Ashoka Sarker, Abul Kashem* and Khan Towhid Osman. Department of Soil Science, University of Chittagong, Chittagong 4331, Bangladesh.

Similar documents
Dinitrogen fixation and residue nitrogen of different managed legumes and nitrogen uptake of subsequent winter wheat

MANAGEMENT OF DISEASES OF INFLORESCENCE OF MANGO

Ammonium fixation and release by clay minerals as influenced by potassium

THE EFFECT OF SEED AND SOIL APPLIED SYSTEMIC INSECTICIDES ON APHIDS IN SORGHUM. Texas Agricultural Experiment Station, Nueces County, 2000

Effects of Weed Control Methods on the Growth and Yield of Cowpea (Vigna unguiculata (L.) Walp) under Rain-Fed Conditions of Owerri

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S.

Soil water content during and after plant growth influence nutrient availability and microbial biomass

WATER STRESS AFFECTS THE GERMINATION, EMERGENCE AND GROWTH OF DIFFERENT SORGHUM CULTIVARS

TURFGRASS DISEASE RESEARCH REPORT J. M. Vargas, Jr. and R. Detweiler Department of Botany and Plant Pathology Michigan State University

Original Research Article. Essubalew Getachew Seyum

1 Introduction to Modulo 7 Arithmetic

The Influence of Rhizobium and Arbuscular Mycorrhizal Fungi on Nitrogen and Phosphorus Accumulation by Vicia faba

Meta-analysis the effect of nitrogen fertilizer on quantitative and qualitative characteristics of sugar beet

Garnir Polynomial and their Properties

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

CORRELATION ANALYSIS OF NUTRIENTS, ENZYMES, AND MICROBIAL BIOMASS IN SOILS WITH PHENOLICS OF Artemisia annua L.

Differential Performance of Lowland Rice Cultivars for Phosphorus Uptake and Utilization Efficiency under Hydroponic and Soil Conditions

Effect of some Sources and Rates of Nitrogen Fertilization on Growth and Leaf Mineral Content of Young Trees of Wonderful, Pomegranate

Present state Next state Q + M N

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Paul E. Nyren, Qingwu Xue, Ezra Aberle, Gordon Bradbury, Eric Eriksmoen, Mark

CS September 2018

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Bulgarian Journal of Agricultural Science, 13 (2007), National Centre for Agrarian Sciences

The Plan. Honey, I Shrunk the Data. Why Compress. Data Compression Concepts. Braille Example. Braille. x y xˆ

Selection of Brahman crossbred-breeding bulls based on phenotypic performance

Numbering Boundary Nodes

Constructive Geometric Constraint Solving

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

A Low Noise and Reliable CMOS I/O Buffer for Mixed Low Voltage Applications

QUESTIONS BEGIN HERE!

Effects of long-term use of different farming systems on some physical, chemical and microbiological parameters of soil quality**

12. Traffic engineering

EE1000 Project 4 Digital Volt Meter

Analysis for Balloon Modeling Structure based on Graph Theory

H. Sule and B.I. Ahmed. Department of Crop Science, Adamawa State University, P.M.B. 25 Mubi, Adamawa State, Nigeria 2

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

Decimals DECIMALS.

Journal of Integrative Agriculture 2017, 16(0): Available online at ScienceDirect

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

12 - M G P L Z - M9BW. Port type. Bore size ø12, ø16 20/25/32/40/50/ MPa 10 C to 60 C (With no condensation) 50 to 400 mm/s +1.

Tangram Fractions Overview: Students will analyze standard and nonstandard

Development of Microbial Biomass and Enzyme Activities in Mine Soils

Aquauno Video 6 Plus Page 1

EFFECTS OF SHADING ON SOME MORPHOLOGICAL AND PHYSIOLOGICAL CHARACTERISTICS OF BEGONIA SEMPERFLORENS

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Chem 104A, Fall 2016, Midterm 1 Key

Comparison of Carcass Composition of Iranian Fat-tailed Sheep

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Changes of CO 2 emission and labile organic carbon as influenced by rice straw and different water regimes

S.G. Solomon, L.O. Tiamiyu and U.J. Agaba Department of Fisheries and Aquaculture, Federal University of Agriculture, Makurdi, Nigeria

Compression. Compression. Compression. This part of the course... Ifi, UiO Norsk Regnesentral Vårsemester 2005 Wolfgang Leister

SEE PAGE 2 FOR BRUSH MOTOR WIRING SEE PAGE 3 FOR MANUFACTURER SPECIFIC BLDC MOTOR WIRING EXAMPLES EZ SERVO EZSV17 WIRING DIAGRAM FOR BLDC MOTOR

EXAMPLE 87.5" APPROVAL SHEET APPROVED BY /150HP DUAL VFD CONTROL ASSEMBLY CUSTOMER NAME: CAL POLY SLO FINISH: F 20

COMP108 Algorithmic Foundations

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

Plant-microbe interaction of Serratia marcescens and Scirpus mucronatus on phytoremediation of gasoline contaminated soil

