that in this problem we can replace finite by infinite, but we need a little more background before we can prove that.) By induction. We proved in class that the intersection of two affine varieties is again an affine variety. Now assume that the result is true for any N varieties and let V 1,..., V N+1 be affine varieties. Then V 1 V N V N+1 = (V 1 V N ) V N+1. By induction the first is an affine variety, and so by the case for two varieties we get that V 1 V N V N+1 is an affine variety. Thus the result holds for any finite number of affine varieties. then Alternatively, if 3. Let k be any field. V 1 = V (f 1,1,..., f 1,t1 ) V 2 = V (f 2,1,..., f 2,t2 ). V s = V (f s,1,..., f s,ts ) V 1 V s = V (f 1,1,..., f 1,t1, f 2,1,..., f 2,t2,..., f s,1,..., f s,ts ). a) Prove that every (single) point (a 1,..., a n ) k n is an affine variety. (a 1,..., a n ) = V (x 1 a 1,..., x n a n ). b) Let V 1,..., V s be (finitely many) affine varieties in k n. Prove that V 1 V s is again an affine variety. [Hint: Using Lemma 2 of section 2 (which we proved in class) and induction, you can actually do this problem without giving explicit polynomials.] By induction. We proved in class that the union of two affine varieties is again an affine variety. Now assume that the result is true for any N varieties and let V 1,..., V N+1 be affine varieties. Then V 1 V N V N+1 = (V 1 V N ) V N+1. By induction the first is an affine variety, and so by the case for two varieties we get that V 1 V N V N+1 is an affine variety. Thus the result holds for any finite number of affine varieties. 1

c) Prove that any finite set of points in k n is an affine variety. [Hint: there is a reason why this is the third part of this problem. This should take less than one line.] Immediate from parts a) and b). d) Give an example of an infinite set of points in R 2 whose union is an affine variety. [Hint: this can also be done in less than one line.] Let V be the union of all the points on the line V (x), i.e. V = {(0, t) t R}. 4. Now we ll see that part d) of Problem 3 is not true for all infinite unions of affine varieties (in fact it s almost never true for infinite unions). Let k = R. Let Z be the set of points in R 2 with integer coordinates. a) Let f(x, y) be a polynomial vanishing at every point of Z. Prove that f(x, y) must be the zero polynomial. [Hint: if f(x, y) vanishes at every point of Z, what can you say about f(x, 0)?] In particular we have f(n, 0) = 0 for all n Z. But g(x) = f(x, 0) is a polynomial, and the first sentence means that g(x) has infinitely many zeros. So g(x) is the zero polynomial. This means that plugging in y = 0 into f(x, y) gives the zero polynomial, so f(x, y) contains no terms that are pure powers of x. In a similar way we can show that f(x, y) contains no terms that are pure powers of y. Now consider f(x, 1). Since each term of f(x, y) contains both powers of x and of y, f(x, 1) converts each term of f(x, y) into a term involving only x. Now the fact that f(x, 1) has infinitely many zeros means that it, too, is the zero polynomial, so all its terms are zero. This means that all terms of f(x, y) are zero, so f is the zero polynomial. b) Conclude that Z is not an affine variety. From a), if f I(Z) then f is the zero polynomial. If Z were an affine variety then we would have Z = V (f 1,..., f s ) for some polynomials f 1,..., f s that (by definition) vanish on Z. But any polynomial vanishing on Z is the zero polynomial, so the smallest variety containing Z is R 2. In particular, Z is not an affine variety. 5. Let V k n and W k m be affine varieties. Let V W = {(a 1,..., a n, b 1,..., b m ) k n+m (a 1,..., a n ) V and (b 1,..., b m ) W }. (This set is called the Cartesian product of V and W.) Prove that V W is an affine variety in k n+m. [Hint: this is problem 15 (d) of section 2 in CLO, and they give a nice hint.] We work in the polynomial ring R = k[x 1,..., x n, y 1,..., y m ]. Let V = V(f 1,..., f s ) k n and W = V(g 1,..., g t ) k m, where f 1,..., f s k[x 1,..., x n ] and g 1,..., g t k[y 1,..., y m ]. Think of the f i and the g j as being in R. We claim (1) V W = V(f 1,..., f s, g 1,..., g t ). A picture might be helpful here. Say m = n = 1 and k = R. Let and let V = {1, 2, 3} = V((x 1)(x 2)(x 3)) W = {1, 2} = V(y 1)(y 2).

