Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals

Similar documents
Part I. Many-Body Systems and Classical Field Theory

Quantum Field Theory 2 nd Edition

Maxwell s equations. electric field charge density. current density

TENTATIVE SYLLABUS INTRODUCTION

QUANTUM FIELD THEORY. A Modern Introduction MICHIO KAKU. Department of Physics City College of the City University of New York

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in

QUANTUM FIELD THEORY

Maxwell s equations. based on S-54. electric field charge density. current density

Quarks, Leptons and Gauge Fields Downloaded from by on 03/13/18. For personal use only.

Introduction to Elementary Particles

An Introduction to. Michael E. Peskin. Stanford Linear Accelerator Center. Daniel V. Schroeder. Weber State University. Advanced Book Program

Many-Body Problems and Quantum Field Theory

Contents. Appendix A Strong limit and weak limit 35. Appendix B Glauber coherent states 37. Appendix C Generalized coherent states 41

The Quantum Theory of Fields. Volume I Foundations Steven Weinberg

Loop corrections in Yukawa theory based on S-51

An Introduction to the Standard Model of Particle Physics

Beta functions in quantum electrodynamics

The path integral for photons

A Superfluid Universe

Part III. Interacting Field Theory. Quantum Electrodynamics (QED)

Shigeji Fujita and Salvador V Godoy. Mathematical Physics WILEY- VCH. WILEY-VCH Verlag GmbH & Co. KGaA

Relativistic Quantum Mechanics and Field Theory

LECTURES ON QUANTUM MECHANICS

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9

Quantum Mechanics: Fundamentals

PUBLISHED PAPERS Jonathan Dimock April 19, (with R.W. Christy) Color Centers in TlCl, Physical Review 141 (1966),

PHYSICS PARTICLE. An Introductory Course of. Palash B. Pal. CRC Press. Saha Institute of Nuclear Physics. Kolkata, India. Taylor &.

Relativistic Waves and Quantum Fields

Index. Symbols 4-vector of current density, 320, 339

Particle Physics. Michaelmas Term 2011 Prof. Mark Thomson. Handout 2 : The Dirac Equation. Non-Relativistic QM (Revision)

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer

Acknowledgements An introduction to unitary symmetry The search for higher symmetries p. 1 The eight-baryon puzzle p. 1 The elimination of

A guide to. Feynman diagrams in the many-body problem

Particle Physics Dr. Alexander Mitov Handout 2 : The Dirac Equation

Elementary Particle Physics

Notes on Quantum Mechanics

(Effective) Field Theory and Emergence in Condensed Matter

Dipartimento di afferenza Settore Carriera A.A. DIPARTIMENTO DI FISIC A FIS/02 Fisica teorica, modelli e metodi matematici I FASC IA 2016/17

6. QED. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 6. QED 1

Contents. Preface to the First Edition Preface to the Second Edition

The Role Of Magnetic Monopoles In Quark Confinement (Field Decomposition Approach)

msqm 2011/8/14 21:35 page 189 #197

Particle Physics I Lecture Exam Question Sheet

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV)

Strongly correlated Cooper pair insulators and superfluids

1 The Quantum Anharmonic Oscillator

LSZ reduction for spin-1/2 particles

REVIEW REVIEW. A guess for a suitable initial state: Similarly, let s consider a final state: Summary of free theory:

Preface Introduction to the electron liquid

Stress-energy tensor is the most important object in a field theory and have been studied

Attempts at relativistic QM

be stationary under variations in A, we obtain Maxwell s equations in the form ν J ν = 0. (7.5)

4. The Standard Model

Kolloquium Universität Innsbruck October 13, The renormalization group: from the foundations to modern applications

List of Comprehensive Exams Topics

Lectures on Quantum Mechanics

Modern Geometric Structures and Fields

REVIEW REVIEW. Quantum Field Theory II

Quantum Field Theory II

Review of scalar field theory. Srednicki 5, 9, 10

Lecture notes for FYS610 Many particle Quantum Mechanics

Physics 622: Quantum Mechanics -- Part II --

Quantum Field Theory

String Theory in a Nutshell. Elias Kiritsis

Stephen Blaha, Ph.D. M PubHsMtw

FYS 3510 Subatomic physics with applications in astrophysics. Nuclear and Particle Physics: An Introduction

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten

Path Integrals. Andreas Wipf Theoretisch-Physikalisches-Institut Friedrich-Schiller-Universität, Max Wien Platz Jena