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

Effect of cadmium supply levels to cadmium accumulation by Salix

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

Response of Sesame (Sesamum indicum) Cultivars to Hydropriming of Seeds

Planar Upward Drawings

Instructions for Section 1

CRITICAL OSMOTIC, IONIC AND PHYSIOLOGICAL INDICATORS OF SALINITY TOLERANCE IN COTTON (GOSSYPIUM HIRSUTUM L.) FOR CULTIVAR SELECTION

Effects of arbuscular mycorrhizal fungi and Bradyrhizobium japonicum on drought stress of soybean

QUESTIONS BEGIN HERE!

with n-butylamine and n-octylamine

Effect of Various Treatments on Seed Germination Characteristics of Wild Ziziphus (Ziziphus spina-christi)

Yield and arsenate uptake of arbuscular mycorrhizal tomato colonized by Glomus mosseae BEG167 in As spiked soil under glasshouse conditions

Humic acid application alleviate salinity stress of bean (Phaseolus vulgaris L.) plants decreasing membrane leakage

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Intramolecular Quaternization as Folding Strategy for the Synthesis of Catalytically Active Imidazolium-based Single Chain Nanoparticles

WORKSHOP 6 BRIDGE TRUSS

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

Seven-Segment Display Driver

Section 10.4 Connectivity (up to paths and isomorphism, not including)

0.1. Exercise 1: the distances between four points in a graph

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Journal of American Science, 2011;7(2)

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

What do you know? Listen and find. Listen and circle. Listen and chant. Listen and say. Lesson 1. sheep. horse

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Antioxidant enzymes and physiological traits of Vicia faba L. as affected by salicylic acid under salt stress

Journal of Solid Mechanics and Materials Engineering

Potential of calcium silicate to mitigate water deficiency in maize

Refining properties of lavender (Lavandula spica L.) in cadmium contaminated environments

ph controlled assembly of a polybutadiene poly(methacrylic acid) copolymer in water: packing considerations and kinetic limitations

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

Influence of Magnesium as a Major Contributor of Water Hardness on Some Cardiac Disease Risk Factors

Growth and fatty acid composition of three heterotrophic Chlorella species

Optimization of Protease Enzyme Production Using Bacillus Sp. Isolated from Different Wastes

Transcription:

Intrntionl Journl of Agriulturl Sins ISSN: 2167-0447 Vol. 2 (12), pp. 315-321, Dmr, 2012. Avill onlin t www.intrntionlsholrsjournls.org Intrntionl Sholrs Journls Full Lngth Rsrh Ppr Influn of ity finish ompost n nitrogn, phosphorus n potssium (NPK) frtilizr on yil, nutrint uptk n nutrint us ffiiny of rish (Rphnus stivus L.) in n i soil Ashok Srkr, Aul Kshm* n Khn Towhi Osmn Dprtmnt of Soil Sin, Univrsity of Chittgong, Chittgong 4331, Bnglsh. Riv 12 July, 2012; Apt 07 Dmr, 2012 A pot xprimnt ws rri out to invstigt th influn of ity finish ompost (CFC) n nitrogn, phosphorus n potssium (NPK) frtilizr on th yil, nutrint uptk n nutrint us ffiiny of rish (Rphnus stivus L.). Air ri sny lom soil ws mix with fiv rts of CFC quivlnt to 0, 5, 10, 20, 40 ton h -1 n thr rts of NPK frtilizr quivlnt to 50, 100 n 150% (N- P-K = 137-32-70 kg h -1 ). Fiv plnts wr grown in h pot. Only, four plnts wr hrvst ftr 45 ys of growth n th rmining plnt ws hrvst t 90 ys of growth. Th hrvst plnts wr sprt into lvs n uls n ri. Th ry mttr yil of lvs n uls, N n K onntrtions, thir uptk y rish inrs with th rts of CFC n NPK frtilizr mnmnts. Among th trtmnts, growth prformn of rish ws ttr with th highst rt of 40 t h -1 CFC trtmnts. Uptk of N n K y plnt show vry strong n positiv orrltion (P<0.001) with totl ry mttr yil. Agronomi n physiologil us ffiiny of N n K of rish rs with inrsing th rts of CFC n NPK frtilizr trtmnts. Th prformn of gronomi ffiiny of nutrints y rish ws ttr with th pplition of CFC t 5 n 10 ton h -1 n of NPK frtilizr t 50 n 100% rts. Rsults of th prsnt stuy init tht 10 ton h -1 CFC oul us inst of 100% NPK frtilizr to otin similr yil n nutrint us ffiiny. Ky wors: Compost, soil, yil, nutrint us ffiiny, nitrogn, potssium, rop. INTRODUCTION Frmrs us inorgni frtilizrs to improv soil frtility n to inrs th yil of thir rops. Howvr, xtnsiv pplitions of inorgni frtilizrs hv som isvntgs on nvironmnt. Ayool n Aniyn (2006) rport tht th us of inorgni frtilizrs hs not n hlpful unr intnsiv griultur us it is oftn ssoit with ru yil, nutrint imln, lhing n pollution of grounwtr (Srihr n Aoy, 2003). Furthrmor, frtilizr ost n onrn for sustinl soil proutivity n ologil stility in rltion to hmil frtilizr us hs mrg s n importnt issu (Aulkh n Singh, 1997). Thr is *Corrsponing uthor. E-mil: kshm00@yhoo.om. rnw intrst in th us of orgni mnurs, suh s frmyr mnur, ompost n grn mnur s sours of plnt nutrints (Aulkh, 1994). Th inorgni mnurs r primry sustrt for rplnishmnt of soil orgni mttr whih upon minrliztion, supply ssntil plnt nutrints (Wltrs t l., 1992). Disposl of orgni wst on griulturl ln is inrsing throughout th worl. Orgni wst my ontin usful gronomil mounts of mro n miro nutrints (Cmpll n Bktt, 1988). Th vilility of orgni wst riv mtls in most soil iifition prosss y nitrifition n lhing (Ro n Pomrs, 1991). City finish ompost my mor suprior to un-ompost mtrils in trms of nutrints ontnt n lss proility of othr potntil ontminnts tht us pollution (Zi t l., 2003).

