AMS Introduction Doug Worsnop. AMS Users Meeting

Similar documents
Collection Efficiency: A summary of what we know so far.

Development, Characterization, and Application of a Light Scattering Module within the Aerodyne AMS

Comparison of AERONET inverted size distributions to measured distributions from the Aerodyne Aerosol Mass Spectrometer

The AMS as a Single Particle Mass Spectrometer

Aerodyne Chinese AMS/ACSM Clinic, Nanjing, April Why are we here? Data Analysis Clinics Boulder, PSI. Barcelona, Boulder

Supplement of Quantification of black carbon mixing state from traffic: implications for aerosol optical properties

Single particle characterization using SP-AMS with light scattering module in urban environments

Insights Into Atmospheric Organic Aerosols Using An Aerosol Mass Spectrometer

Overview of collection efficiency (CE):

Chapter Eight: Conclusions and Future Work

4 th AMS Users Meeting Brainstorming on (1) Experiments to Nail our Absolute Quantification (2) Best Operating Procedures

Overview of AMS Mass Spectrometry Analysis: Low vs. High Mass Resolution

Intercomparison of standard and capture vaporizer in aerosol mass spectrometer (AMS)

Effect of Fuel to Oxygen Ratio on Physical and Chemical Properties of Soot Particles

Supplement of Evaluation of the performance of a particle concentrator for online instrumentation

Benjamin A. Nault, Pedro Campuzano-Jost, Doug A. Day, Hongyu Guo, Jason C. Schroder, Jose L. Jimenez, and the Science Teams from KORUS-AQ and ATom

Evaluation of the new capture vaporizer for Aerosol Mass Spectrometers (AMS)

Describing oxidation of organics

Single particle characterization using a light scattering module coupled to a time-of-flight aerosol mass spectrometer

SootParticle-AMS. LaserVaporizer-AMS. Aerodyne Research, Inc. et al.

Chapter Four: Laboratory Characterisation of the Aerodyne Aerosol Mass Spectrometer

AMS CE for Chamber SOA

Characterization of dimers of soot and non-soot

Atmospheric Environment

Chapter Three: The Aerodyne Aerosol Mass Spectrometer (AMS)

Jianfei Peng et al. Correspondence to: Jianfei Peng Min Hu and Renyi Zhang

Soot Particle Aerosol Mass Spectrometer: Development, Validation, and Initial Application

SootParticle-AMS or LaserVaporizer-AMS. Aerodyne Research, Inc. et al.

Organic particle types by single-particle measurements using a time-of-flight aerosol mass spectrometer coupled with aclimate scattering module

Supporting Information. Observation of Fullerene Soot in Eastern China

Characterization of an Aerodyne Aerosol Mass Spectrometer (AMS): Intercomparison with Other Aerosol Instruments

Interactive comment on Aerosol mass spectrometry: particle vaporizer interactions and their consequences for the measurements by F. Drewnick et al.

Ambient aerosol sampling using the Aerodyne Aerosol Mass Spectrometer

Supplemental Material for Elemental Composition and Oxidation of Chamber Organic Aerosol

AMS/ACSM Ionization Efficiency Introduction. Tuesday May 9, :00

Chemically-resolved aerosol volatility measurements from two megacity field studies

Atmospheric Chemistry and Physics

Supplementary information for manuscript. Burning of Olive Tree Branches: A Major Organic Aerosol Emission Source in the Mediterranean

Fine Particles: Why We Care

Experimental Investigation of the Collection Efficiencies of the AMS Aerodynamic Focusing Lens

STANDARD OPERATING PROCEDURE (SOP) FOR THE FIELD OPERATION OF THE AERODYNE AEROSOL MASS SPECTROMETER (AMS)

Real-Time Methods for Estimating Organic Component Mass Concentrations from Aerosol Mass Spectrometer Data

Summary of Recent Work on the Fragmentation Table & Oven Aerodyne

Aerosol modeling with WRF/Chem

Frank Drewnick & Johannes Schneider & Silke S. Hings & Nele Hock & Kevin Noone & Admir Targino & Silke Weimer & Stephan Borrmann

R. Fröhlich et al. Correspondence to: A. Prévôt

Diesel soot aging in urban plumes within hours under cold dark and humid conditions

Follow this and additional works at:

Supplement of Organic nitrate aerosol formation via NO 3 + biogenic volatile organic compounds in the southeastern United States

A comparison of particle mass spectrometers during the 1999 Atlanta Supersite Project

Characterisation of the Aerosol Collection Module (ACM) Dagmar Trimborn, John Jayne, Thorsten Hohaus

