The Devices. Devices

Similar documents
The Devices. Jan M. Rabaey

Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET )

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications

The Devices: MOS Transistors

MOS Transistor I-V Characteristics and Parasitics

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

MOSFET: Introduction

Lecture 4: CMOS Transistor Theory

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

ESE 570 MOS TRANSISTOR THEORY Part 2

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

Chapter 4 Field-Effect Transistors

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

N Channel MOSFET level 3

II III IV V VI B C N. Al Si P S. Zn Ga Ge As Se Cd In Sn Sb Te. Silicon (Si) the dominating material in IC manufacturing

VLSI Design The MOS Transistor

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

MOS Transistor Theory

Lecture 3: CMOS Transistor Theory

MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor

MOS Transistor Properties Review

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

VLSI Design and Simulation

Lecture 5: CMOS Transistor Theory

MOSFET Capacitance Model

ECE 497 JS Lecture - 12 Device Technologies

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling?

MOS Transistor Theory

EEC 116 Lecture #3: CMOS Inverters MOS Scaling. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

ECE 342 Electronic Circuits. 3. MOS Transistors

EE5311- Digital IC Design

Practice 3: Semiconductors

Integrated Circuits & Systems

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

B.Supmonchai June 26, q Introduction of device basic equations. q Introduction of models for manual analysis.

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

Chapter 2 MOS Transistor theory

ECE-305: Fall 2017 MOS Capacitors and Transistors

Check course home page periodically for announcements. Homework 2 is due TODAY by 5pm In 240 Cory

HW 5 posted due in two weeks Lab this week Midterm graded Project to be launched in week 7

EKV MOS Transistor Modelling & RF Application

The Physical Structure (NMOS)

Chapter 5 MOSFET Theory for Submicron Technology

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

ECE321 Electronics I

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

University of Toronto. Final Exam

FIELD-EFFECT TRANSISTORS

EE 560 MOS TRANSISTOR THEORY

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

The transistor is not in the cutoff region. the transistor is in the saturation region. To see this, recognize that in a long-channel transistor ifv

APPENDIX A: Parameter List

EE105 - Fall 2005 Microelectronic Devices and Circuits

Nanoscale CMOS Design Issues

Lecture 12: MOSFET Devices

Lecture 210 Physical Aspects of ICs (12/15/01) Page 210-1

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Course Administration. CPE/EE 427, CPE 527 VLSI Design I L04: MOS Transistors. Review: CMOS Process at a Glance

ELEC 3908, Physical Electronics, Lecture 26. MOSFET Small Signal Modelling

The Intrinsic Silicon

Appendix 1: List of symbols

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

2.CMOS Transistor Theory

Non Ideal Transistor Behavior

Lecture 12: MOS Capacitors, transistors. Context

EE105 - Fall 2006 Microelectronic Devices and Circuits

CHAPTER 3 - CMOS MODELS

Topics to be Covered. capacitance inductance transmission lines

Metal-oxide-semiconductor field effect transistors (2 lectures)

6.012 Electronic Devices and Circuits Spring 2005

Quantitative MOSFET. Step 1. Connect the MOS capacitor results for the electron charge in the inversion layer Q N to the drain current.

VLSI Design I; A. Milenkovic 1

APPENDIX A: Parameter List

(S&S ) PMOS: holes flow from Source to Drain. from Source to Drain. W.-Y. Choi. Electronic Circuits 2 (09/1)

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

CMOS Digital Integrated Circuits Analysis and Design

The simulated two volt performance of CMOS circuits with submicron transistors

MOS CAPACITOR AND MOSFET

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

LEVEL 61 RPI a-si TFT Model

Lecture 04 Review of MOSFET

Lecture #27. The Short Channel Effect (SCE)

Student Number: CARLETON UNIVERSITY SELECTED FINAL EXAMINATION QUESTIONS

ENEE 359a Digital VLSI Design

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ECE 546 Lecture 10 MOS Transistors

Transcription:

The

The MOS Transistor Gate Oxyde Gate Source n+ Polysilicon Drain n+ Field-Oxyde (SiO 2 ) p-substrate p+ stopper Bulk Contact CROSS-SECTION of NMOS Transistor

Cross-Section of CMOS Technology

MOS transistors - types and symbols D D D D G G G G B S NMOS Enhancement S S NMOS PMOS Depletion Enhancement S

Threshold Voltage: Concept S - V GS + G D n+ n+ n-channel p-substrate Depletion Region B

The Threshold Voltage Q B V = φ 2φ --------- T ms F C ox Q SS ---------- C ox Q I --------- C ox Workfunction Difference Implants Surface Charge Depletion LayerCharge Body Effect Coefficient V = V + γ T T0 2φ + V F SB 2φ F with Q B0 V = φ 2φ ---------- T0 ms F C ox Q SS ---------- C ox Q I --------- C ox and γ = 2qε N si A ------------------------- C ox