Srkr t l 315 Aitionlly, omposting is on of th st solutions to ru th hug pils of orgni wsts n onvrt it into vlul prout (Inkl t l., 1996). Approprit frtilizr us ls to inrs rop yils n high rop rovry of ppli nutrints. Som lmnts my hzrous to th nvironmnt if unus in vrious forms suh s nitrts. Effiint frtiliztion is thrfor importnt in nsuring rops ttin mturity within spifi growing ssons (Oklo, 1997). Rovry of ppli inorgni frtilizrs y plnts is low in mny soils. Estimts of ovrll ffiiny of ths ppli frtilizrs hv n out 50% or lowr for N n los to 40% for K (Bligr n Bnntt, 1986, 1996). Ths lowr ffiinis r u to signifint losss of nutrints y lhing, run-off, gsous mission n fixtion y soil. It is lso rport tht twn 1 to 60% N of nutrint s frtilizrs suh s ur is lost through mmoni voltiliztion (Prsrtsk t l., 2001). Ths losss n potntilly ontriut to grtion of soil n vntully l to ovrll nvironmntl grtion. Ths r omplling rsons of th n to inrs nutrint us ffiiny (NUE). Blir (1993) fin nutrint ffiiny s th ility of gnotyp/ultivr to quir nutrints from growth mium n/or to inorport or utiliz thm in th proution of shoot n root iomss or utilizl plnt mtril (s, grin, lvs, uls). Highr NUE y plnts oul ru frtilizr input osts, rs th rt of nutrint losss, n nhn rop yils. Thrfor, it is nssry to trmin th nutrint ontnt, mor importntly th nitrogn n potssium ontnts of th plnts n to intify thir us ffiinis of th nutrints in rltion to ul yils onsiring tht hmil frtilizrs r vry xpnsiv ommoity for smllholr frmr. It is lso nssry to vlop pproprit rommntions tht n us y smllholr rsour poor frmrs n xtnsion gnts. Thrfor, th ojtiv of this stuy ws to trmin suitl NPK frtilizrs n CFC pplition rts n thir omprtiv fft on rish yil n N n K us ffiiny in n ii soil. MATERIALS AND METHODS Plnt growth xprimnt A pot xprimnt ws rri out in th rop fil of th Univrsity of Chittgong, Bnglsh using sny lom surf soil (0 to 15 m). Aout 100 kg of moist soil ws ir ri n pss through 4 mm siv for using plnt growth pot xprimnt. For lortory nlysis, su smpl (500 g) ws ir ri n pss through 2 mm siv n stor. Soil ph ws of 5.07 (1:2.5 soil to wtr rtio), orgni ron (Wlkly n Blk, 1934) ws 0.93% n CEC (xtrtion with 1 M NH 4 OA) (Soil Survy Lortory Stff, 1992) ws 4.01 mol kg -1. Th txtur of th soil us in this stuy ws 73% sn, 13% silt n 14% ly msur y hyromtr mtho (Bouyouos, 1962). CFC ws otin from th omposting plnt of Chittgong City Corportion, Hlishhr, Chittgong n groun, siv n nlyz for hmil proprtis. Th ph of CFC ws 7.13. Fiv rts of CFC quivlnt to 0 (ontrol), 5, 10, 20, 40 t h -1 n thr NPK frtilizr rts quivlnt to 50% (N-P-K = 69-16-35 kg h -1 ), 100% (N- P-K = 137-32 -70 kg h -1 ) n 150% (N-P-K = 206-48 - 105 kg h -1 ) wr ppli sprtly in h pot ontining four (4) kg soil. Th pots wr rrng in ompltly rnomiz sign (CRD) with thr rplitions. Eight ss of rish wr sown in h pot n wtr ws ppli to fil pity. Aftr 15 ys of mrgn, 5 hlthy slings wr kpt in h pot. Th plnts wr hrvst two tims from th sm pot. Th first st omprising four plnts wr hrvst t 45 ys of growth. Th lst plnt ws hrvst t 90 ys of growth. At h hrvst, th plnts wr sprt into lvs n uls. Th lvs n uls wr ri t room tmprtur to rmov xss wtr prior to ovn ry t 65 C for 72 h n ry mss ws ror. Totl nitrogn (N) n potssium (K) in th soil, CFC n in th plnt tissus wr trmin y Kjlhl n flm photomtri mthos, rsptivly ftr igstion with H 2 O 2 -H 2 SO 4. Totl N n K onntrtion in th xprimntl soil wr 0.1 n 0.39% n in th CFC wr 1.3 n 0.66%, rsptivly. Th nutrint uptk of th plnts ws lult y multiplying th nutrint onntrtion in th tissu n th ry mttr (DM) yil. Th nutrint us ffiinis suh s, gronomi ffiiny (rspons rtio) n physiologil nutrint ffiiny (uptk ffiiny) wr lult s follows: Agronomi us ffiiny (g/g) = Physiologil us ffiiny (g/g) = Yil (T) Yil (C) Quntity of ppli nutrint Yil (T) Yil (C) Totl nutrint uptk (T) - Totl nutrint uptk (C) Whr, T n C not trtmnt n ontrol pots rsptivly. Sttistil nlysis Mirosoft Exl n MINITAB progrm (Minit, 1996) wr us for sttistil nlysis. RESULTS Dry mttr yil City finish ompost (CFC) n NPK frtilizr pplition sustntilly influn th ry mttr (DM) yil of rish. Th DM yil of rish lvs n uls