Characterization of an aerodynamic lens for transmitting particles greater than 1 micrometer in diameter into the Aerodyne aerosol mass spectrometer

A simplified description of the evolution of organic aerosol composition in the atmosphere

Aerodyne AMS Users Meeting, St Louis, 8-10 September Why are we here? Data Analysis Clinics Boulder, PSI. Barcelona, Boulder

Calibration Issues. John Jayne 5 th AMS User s Meeting 10/11/04

Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111, D18305, doi: /2006jd007215, 2006

Downloaded By: [Williams, Leah R.] At: 08:55 28 June 2007

A New Time-of-Flight Aerosol Mass Spectrometer (TOF-AMS) Instrument Description and First Field Deployment

Source apportionment of submicron organic aerosols at an urban site by linear unmixing of aerosol mass spectra

ACE-Asia Campaign. Aircraft-Based Aerosol Sampling During ACE-Asia and CRYSTAL-FACE Using an Aerodyne Aerosol Mass Spectrometer

CONTINUOUS REAL-TIME MEASUREMENT OF THE CHEMICAL COMPOSITION OF ATMOSPHERIC PARTICLES IN GREECE USING AEROSOL MASS SPECTROMETRY

Characterization of an Aerodynamic Lens for Transmitting Particles Greater than 1 Micrometer in Diameter into the Aerodyne Aerosol Mass Spectrometer

The Aerosol Quality Characterization System (AQCS) A Different Approach for Identifying Particle Properties

Evaluation of the performance of a particle concentrator for online instrumentation

Aerosol time-of-flight mass spectrometry during the Atlanta Supersite Experiment: 2. Scaling procedures

CHEMICAL AND MICROPHYSICAL CHARACTERIZATION OF AMBIENT AEROSOLS WITH THE AERODYNE AEROSOL MASS SPECTROMETER

18 th Users Meeting PKU Beijing. Monday May 8-12, John Jayne

Introduction. Environ. Sci. Technol. 2008, 42,

Supporting information

Hydrocarbon-like and oxygenated organic aerosols in Pittsburgh: insights into sources and processes of organic aerosols

CHAPTER 8. AEROSOLS 8.1 SOURCES AND SINKS OF AEROSOLS

Free molecular flow, thermal decomposition, and residence time in the AMS ion source

Collection Efficiency of the Aerosol Mass Spectrometer for Chamber-Generated Secondary Organic Aerosols

Single-Particle Laser Ablation Time-of-Flight Mass Spectrometer (SPLAT-MS) Cynthia Randles & Logan Chieffo Mentors: Dr. Dan Imre Dr.

Design, Modeling, Optimization, and Experimental Tests of a Particle Beam Width Probe for the Aerodyne Aerosol Mass Spectrometer

Instrumentation, data evaluation and quantification in on-line aerosol mass spectrometry

Ionization Efficiency Calibration Tutorial for the ToF-AMS

Collection efficiency of α-pinene secondary organic aerosol particles explored via light-scattering single-particle aerosol mass spectrometry

Progress on Application of Modal Aerosol Dynamics to CAM

Mass Spectrometry. Electron Ionization and Chemical Ionization

The Aerosol Ion Trap Mass Spectrometer (AIMS): Instrument development and first experimental results

Review of Li et al. Sensitivity of a Q-ACSM to chamber generated SOA with different oxidation states

Helsinki, Finland. 1 Aerodyne Research Inc., Billerica, MA, USA. 2 Chemistry Department, Boston College, Chestnut Hill, MA, USA

Comparing Modal and Sectional Approaches in Modeling Particulate Matter in Northern California

ATOC 3500/CHEM 3152 Week 9, March 8, 2016

Supplement of Secondary formation of nitrated phenols: insights from observations during the Uintah Basin Winter Ozone Study (UBWOS) 2014

1. Load Data Computing Requirements: 1 GB RAM is best. Need Igor 4.07 at least.

Urban Organic Aerosols Measured by Single Particle Mass Spectrometry in the Megacity of London

Factors controlling the production of secondary organic material from isoprene epoxydiols (IEPOX) in the Amazonian wet season

Continuous measurement of airborne particles and gases

Extrel Application Note

Chemistry Instrumental Analysis Lecture 34. Chem 4631

Supplementary information

Quantitative sampling using an Aerodyne aerosol mass spectrometer 2. Measurements of fine particulate chemical composition in two U.K.

Phase State and Physical Properties of Ambient and Laboratory. Generated Secondary Organic Aerosol

Measurements of Secondary Organic Aerosol from Oxidation. of Cycloalkenes, Terpenes, and m-xylene Using an Aerodyne

[3] Department of Environmental Science and Engineering, Fudan University, Shanghai, China.