Current-Voltage Relations Linear Region: V DS V GS - V T I D = V 2 W k' ---- DS n L V V V ---------- GS T DS 2 with µ ε n ox k' = µ C = --------------- n n ox t ox Process Transconductance Parameter Saturation Mode: V DS V GS - V T Channel Length Modulation I D = k' n ------ W 2 ---- L V V 2 1 + λvds GS T

Transistor in Saturation V GS G V DS > V GS - V T S D n+ - V GS - V T + n+

I-V Relations V DS = V GS -V T V GS = 5V I D (ma) 2 1 Triode Saturation V GS = 4V V GS = 3V Square Dependence 0.020 I D 0.010 Subthreshold Current V GS = 2V V GS = 1V 0.0 1.0 2.0 3.0 4.0 5.0 V DS (V) (a) I D as a function of V DS 0.0 V T 1.0 2.0 3.0 V GS (V) (b) I D as a function of V GS (for V DS = 5V). NMOS Enhancement Transistor: W = 100 µm, L = 20 µm

The Sub-Micron MOS Transistor Threshold Variations Parasitic Resistances Velocity Sauturation and Mobility Degradation Subthreshold Conduction Latchup

Parasitic Resistances G Polysilicon gate L D Drain contact V GS,eff S D W R S R D Drain

Velocity Saturation (1) υ n (cm/sec) υ sat = 10 7 constant velocity Constant mobility (slope = µ) µ n (cm 2 /Vs) 700 250 µ n0 E sat = 1.5 E (V/µm) 0 E t (V/µm) 100 (a) Velocity saturation (b) Mobility degradation

Velocity Satruration (2) 1.5 0.5 V GS = 5 I D (ma) 1.0 0.5 V GS = 4 V GS = 3 V GS = 2 Linear Dependence I D (ma) V GS = 1 0.0 1.0 2.0 3.0 4.0 5.0 V DS (V) (a) I D as a function of V DS 0 0.0 1.0 2.0 3.0 V GS (V) (b) I D as a function of V GS (for V DS = 5 V). Linear Dependence on V GS

Sub-threshold Conduction 10 2 10 4 Linear region ln(i D ) (A) 10 6 10 8 10 10 Subthreshold exponential region 10 12 0.0 V T 1.0 2.0 3.0 V GS (V)

Latchup V DD V DD p + n + n + p + p + n + R nwell p-source n-well R nwell R psubs p-substrate n-source R psubs (a) Origin of latchup (b) Equivalent circuit

SPICE MODELS Level 1: Long Channel Equations - Very Simple Level 2: Physical Model - Includes Velocity Saturation and Threshold Variations Level 3: Semi-Emperical - Based on curve fitting to measured devices Level 4 (BSIM): Emperical - Simple and Popular

MAIN MOS SPICE PARAMETERS Parameter Name Symbol SPICE Name Units Default Value SPICE Model Index LEVEL - 1 Zero-Bias Threshold Voltage VT0 VT0 V 0 Process Transconductance k KP A/V2 2.E-5 Body-Bias Parameter g GAMMA V0.5 0 Channel Modulation l LAMBDA 1/V 0 Oxide Thickness tox TOX m 1.0E-7 Lateral Diffusion xd LD m 0 Metallurgical Junction Depth xj XJ m 0 Surface Inversion Potential 2 ff PHI V 0.6 Substrate Doping NA,ND NSUB cm-3 0 Surface State Density Qss/q NSS cm-3 0 Fast Surface State Density NFS cm-3 0 Total Channel Charge Coefficient NEFF - 1 Type of Gate Material TPG - 1 Surface Mobility m0 U0 cm2/v-sec 600 Maximum Drift Velocity umax VMAX m/s 0 Mobility Critical Field xcrit UCRIT V/cm 1.0E4 Critical Field Exponent in Mobility Degradation UEXP - 0 Transverse Field Exponent (mobility) UTRA - 0

SPICE Parameters for Parasitics Parameter Name Symbol SPICE Name Units Default Value Source resistance R S RS Ω 0 Drain resistance R D RD Ω 0 Sheet resistance (Source/Drain) R RSH Ω/ 0 Zero Bias Bulk Junction Cap C j0 CJ F/m 2 0 Bulk Junction Grading Coeff. m MJ - 0.5 Zero Bias Side Wall Junction Cap C jsw0 CJSW F/m 0 Side Wall Grading Coeff. m sw MJSW - 0.3 Gate-Bulk Overlap Capacitance C gbo CGBO F/m 0 Gate-Source Overlap Capacitance C gso CGSO F/m 0 Gate-Drain Overlap Capacitance C gdo CGDO F/m 0 Bulk Junction Leakage Current I S IS A 0 Bulk Junction Leakage Current J S JS A/m 2 1E-8 Density Bulk Junction Potential φ 0 PB V 0.8