316 Int. J. Agri.Si. Tl 1. Efft of CFC n NPK frtilizr on ry mttr yil (DM) of rish. Dry mttr yil (g pot -1 ) 45 ys Dry mttr yil (g pot -1 ) 90 ys Trtmnt Lvs Buls Totl Lvs Buls Totl Control 0.52 ± 0.32 0.05 ± 0.01 0.57 ± 0.34 2.21 ± 0.05 0.19 ± 0.07 2.40 ± 0.03 CFC 5 t h -1 1.65 ± 0.17 0.11 ± 0.01 1.76 ± 0.16 7.60 ± 0.16 6.26 ± 0.27 13.86 ± 0.18 10 t h -1 2.83 ± 0.21 0.23 ± 0.02 3.06 ± 0.19 10.29 ± 0.52 15.34 ± 1.31 25.63 ± 0.42 20 t h -1 3.75 ± 0.59 0.27 ± 0.01 4.02 ± 0.60 25.17 ± 1.59 21.02 ± 3.48 46.19 ± 3.94 40 t h -1 4.77 ± 0.27 0.37 ± 0.06 5.14 ± 0.24 28.46 ± 5.12 23.92 ± 0.73 52.38 ± 5.10 NPK frtilizr 50% 1.25 ± 0.25 0.09 ± 0.01 1.34 ± 0.24 7.13 ± 0.03 6.23 ± 0.69 13.36 ± 0.67 100% 2.64 ± 0.56 0.18 ± 0.00 2.82 ± 0.56 10.14 ± 0.73 14.27 ± 0.70 24.41 ± 0.73 150% 3.92 ± 0.06 0.38 ± 0.02 4.30 ± 0.67 23.21 ± 4.11 15.82 ± 1.77 39.03 ± 4.20 Mn 2.67 0.21 2.87 14.28 12.88 27.16 Mns follow y th sm lttr (s) in olumn (s) r not signifintly iffrnt t P<0.05. ± mns stnr vition. t 45 n 90 ys of growth inrs signifintly (P<0.001) with th rts of CFC n NPK frtilizr. With th urtion of growth, DM yil of rish inrs ut th trtmnt ffts wr foun similr t oth 45 n 90 ys of growth (Tl 1). Totl DM yil of rish (lvs plus ul) inrs mor thn 5 fols t 45 ys of growth n 20 fols t 90 ys of growth y th pplition of 40 t h -1 CFC n 150% NPK trtmnts, rsptivly ovr th ontrol (Tl 1). N n K onntrtion in plnt prts n thir uptk Both nitrogn n potssium onntrtion in lvs n uls n thir uptk y rish t two stgs of growth vri n inrs signifintly (P<0.001) with CFC n NPK frtilizr mnmnts n thir pplition rts. Nitrogn onntrtion n uptk At 45 ys of growth, N onntrtion in lvs of rish inrs from 1.66% in ontrol to 3.46% in 150% NPK frtilizr trt pots with mn vlu of 2.57%. In uls, it inrs from 0.48% in ontrol to 2.76 n 150% in NPK frtilizr trt plnts with mn vlu of 1.66%. At 90 ys of growth, N onntrtion in lvs rng from 1.58% in ontrol to 2.68% in 40 t h -1 CFC trt pots with mn vlu of 2.26%. Nitrogn onntrtion in uls rng from 0.57 to 2.76% with mn vlu of 1.73% (Figur 1). Similrly, N uptk (onntrtion DM of plnt) y th plnt (plnt prts) inrs linrly with th rts of CFC n NPK frtilizr. Totl N uptk (lvs plus uls) rng from 0.01 to 0.15 g pot -1 t 45 ys of growth n 0.04 to 1.43 g pot -1 t 90 ys of growth. Plnt N uptk ws 8 tims highr t 90 ys of growth thn t 45 ys of growth, howvr, th trn of trtmnt fft ws foun similr t oth stgs of growth. Nitrogn uptk ws 1.5 fols highr with th highst rt of CFC (40 t h - 1 ) thn th highst rt of NPK (150%) trtmnt t 90 ys of growth. Th rsults of 10 t h -1 of CFC wr omprl with th rsults of 100% NPK frtilizr trtmnt (Figur 1). Potssium onntrtion n uptk At 45 ys of growth, K onntrtion in lvs rng from 2.24% in ontrol to 6.22% in 40 t h -1 CFC trt pots with mn vlu of 4.40%. Potssium onntrtion in uls rng from 0.24 to 2.60% with mn vlu of 1.44%. Th highst K onntrtion of 2.60% in uls ws otin y th pplition of 40 t h - 1 CFC whih show signifint iffrn with NPK frtilizr t 150%. At 90 ys of growth, K onntrtion in lvs rng from 2.42% in ontrol to 5.40% in 40 t h -1 CFC trt pots with mn vlu of 3.95%. Potssium onntrtion in uls rng from 1.47 to 6.79% with mn vlu of 4.10% (Figur 2). Totl K uptk y plnt (lvs plus uls) rng from 0.01 to 0.31 g pot -1 t 45 ys of growth n 0.06 to 3.16 g pot -1 t 90 ys of growth. Plnt K uptk ws 10 tims highr t 90 ys of growth thn t 45 ys of growth, howvr, th trn of trtmnt fft ws foun similr t oth stgs of growth. Lik N, potssium uptk ws 1.5 fols highr with th highst rt of CFC (40 t h -1 ) thn th highst rt of NPK (150%) trtmnt. Th