Chemistry 311: Topic 3 - Mass Spectrometry

Review of the IMPROVE Equation for Estimating Ambient Light Extinction

Transcription:

AMS Introduction Doug Worsnop AMS Users Meeting Aerodyne Caltech Georgia Tech FZ - Juelich University of Minnesota Desert Research Institute October 21/22 October 24, 23 October 8, 24 25 August, 25 16 September, 26 29 September, 27 AMS Introduction AMS Users Meeting Aerodyne Caltech Georgia Tech FZ - Juelich University of Minnesota Desert Research Institute October 13, 22 October 24, 23 October 8, 24 25 August, 25 16 September, 26 29 September, 27 Nitrate Sulfate Ammonia Organics (44,57) OOA, HOA OOA1, OOA2 1

Aerosols in the Atmosphere C.E. Kolb, Nature, 22 Ambient Aerosol Size Distribution Number Density EPA, 1999 Surface Area Mass Remote Continental Pandis and Seinfeld, 1998 Ultrafine Fine Coarse Goal: Size-Resolved Chemical Composition of Ambient Aerosol 2

Org SO 4 2- NO 3 - NH 4 Manchester center Small particles <2nm Hydrocarbon organics Vancouver center Rural (outside Vancouver) Larger particles (>2 nm) m/z 44 CO 2 dominates 3

e - Organic Mass Spectra C n H 2n,2 ----> C m H 2m±1 27, 29, 41, 43, 55, 57, 69, 71,... C 3 H 5 C 4 H 7 C 5 H 9 e - C n H m O y ----> H 2 O, CO, CO 2, C 2 H 3 O 18 28 44 43 29, 55,. Following flash vaporization at ~6 o C Organic Aerosols: Urban vs. Rural/Remote 4

AMS (PMF) Factors 6C, e- m/z HOA: C n H m C n-x H m-y 27,29,41,43,55,57,69,71, LESS OXIDZED OOA2 C n H m O C 2 H 3 O, C 3 H 3 O, R 43,55, MORE OXIDZED OOA1 C n H m O 2 CO 2, HCO 2, R 44,45, BBOA R R, C 2 H 4 O 2, C 3 H 3 O 2 6,73,. levoglucosan O:C ratio: HOA << OOA2 ~ BBOA < OOA1 Factors are not unique or identical among campaigns, platforms CONSISTENT TRENDS CO O x Residual Layer Fresh Urban Airmass from T Photochemistry 5

SOA: measurements vs. models Johnson et al. DeGouw et al. Heald et al. Volkamer et al. SOA correlates with photochemistry: O x Volkamer, Jimenez, et al GRL, 26 Aerosol Mass Spectrometer (AMS) Particle Beam Generation Aerodynamic Sizing Particle Composition Quadrupole Mass Spectrometer Chopper Aerodynamic Lens (2 Torr) TOF Region Thermal Vaporization & Electron Impact Ionization Particle Inlet (1 atm) Turbo Pump Turbo Pump Turbo Pump Efficient transmission (4-1 nm), aerodynamic sizing, linear mass signal Non-refractory PM1. mass loadings and chemically-speciated mass distributions 6

Q C-ToF W-ToF-AMS MCP Signal to ADC Particle Beam Generation Aerodynamic Sizing Quadrupole Mass Spectrometer Particle Composition Chopper Aerodynamic Lens (2 Torr) TOF Region Thermal Vaporization & 7 ev EI Ionization Particle Inlet (1 atm) Turbo Pump DeCarlo et al., Anal. Chem., in preparation, 25. Turbo Pump Turbo Pump AMS Particle Detection Process Focused Particle Beam Electron Emitting Filament e - Vaporizer Flash Vaporization of Non-Refractory Components (NR) R 6 C Positive Ion Mass Spectrometry Electron Impact Ionization Universal and quantitative chemical analysis:.1μg/m 3 sensitivity. Vaporization and analysis of most aerosol chemical constituents - with primary exception of crustal oxides and elemental carbon. 7

Real Time Chemical and Physical Composition of Aerosols Aerosol Sampling AMS dm/dlogd a (µg m -3 ) 3 2 1 Aerosol Mass Concentration (µg m -3 ) 1 1 1.1.1.1 Nitrate Sulphate Ammonium Organics Alkanes Aromatics Etc.. 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 1 1 Aerodynamic Diameter (nm) 2 4 6 8 1 12 m/z (Daltons) 14 16 18 2 Sp Mass distribution Chemical composition Nitrate Equivalent Mass Concentration (µg m -3 ) 3. 2.5 2. 1.5 1..5. Urban organic aerosol is a mixture of hydrocarbon and oxygenated components 43 44 57 Ammonium 4.8 ug/m3 Nitrate 5.8 Sulphate 9.4 Organics 13.4 Chloride.15 Mexico City 2/22 2 4 6 8 m/z (Daltons) 1 12 14 8