(y 1)(y 2) W = 2 points V W = 6 points V = 3 points (x 1)(x 2)(x 3) Now we want to prove (1). We ll prove the two inclusions. To prove, let P V W. So P = (a 1,..., a n, b 1,..., b m ) k n+m where (a 1,..., a n ) V and (b 1,..., b m ) W. Since (a 1,..., a n ) V we have f i (a 1,..., a n ) = 0 for 1 i s. So thinking of f i as a polynomial in n+m variables, we have f i (a 1,..., a n, b 1,..., b m ) = 0 (since the b i don t do anything). Similarly we have g j (a 1,..., a n, b 1,..., b m ) = 0 for 1 j t. Hence P V(f 1,..., f s, g 1,..., g t ). Finally we ll prove in (1). Let P = (a 1,..., a n, b 1,..., b m ) V(f 1,..., f s, g 1,..., g t ). So f 1,..., f s, g 1,..., g t all vanish at P. Since the f i only involve x 1,..., x n, we have f i (a 1,..., a m ) = 0 for 1 i s, so (a 1,..., a n ) V. Similarly we see (b 1,..., b m ) W, so by definition P V W. 6. Recall we said that if f 1, f 2 R = k[x 1,..., x n ] and if f f 1, f 2 then there can be more than one way to find polynomials h 1 and h 2 so that f = h 1 f 1 + h 2 f 2. Let s explore that a bit. Let R = k[x, y] and let f = x 5 + 2x 4 y + 3x 3 y 2 + 4x 2 y 3 + 5xy 4 + 6y 5. a) If f 1 = x 3 and f 2 = y 3, prove that there are unique polynomials h 1 and h 2 of the form h 1 = a 1 x 2 + a 2 xy + a 3 y 2, h 2 = a 4 x 2 + a 5 xy + a 6 y 2 (where the a i are elements of k, i.e. scalars) so that f = h 1 f 1 + h 2 f 2. In particular, find a 1, a 2, a 3, a 4, a 5, a 6. We want to solve the equation x 5 + 2x 4 y + 3x 3 y 2 + 4x 2 y 3 + 5xy 4 + 6y 5 = (a 1 x 2 + a 2 xy + a 3 y 2 ) x 3 + (a 4 x 2 + a 5 xy + a 6 y 2 ) y 3 We immediately get = a 1 x 5 + a 2 x 4 y + a 3 x 3 y 2 + a 4 x 2 y 3 + a 5 xy 4 + a 6 y 5 a 1 = 1 a 2 = 2 a 3 = 3 a 4 = 4 a 5 = 5 a 6 = 6

Since these are uniquely determined, we are done. b) If f 1 = x 3 and f 2 = y 2, find all possible pairs (h 1, h 2 ) of the form h 1 = a 1 x 2 + a 2 xy + a 3 y 2, h 2 = a 4 x 3 + a 5 x 2 y + a 6 xy 2 + a 7 y 3 (again the a i are in k) so that f = h 1 f 1 + h 2 f 2. In a similar way we want to solve the equation x 5 + 2x 4 y + 3x 3 y 2 + 4x 2 y 3 + 5xy 4 + 6y 5 = (a 1 x 2 + a 2 xy + a 3 y 2 ) x 3 + (a 4 x 3 + a 5 x 2 y + a 6 xy 2 + a 7 y 3 ) y 2 We immediately get = a 1 x 5 + a 2 x 4 y + a 3 x 3 y 2 + a 4 x 3 y 2 + a 5 x 2 y 3 + a 6 xy 4 + a 7 y 5 a 1 = 1 a 2 = 2 a 3 + a 4 = 3 a 5 = 4 a 6 = 5 a 7 = 6 So the set of all possible (h 1, h 2 ) = (a 1 x 2 + a 2 xy + a 3 y 2, a 4 x 3 + a 5 x 2 y + a 6 xy 2 + a 7 y 3 ) consists of all ordered pairs where the coefficients satisfy the above equations. (As we mentioned in class, this problem is related to the topic of syzygies, which hopefully we will talk about later.) 7. Let R = k[x 1,..., x n ]. Let I be an ideal in R. We define an ideal to be radical if the following condition holds: If f m I for some positive integer m then f I. (Keep this definition in mind because we ll come back to it in class.) a) Prove that if f I then f m I for all positive integers m. If f I we certainly have f m 1 R, so f m = f m 1 f I by definition of an ideal. b) If X k n is any set, prove that I(X) is always a radical ideal. If f m I(X) then 0 = f m (P ) = f(p ) m for all P X, so f(p ) = 0 for all P X, i.e. f I(X). c) Give an example of an ideal that is not radical, and prove that it s not radical. Let I = x 2. Note that f(x) = x satisfies f 2 I. But every element of x 2 is a multiple of x 2 and clearly x is not a multiple of x 2, so f / I. Thus I is not radical. (Keep this definition in mind because we ll come back to it in class.) 8. Let I and J be ideals in k[x 1,..., x n ]. We define I J = {f R f I and f J}. We define IJ to be the set of polynomials that can be written as finite sums in the following way: { m } IJ = f i g i f i I, g i J.