Totl N uptk (g pot -1 ) Totl N uptk (g pot -1 ) N on. in uls (%) N on. in lvs (%) Srkr t l 317 4 3 2 1 0 4 3 2 1 0 f g f 45 ys 90 ys 0 5 10 20 40 50 100 150 0 5 10 20 40 50 100 150 CFC (t h -1 ) NPK (%) CFC (t h -1 ) NPK (%) Trtmnt 45 ys 90 ys 0 5 10 20 40 50 100 150 0 5 10 20 40 50 100 150 CFC (t h -1 ) NPK (%) CFC (t h -1 ) NPK (%) Trtmnt 0.16 0.12 0.08 0.04 0.00 45 ys 0 5 10 20 CFC (t h -1 ) 40 50 100 NPK (%) 150 Trtmnt 1.6 1.2 90 ys 0.8 0.4 0.0 f 0 5 10 20 CFC (t h -1 ) 40 50 100 NPK (%) 150 Trtmnt Figur 1. Efft of CFC n NPK frtilizr on nitrogn onntrtion in plnt prts n thir totl uptk t 45 n 90 ys of growth. rsults of 10 t h -1 CFC wr omprl with th rsults of 100% NPK frtilizr trtmnt (Figur 2). Nitrogn uptk ws highly orrlt (r = 0.99 n 0.98) with totl ry mttr yil n lvs yil whil potssium uptk orrlt strongly (r = 0.98) with totl ry mttr yils t ltr growth prio. N n K Us ffiiny City finish ompost n NPK frtilizr pplition h signifint (p< 0.001) fft on oth nitrogn n potssium us ffiiny t ltr stg of growth. Control trtmnt h no ppli nutrint n thus no t to