Same AMS, same issues, new issues CE collection efficiency particle bounce CE ~.5, except RIE relative ionization efficiency - particularly RIE_org ~ 1.4 ToF threshold & baseline - single ion determination linearity of large and small signals (dynamic range) Real Time Chemical and Physical Composition of Aerosols Aerosol Sampling AMS dm/dlogd a (µg m -3 ) 3 2 1 Aerosol Mass Concentration (µg m -3 ) 1 1 1.1.1.1 Nitrate Sulphate Ammonium Organics Alkanes Aromatics Etc.. 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 1 1 Aerodynamic Diameter (nm) 2 4 6 8 1 12 m/z (Daltons) 14 16 18 2 Sp Mass distribution Chemical composition 9

MS Signatures for Aerosol Species Identification color coded to match spectra Group Molecule/Species Ion Fragments Mass Fragments e - Water H 2 O H 2 O, HO, O 18, 17, 16 Ammonium NH 3 e - NH 3, NH 2, NH 17, 16, 15 Nitrate HNO 3 e - HNO 3, NO, 2 NO 63, 46, 3 e - Sulfate H 2 SO 4 H 2 SO 4, HSO 3, SO 3 98, 81, 8 SO 2, SO 64, 48 Organic C n H m O y e - H 2 O, CO, CO 2 18, 28, 44 (Oxygenated) H 3 C 2 O, HCO 2, C n H m 43, 45,... e - Organic C n H m C n H m 27,29,41,43,55,57,69,71... (hydrocarbon) Standard electron impact ionization @ 7 ev Easy to quantify: ca. NIST MS library Easy to separate inorganic and organic components Speciation of organic composition is challenging ELECTRON IMPACT (EI) IONIZATION σ R e- R e- e- R i R j EI Cross Section (σ) electrons/molecule mass/molecule Ion Rate = 2 ndary electrons/sec Ion Rate = Σ R i total mass/sec Measure all ions: Ion Rate = Σ R i σ molecules/sec independent of parent or fragment (neutral or ion) molecular mass 1

EI Ionization: A e - ----> A ----> a i Mass Loading A (MW A /IE A ) Ion Signal Calibration Factor * (MW NO3 /IE NO3 ) EI Ionization Cross Sections Nitrate Equivalent Cross Section 6 4 2 Oxygenated Organics = 1.5 X NITRATE Inorganics NITRATE = 1. Chloride 5 Nitrate 1 Sulfate 15 Molecular Mass 2 Diesel Fuel AMS Particle Detection Focused Particle Beam Electron Emitting Filament e - Vaporizer Flash Vaporization of Non-Refractory Components (NR) R 6 C Positive Ion Mass Spectrometry Electron Impact Ionization Universal / quantitative chemical analysis:.1μg/m 3 sensitivity. EVERTYHING AT THE SAME TIME No Separation - bulk analysis [ no dust (oxides) or elemental (black) carbon ] 11

NO 3 = SO 4 = NH 4 nss-cl - OM vs OC Takegawa et al., 25 Assumed CE =.5 OM OC C n H m O p = C n AMS (NR-PM 1 ) quantification AMS Org 14 12 1 8 6 Slope = 1.94 R 2 =.71 2:1 line 35 AMS total 3 25 2 15 Slope = 1.16 R 2 =.87 1:1 line 4 1 2 5 25 2 2 Slope = 1. R 2 =.92 4 OCEC 6 1:1 line 5 4 5 1 Slope =.87 R 2 =.81 15 2 25 DMPS mass 3 35 1:1 line AMS SO4 15 1 AMS NH4 3 2 5 1 5 1 15 PILS SO4 2 25 1 2 3 PILS NH4 Composition/phase-dependent collection efficiency (CE) applied Correction for smaller cut diameter in AMS lens compared to PM 1 impactors 4 5 12