a) Prove that I J is an ideal. We use the fact that both I and J are ideals. Since 0 I and 0 J, we have 0 I J. If f, g I J then f and g are both in I and both in J, so f + g I J. If f I J and h R then hf I and hf J so hf I J. b) Prove that IJ is an ideal. 0 I and 0 J so 0 = 0 0 IJ. Assume f = m f ig i for some f i I, g i J and g = m f i g i for some f i I, g i J. Then f + g = m m f i g j + f ig j IJ. Finally, if f = m f ig i for some f i I, g i J and h R then m m hf = h f i g i = (hf i )g i IJ since hf i I (because I is an ideal). c) Show that IJ I J (as ideals). It s enough to prove that each generator of IJ is in I J. If I = f 1,..., f s and J = g 1,..., g t then the generators of IJ have the form f i g j for 1 i s and 1 j t. But then f i g j I (since f i I) and also f i g j J (since g j J) so f i g i I J. d) Give an example to show that IJ is not necessarily equal to I J. Justify your answer! For example take I = x and J = x. Then I J is clearly equal to x, while IJ = x 2. We have already seen that these two ideals are not equal. e) If I and J are ideals in k[x 1,..., x n ], prove that V (IJ) = V (I) V (J). [Hint: this is closely related to our proof that V (I) V (J) is again an affine variety.] Let s prove the two inclusions. : Let P V (IJ). We want to show that P V (I) V (J). If P V (I) then we re done, so assume P / V (I); we want to show that then P V (J). Since P / V (I), there is some f I such that f(p ) 0. But fg IJ for all g J; hence (fg)(p ) = 0 for all g J. Thus P V (J) as desired. : Let P V (I) V (J). So either P V (I) or P V (J) (or both). Assume without loss of generality that P V (I). Then f(p ) = 0 for all f I. Let g IJ, so m g = f i g i f i I and g i J. Then we get g(p ) = m f i(p )g i (P ) = 0. Hence g(p ) = 0 for all g IJ, and so P V (IJ).

f) If I and J are ideals in k[x 1,..., x n ], prove that V (I J) = V (I) V (J). Combined with the previous part, conclude that V (IJ) = V (I J). Again we prove the two inclusions. : Let P V (I J), so h(p ) = 0 for all h I J. Suppose that P / V (I). We want to show P V (J), i.e. we want to show that g(p ) = 0 for all g J. Since P / V (I), there is some f I such that f(p ) 0. Then for any g J, we know that fg I J so (fg)(p ) = 0. Sincef(P ) 0, this forces g(p ) = 0 for all g J, so P V (J) as desired. : Let P V (I) V (J), so either P V (I) or P V (J) or both. Let f I J. Since f is in both I and J, we must have f(p ) = 0. So P V (I J). g) It happens to be true that if P = (0, 1) k 2 then I(P ) = x, y 1. (You can accept this without proof.) Let Q = (0, 0). We saw in class that I(Q) = x, y. You can also accept without proof the fact that I(P ) I(Q) = x, y(y 1). Show that I(P ) I(Q) = I(P ) I(Q) = I(P Q). We ll show I(P ) I(Q) I(P ) I(Q) I(P Q) I(P ) I(Q). (1) (2) (3) (1) It s always true for two ideals I and J that IJ I J (we showed this in part c) above), so the first inclusion is immediate. (2) If f I(P ) I(Q) then f vanishes on both P and Q, so f I(P Q). In fact it s convenient to observe here that the reverse is true: if f I(P Q) then f vanishes on each of P and Q so f I(P ) I(Q). (I.e. I(P ) I(Q) = I(P Q).) (3) We know from the statement of the problem that I(P ) = x, y 1, I(Q) = x, y and I(P Q) = x, y(y 1) = x, y 2 y. (The last one also uses what we observed in (2) above.) To show the inclusion (3), it s enough to show that each generator of I(P Q) is in I(P ) I(Q). So we have to show that x I(P ) I(Q) and that y(y 1) I(P ) I(Q). The second one is obvious since y 1 I(P ) and y I(Q). So let s look at the first one. We have to show that x x, y 1 x, y. But this is true because x = (y 1)( x) + (x)(y). (The point of d) and g) is that sometimes IJ = I J and sometimes IJ I J.)