Totl K uptk (g pot -1 ) Totl K uptk (g pot -1 ) K on. in ul (%) K on. in lvs (%) 318 Int. J. Agri.Si. 8 6 4 2 0 45 ys 90 ys 0 5 10 20 40 50 100 150 0 5 10 20 40 50 100 150 CFC (t h -1 ) NPK (%) CFC (t h -1 ) NPK (%) Trtmnt 8 6 4 2 0 0.32 0.24 0.16 0.08 0.00 45 ys 90 ys 0 5 10 20 40 50 100 150 0 5 10 20 40 50 100 150 CFC (t h -1 ) NPK (%) CFC (t h -1 ) NPK (%) Trtmnt f 45 ys 0 5 10 20 CFC (t h -1 ) 40 50 100 NPK (%) 150 Trtmnt 3.2 2.4 90 ys 1.6 0.8 0.0 0 5 10 20 CFC (t h -1 ) 40 50 100 NPK (%) 150 Trtmnt Figur 2. Efft of CFC n NPK frtilizr on potssium onntrtion in plnt prts n thir totl uptk t 45 n 90 ys of growth. rport (Tls 2 n 3). Nitrogn us ffiiny At 45 ys of growth, N gronomi us ffiiny (NAUE) ws th lowst of 0.24 g ul pr g N from 50% NPK n th highst of 0.80 g ul pr g N from 150% NPK trtmnt with mn of 0.48 g ul pr g N trtmnt (Tl 2). Th NAUE ws similr mong th CFC trtmnts xpt 10 t h -1. Th NAUE of rish ul inrs out 90 tims t 90 ys of growth ompr with 45 ys rgrlss of mnmnt n rts of pplition. At 90 ys of growth, NAUE ws th lowst of 22.81 g ul pr g N ppli s 40 t h -1 n highst of 58.26 g ul pr g N ppli s th 10 t h -1 CFC

Srkr t l 319 Tl 2. Efft of CFC n NPK frtilizr on nitrogn us ffiiny of rish ul. Agronomi us ffiiny (g ry ul/ g N ppli) Physiologil us ffiiny (g ry ul/ g N tkn up) Trtmnt 45 ys 90 ys 45 ys 90 ys Control - - - - CFC 5 t h -1 0.46 ± 0.09 46.64 ± 2.07 2.25 ± 0.67 29.77 ± 1.55 10 t h -1 0.67 ± 0.09 58.26 ± 5.05 2.91 ± 0.60 32.75 ± 1.18 20 t h -1 0.42 ± 0.02 40.05 ± 6.70 2.35 ± 0.24 19.05 ± 2.03 40 t h -1 0.30 ± 0.06 22.81 ± 0.70 2.24 ± 0.50 17.23 ± 2.09 NPK frtilizr 50 % 0.24 ± 0.08 43.10 ± 4.93 1.66 ± 1.13 29.68 ± 1.42 100% 0.47 ± 0.00 52.14 ± 2.59 1.78 ± 0.36 31.47 ± 2.84 150% 0.80 ± 0.05 38.12 ± 4.31 2.38 ± 0.16 18.40 ± 2.79 Mn 0.48 43.02 2.22 25.48 Mns follow y th sm lttr (s) in olumn (s) r not signifintly iffrnt t P<0.05; ± mns stnr vition. Tl 3. Efft of CFC n NPK frtilizr on potssium us ffiiny of rish. Agronomi us ffiiny (g ry ul/ g K ppli) Physiologil us ffiiny (g ry ul/ g K tkn up) Trtmnt 45 ys 90 ys 45 ys 90 ys Control - - - - CFC 5 t h -1 0.91 ± 0.18 91.87 ± 4.07 1.14 ± 0.31 15.65 ± 0.64 10 t h -1 1.33 ± 0.19 116.51 ± 10.10 1.56 ± 2.26 17.15 ± 0.72 20 t h -1 0.85 ± 0.04 80.10 ± 13.40 1.20 ± 0.19 9.77 ± 0.90 40 t h -1 0.59 ± 0.12 44.76 ± 1.37 1.07 ± 0.25 7.69 ± 0.65 NPK frtilizr 50 % 0.48 ± 0.17 86.19 ± 9.85 0.95 ± 0.64 15.04 ± 0.83 100% 0.90 ± 0.00 91.02 ± 5.0 1.26 ± 0.28 15.38 ± 0.53 150% 1.56 ± 0.10 74.43 ± 8.41 1.67 ± 0.06 8.08 ± 0.99 Mn 0.95 84.92 1.26 12.68 Mns follow y th sm lttr (s) in olumn (s) r not signifintly iffrnt t P<0.05; ± mns stnr vition. trtmnts with mn of 43.02 g ul pr g N ppli (Tl 2). Nitrogn physiologil us ffiiny (NPUE) in rish ul rs with th rts of CFC n NPK frtilizr pplition rts t 90 ys of growth. Th NPUE vlus vri from 1.66 g ul pr g N tkn up from 50% NPK to 2.91 g ul pr g N tkn up from 10 t h -1 trtmnts (Tl 2) t 45 ys n no vrition ourr mong th trtmnt lvls xpt 10 t h -1 CFC n 150% NPK trtmnts. At 90 ys of growth, NPUE vlus wr t ls 10 tims highr thn th vlus otin from 45 ys of growth n grully rs with pplition rts. Th rsults of 10 t h -1 of CFC wr omprl with th rsults of 100% NPK frtilizr trtmnt t 90 ys of growth (Tl 2). Potssium us ffiiny Similr to nitrogn, K gronomi us ffiiny (KAUE) t 45 ys of growth ws vry smll (0.48 to 1.56 g ul pr g K pplition) n ws not onsistnt with rts of mnmnts. At 90 ys of growth, th KAUE vlus (44.8 to 117 g ul pr g K pplition) inrs > 80