LS-C-ToF-AMS LS-SP Mode PMT Laser Coincident Particles: Evidence of External Mixing Light Scattering Signal particle #1 particle #2 6x1 3 5 4 3 2 LS Signal Chemical Ion Signal 5x1 6 4 3 2 1 Total Ion Signal particle #1 particle #2 1 2 3 4x1-3 Time-of-Flight (s) PARTICLE PROPERTY Velocity (m/s) Vacuum Aerodynamic Diameter (nm) Optical Diameter (nm) Predicted Physical Diameter (nm) Chemical Density (g/cc) Optical Density (g/cc) [dva/dopt] Measured Total Mass (fg) Predicted Total Mass (fg) [Chemical Density] Predicted Total Mass (fg) [Optical Density] Particle #1 16 382 381 326.9 1. 18.2 26.3 29. Particle #2 94 596 225 211 1.477 2.65 13. 8.8 15.8 13

Collection Efficiency: Particle Counting Count CE 1..8.6.4.2. 1 Count-Based Collection Efficiency Optically detected: 12853 Chemically detected: 5542 Fast Vaporization/Ionization: 376 8 Counts 6 4 2 9 1 2 3 4 5 6 7 8 9 1 Vacuum Aerodynamic Diameter (dva) (nm) Apparent CE depends on NH4/SO4 ratio 1..8.4 CE.6.4.3.2.1 AMS Water Mass Fraction.2....5 1. 1.5 2. 2.5 3. NH4/SO4 Ratio Onasch et al, Ron Brown, 24 14

NH4/SO4 NO3/SO4 >>1 CE =.4 1 H2O/Total 1 Tim Onasch, Ann Middlebrook: particle phase Junying Sun, Yangmei Zhang Beijing July 26 1.4 1.2 ratio of AMS with fixed CE =.5 to dry SMPS_vol_adj 1..8 AMS Mass SMPS Mass 1..8.6.4.2.6.4.2. ORG / TOTAL...2.4.6.8 1. 1.2 1.4 AMS H2O AMS Total Note: cluster of highest org fraction have low H2O and CE 15

Lens Transmission issues Reasonable understanding of current lenses Peter Liu, Leah Williams, John Jayne Ann Middlebrook, Brendan Matthew, Ken Docherty standard vs high throughput some variability New high pressure lens modification of Schreiner lens Summary of Lab Transmission Experiments Standard Lens Williams et al Signal (arb. units) 1.4 1.2 1..8.6 TransEff, NH4NO3 nh4no3_sep14_ce, Peter Liu, N transeff_counts El_model_new_585torr, Deng calc Trans_76torr, Deng, calc. AN_ObsCalcRat (AN_ARI) DEHS_ObsCalcRat (DEHS_ARI) SN_ObsCalcRat (NaNO3_ARI) DEHS_dec134_CE dehs_small_dec144_ce NaNO3_CE_dec134 ARI2_Na_TOF_CPC ARI2_NH4_TOF_CPC SN_2_obspredrat.4.2. 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 Dva (nm) 16

Comparison of Standard and High Pressure Lenses August, 27 1.2 1. Standard Lens (Liu et al, AS&T, 27) Experiment CFD High Pressure Lens NH4NO3 Lens # 2 PSLs Lens # CFD Model.8 TE.6.4.2. 2 3 4 5 6 7 8 91 2 2 3 4 5 6 7 8 91 3 2 3 4 5 6 7 8 9 1 4 Dva [ nm ] How to build a SP2-AMS Install SP2 module 17

7x1 3 6 5 Oil Lamp Soot Particles C 1 m/z=12 N 2 m/z=28 C 2 m/z=24 H 2 O m/z=18 C 3 m/z=36 Air Beam Organics Elemental Carbon Signal 4 3 2 C 4 m/z=48 C 5 m/z=6 C 6 m/z=72 C 7 m/z=84 C 8 m/z=96 1 2 4 6 8 1 m/z Obtain chemical information on BC and Organics Ion signal for carbon (C n ; n=1..4) 1.4x1 5 1.2 1..8.6.4 Comparison SP2-AMS and MAAP carbon nano powder a=89. r 2 =.997 Norit SX a=52.1 r 2 =.995.2. 5 1 15 MAAP signal MAAP: Multi Angle Aerosol Photometer (Thermo Fisher) 2 Strong correlation between SP2-AMS carbon signals and the MAAP absorption measurement 18

6C, e- m/z HOA: C n H m C n-x H m-y 27,29,41,43,55,57,69,71, OOA2 C n H m O C 2 H 3 O, C 3 H 3 O, R 43,55, OOA1 C n H m O 2 CO 2, HCO 2, R 44,45, BBOA R R, C 2 H 4 O 2, C 3 H 3 O 2 6,73,. levoglucosan SP2 e- Graphitic C C n BETTER ORGANIC FACTORS CHEMICAL (MOLECULAR) ANALYSIS 19