SPICE Transistor Parameters Parameter Name Symbol SPICE Name Units Default Value Drawn Length L L m - Effective Width W W m - Source Area AREA AS m2 0 Drain Area AREA AD m2 0 Source Perimeter PERIM PS m 0 Drain Perimeter PERIM PD m 0 Squares of Source Diffusion NRS - 1 Squares of Drain Diffusion NRD - 1

Matching Manual and SPICE Models I D Region of Matching Short Channel I-V Curve V GS = 5V Long Channel Approximation V DS = 5V V DS

Dynamic Behavior of MOS Transistor G C GS C GD S D C SB C GB C DB B

The Gate Capacitance Polysilicon gate (a) Top view. Source Drain W n + n + x d x d L Gate-bulk overlap Gate oxide t ox (b) Cross-section. n + L eff n + C gate = ε ox -------- WL t ox

Diffusion Capacitance Channel-stop implant N A + Side wall W Source N D Bottom x j L S Side wall Substrate N A Channel

Junction Capacitance 2.0 1.5 abrupt junction C j (ff) 1.0 0.5 linear junction C j0 0.0-4.0-2.0 0.0 V D (V) C j = C j0 -------------------------------------- 1 V φ m D 0

Technology Evolution. Year of Introduction 1994 1997 2000 2003 2006 2009 Channel length (µm) 0.4 0.3 0.25 0.18 0.13 0.1 Gate oxide (nm) 12 7 6 4.5 4 4 V DD (V) 3.3 2.2 2.2 1.5 1.5 1.5 V T (V) 0.7 0.7 0.7 0.6 0.6 0.6 NMOS I Dsat (ma/µm) 0.35 0.27 0.31 0.21 0.29 0.33 (@ V GS = V DD ) PMOS I Dsat (ma/µm) 0.16 0.11 0.14 0.09 0.13 0.16 (@ V GS = V DD )

The Diode

Depletion Region hole diffusion electron diffusion p n (a) Current flow. hole drift electron drift Charge Density - ρ + x Distance (b) Charge density. Electrical Field ξ x (c) Electric field. Potential V ψ 0 -W 1 W 2 x (d) Electrostatic potential.

Diode Current 2.5 10 0 I D (ma) 1.5 0.5 I D (V) 10-5 10-10 -0.5-1.0-0.5 0.0 0.5 1.0 V D (V) (a) On a linear scale. 10-15 0.0 0.2 0.4 0.6 V D (V) (b) On a logarithmic scale (forward bias). I D = I e V D φ T S 1

Forward Bias p n (W 2 ) p n0 L p n p0 p-region -W 1 0 W 2 n-region x diffusion

Reverse Bias p n0 n p0 p-region -W 1 0 W 2 n-region x diffusion

Junction Capacitance 2.0 1.5 abrupt junction C j (ff) 1.0 0.5 linear junction C j0 0.0-4.0-2.0 0.0 V D (V)

Diode Switching Time 1.0-1.0 V D -3.0-5.0 0 10 t 1 20 t 2 time (nsec) 30

Diode Model R S + V D - I D C D

SPICE Parameters Parameter Name Symbol SPICE Name Units Default Value Saturation current I S IS A 1.0 E-14 Emission coefficient n N - 1 Series resistance R S RS Ω 0 Transit time τ T TT sec 0 Zero-bias junction C j0 CJ0 F 0 capacitance Grading coefficient m M - 0.5 Junction potential φ 0 VJ V 1 First Order SPICE diode model parameters.

Bipolar Transistor E B C p + isolation n + p + p n-epitaxy n + p + n + buried layer p-substrate (a) Cross-sectional view. B E n + p n C (b) Idealized transistor structure.

Forward Active Operation Carrier Concentration Depletion Regions E B C n b (0) p c0 p e0 n b0 x 0 W W B

Current Components E B C I E 1 I C 2 3 x I B electrons holes

Reverse Active Carrier Concentration E B C n b (W) p e0 n b (0) n b0 0 W p c0 x W B

Saturation Mode Carrier Concentration n b (0) E B C Q A n b (W) p e0 QS n b0 0 W p c0 x W B

Cutoff Carrier Concentration E B C p e0 nb (0) n b0 n b (W) 0 W p c0 x W B

Early Voltage I C Saturation Forward Active V BE3 V BE2 V BE1 V A V CE

Parasitic Resistances E B C p + r E n + p p + n + isolation n-epitaxy r C3 r B r C1 p + n + buried layer r C2 p-substrate

Beta Variations ln (I) I KF I C High Level Injection β F Recombination I B V BE (linear)

Bipolar Transistor Operation I C (ma) 0-0.25 I B =25 µa I B =50 µa I B =75 µa I B =100 µa Reverse Operation I C (ma) 15 10 5 Forward Operation Active I B =100 µa I B =75 µa I B =50 µa I B =25 µa -0.5-3.0-1.0 V CE (V) Saturation 0 0.0 2.0 V CE (V)