320 Int. J. Agri.Si. tims ompr with 45 ys of growth n rs with rts of NPK n CFC pplition (Tl 3). Th potssium physiologil us ffiiny (KPUE) ws smllr (0.95 to 1.67 g ul pr g K tkn up) n lso simillr to N physiologil us ffiiny in rspt to trtmnt fft t 45 ys ut t 90 ys of growth, th KPUE vlus (7.69 to 17.15 g ul pr g N uptk) inrs t >10 tims ompr to 45 ys of growth n rs with rts of mnmnts (Tl 3). DISCUSSION Comprtivly ompost show ttr plnt growth n highr nutrint uptk y rish thn NPK frtilizr trtmnts with inrsing th growing prio. This is unrstnl s orgni mttr improvs soil physil, hmil n iologil proprtis s wll s supplying itionl plnt nutrints (Wng t l., 1984). Mynr (1994) lso rport tht wll ompost orgni mnmnts with nrrow C: N rtio might rls nutrints in ttr synhrony with plnt growth mn n giv highr yils. Irrsptiv of trtmnt lvls, oth CFC n NPK frtilizr pplitions influn th totl ry mttr umultion thry ffting th nutrint mn (uptk/utiliztion) in omprison with ontrol trtmnt. Frtilizr nutrints ppli, ut not tkn up y th rop, r vulnrl to losss through lhing, rosion, n nitrifition or voltiliztion in th s of N, or thy oul tmporrily immoiliz in soil orgni mttr in s of K to rls t ltr tim, ll of whih impt nutrint us ffiiny (Rorts, 2008). Th inrs in gronomi ffiinis with tim ror in this stuy rsult in grtr utiliztion of ppli nutrints in orgni systms. Nutrints in ompost wr proly tkn up y th rish mor ffiintly thn NPK frtilizr u to slowr rls from minrliztion n lowr gsous N losss. This lso oul u to th rls of fix minrl whih is m vill us of fvourl miroil tivity ling to th nhnmnt of th soil nutrint us ffiiny (Son t l., 2000). Compr to NAUE, th KAUE is grtr t oth stgs of growth. Suh low nutrint ffiiny my rlt to N losss from soil vi nitrifition n mmoni voltiliztion (Crswll n Vlk, 1979). Thr is littl informtion vill out potssium (K) us ffiiny. Howvr, it is gnrlly onsir to hv highr gronomi us ffiiny thn N us it is immoil in most soils n is not sujt to th gsous losss lik N (Rorts, 2008). On th othr hn, th NPUE is grtr thn KPUE s th uptk of K is mor thn th uptk of N. This prmis is support y th ft of N ontnts in lvs n uls n totl N up-tk y rish plnt. This my s th slow n sty rls of nutrints from ompost mth th rop uptk spring not s muh nutrints for fixtion y soil lys or for losss s from NPK sours rsulting in nhn K uptk from th ompost y rish (Jgswrn t l., 2005). Among iffrnt trtmnts, inrsing th lvls up to 10 t h -1 CFC n 100% NPK, th nutrint us ffiiny ws inrs. Furthr, inrsing th nutrint lvls, oth gronomi n physiologil nutrint us ffiinis wr rs. This suggsts tht highr nutrint ition ws xssiv n rsults luxury nutrint uptk. It my u to th pplition of xss nutrints, whih ws not fftivly utiliz y th rop n th rt of proution ws lssr pr unit of nutrints pplition (Snthil t l., 2008). In th s of highr rts of CFC (> 10 t h -1 ) n NPK frtilizrs (>100%), th volum of th xprimntl soil, with whih ths frtilizr mtrils wr in ontt on pplition ws lrg, vintly nutrint rvrsion rtions hv ourr t fstr rt rsulting in th fixtion of ppli nutrints in mounts of highr mgnitu (Jgswrn t l., 2005) s ompr to th lowr rts of CFC n NPK frtilizrs. Conlusion Dry mttr yil, nutrints onntrtion, nutrints uptk y plnt inrs with inrsing rts of CFC n NPK frtilizrs n gronomi n physiologil us ffiiny inrs with rsing rts of CFC n NPK frtilizrs. Th yil rspons n nutrint us ffiiny of 10 t h -1 CFC ws similr to tht of 100% NPK trtmnt n hn 10 t h -1 CFC woul rommn to prou optimum yil inst of 100% NPK. Rsults of th prsnt stuy, lso suggst th n to invstigt th fft of CFC n NPK in mor til using iffrnt soils n rops in fil onition. REFERENCES Aulkh, MS (1994). Intgrt Nitrogn Mngmnt n Lhing of Nitrts to Grounwtr Unr Cropping Systm Follow in Tropil Soils of Ini. Trnstions, 15th Worl Congrss of Intrntionl Soity of Soil Sin, Mxio. Soil Sin 5: 205 221. Aulkh MS, Singh B (1997). Nitrogn Losss n Frtilizr Nitrogn Us Effiiny in Irrigt Porous soils. Nutrint Cyling in Agro osystm, 7: 1 16. Ayool OT, Aniyn ON (2006). Influn of Poultry on Yil n Yil Componnts of Crops Unr Diffrnt Cropping Systms in South wst Nigri. Afr. J. Biothnol., 5: 1386-1392. Bligr VC, Bnntt OL (1986). Outlook on Frtilizr Us Effiiny in th Tropis. Frt. Rs., 10: 83 96. Bligr VC, Bnntt OL (1986). NPK-frtilizr Effiiny. A sitution nlysis for th Tropis. Frt. Rs. 10:

Srkr t l 321 147-164. Blir G (1993). Nutrint Effiiny Wht Do W Rlly Mn. Gnti Aspts of Plnt Minrl Nutrition. p. 205 213. In: P. J. Rnll, E. Dlhiz, R. A. Rihrs, n R. Munns. (s.), Kluwr Ami Pulishrs, Dorrht, th Nthrlns. Bouyouos GJ (1962). Hyromtr Mtho Improv for Mking Prtil Siz Anlysis of Soils. Agron. J., 54: 464-465. Cmpll DJ, Bkft PHT (1988). Th Soil Solution in Soil Trt with Digst Slug. J. Soil Si. 39: 283-298. Crswll ET, Vlk PLG (1979). Ft of Frtilizr Nitrogn Appli to Wtln Ri. p. 175 192. In: IRRI (.), Nitrogn n Ri IRRI, Los Bnos, Philippins. Inkl MP, Trsmtt T, Vlkmp T (1996). Th Prprtion n Us of Compost Fourth Eition. p. 28. Trns. E. W. M. Vrhij. Wgnningn, th Nthrlns. Jgswrn R, Murugppn V, Govinswmy M (2005). Efft of Slow Rls NPK Frtilizr Sours on th Nutrint us Effiiny in Turmri (Curum long L.). Worl J. Agri. Si., 1(1): 65-69. Mynr AA (1994). Sustin Vgtl Proution for Thr Yrs Using Compost Animl Mnur. Comp. Si. Utiliztion, 2: 88 96. Minit In (1996). Minit Usr Gui Rls 11. Minit, Stt Collg, PA. Oklo JR (1997). Miz Rspons to Thr High Anlysis Phospht Frtilizrs in Som Soils of Est Afri. Prt 1. Effts on growth. E. Afr. Agri. For. J., 43: 75-83. Prsrtsk P, Frny JR, Sffig PG, Dnm OT, Prov BG (2001). Ft of Ur Nitrogn Appli to Bnn Crop in th Wt Tropis of Qunsln. Nutrint Cyl. Agroosyst., 59: 65-73. Rorts, T. L. 2008. Improving Nutrint Us Effiiny. Turk J. Agri. For., 32: 177-182. Ro, J. n Pomrs, F. 1991. Prition t Avill Hvy Mtls y Six Chmil Extrtion in Swg Slug-mn Soil. Commun. Soil Si. Pl. Anl., 22: 2119-2136. Snthil G, Kumr S, Rjrjn A, Thvprksh N, Bu, C, Umshnkr R (2008). Nitrogn Us Effiiny of Ri (Oryz stiv) in Systms of Cultivtion with Vri N Lvls Unr 15N Trr Thniqu. Asin J. Agri. Rs., 2: 37-40. Soil Survy Lortory Stff (1992). Soil Survy Lortory mthos mnul. Soils Surv. Invst. Rsps, 42. USDA- SCS, Wshington, DC. Son TTN, Thul VV, Chin DV, Hirok H (2000). Efft of Orgni n Bio- Frtilizr on Soyn n Ri Unr Ri Bs Cropping Systm. Proings of th 2000 Annul Workshop of JIRCAS Mkong Dlt Projt: pp. 100-110. Srihr MKC, Aoy GO (2003). Orgno-minrl Frtilizr from Urn Wsts: Dvlopmnts in Nigri, Th Nigri Fil, 68: 91-111. Wlkly A, Blk IA (1934). An Exmintion of Dgtjrff Mtho for Dtrmining Soil Orgni mttr n Propos Moifition of th Chromi Ai Titrtion Mtho. Soil Si., 37: 29-38. Wltrs DT, Aulkh MS, Dorn JW (1992). Efft of Soil Artion, Lgum Rsiu n Soil Txtur on Trnsformtion of Mro n Mironutrints in Soils. Soil Sin, 153: 100 107. Wng SHL, Lohr VI, Coffy DL (1984). Growth Rspons of Slt Vgtl Crops to Spnt Mushroom Compost Applition in ontroll nvironmnt. Plnt Soil, 82: 31 40. Zi MS, Khlil S, Aslm M, Hussin F (2003). Prprtion of Compost n its Us for Crop-proution. Si. Thnol. Dv., 22: 32 44.