3P1a Quantum Field Theory: Example Sheet 1 Michaelmas 2016

DR.RUPNATHJI( DR.RUPAK NATH )

What is a particle? Keith Fratus. July 17, 2012 UCSB

Statistical Mechanics

Vacuum Energy and Effective Potentials

Speculations on extensions of symmetry and interctions to GUT energies Lecture 16

Summary of free theory: one particle state: vacuum state is annihilated by all a s: then, one particle state has normalization:

Outline for Fundamentals of Statistical Physics Leo P. Kadanoff

Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface

CONTENTS. vii. CHAPTER 2 Operators 15

Practical Quantum Mechanics

Gravitational Interactions and Fine-Structure Constant

Vortices and other topological defects in ultracold atomic gases

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams

Lecture notes for QFT I (662)

Feynman Diagrams. e + e µ + µ scattering

QUANTUM MECHANICS SECOND EDITION G. ARULDHAS

The Standard Model of Electroweak Physics. Christopher T. Hill Head of Theoretical Physics Fermilab

Gauge Theories of the Standard Model

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification

GROUP THEORY IN PHYSICS

Quantum Physics in the Nanoworld

DYNAMICS of a QUANTUM VORTEX

Quantum Field Theory II

Particle Physics 2018 Final Exam (Answers with Words Only)

XV Mexican Workshop on Particles and Fields

chapter 3 Spontaneous Symmetry Breaking and

Einstein s Theory Relativistic 0 < v < c. No Absolute Time. Quantization, Zero point energy position & momentum obey Heisenberg uncertainity rule

Fundamentals and New Frontiers of Bose Einstein Condensation

Lecture 6:Feynman diagrams and QED

3.3 Lagrangian and symmetries for a spin- 1 2 field

Transcription:

Kerson Huang Quantum Field Theory From Operators to Path Integrals Second, Revised, and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA

I vh Contents Preface XIII 1 Introducing Quantum Fields / 1.1 The Classical String 1 1.2 Renormalization 5 1.3 The Quantum String 5 1.4 Second Quantization 6 1.5 Creation and Annihilation Operators 9 1.6 Bose and Fermi Statistics 11 2 Scalar Fields 17 2.1 Klein Gordon Equation 17 2.2 Real Scalar Field 18 2.3 Energy and Momentum 19 2.4 Particle Spectrum 21 2.5 Continuum Normalization 22 2.6 Complex Scalar Field 23 2.7 Charge and Antiparticle 25 2.8 Microcausality 26 2.9 The Feynman Propagator 27 2.10 The Wave Functional 29 2.11 Functional Operations 30 2.12 Vacuum Wave Functional 32 2.13 The 0 4 Theory 34 3 Relativistic Fields 39 3.1 Lorentz Transformations 39 3.2 Minimal Representation: SL(2C) 41 3.3 The Poincare Group 43 3.4 Scalar, Vector, and Spinor Fields 45 3.5 Relativistic Quantum Fields 47 3.6 One-Particle States 48 4 Canonical Formalism 55 4.1 Principle of Stationary Action 55 Quantum Field Theoryfrom Operators to Path Integrals. K. Huang Copyright 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-40846-7

VIII 1 Contents 4.2 Noether's Theorem 57 4.3 Transla tional Invariance 58 4.4 Lorentz Invariance 61 4.5 Symmetrized Energy-Momentum Tensor 63 4.6 Gauge Invariance 65 5 Electromagnetic Field 69 5.1 Maxwell's Equations 69 5.2 Covariance of the Classical Theory 71 5.3 Canonical Formalism 73 5.4 Quantization in Coulomb Gauge 75 5.5 Spin Angular Momentum 78 5.6 Intrinsic Parity 79 5.7 Transverse Propagator 81 5.8 Vacuum Fluctuations 82 5.9 The Casimir Effect 84 5.10 The Gauge Principle 88 6 Dirac Equation 95 6.1 Dirac Algebra 95 6.2 Wave Functions and Current Density 98 6.3 Plane Waves 99 6.4 Lorentz Transformations 102 6.5 Interpretation of Dirac Matrices 105 6.6 External Electromagnetic Field 106 6.7 Non-Relativistic Limit 108 6.8 Thomas Precession 110 6.9 Hole Theory 112 6.10 Charge Conjugation 115 6.11 Massless Particles 116 7 The Dirac Field 123 7.1 Quantization of the Dirac Field 123 7.2 Feynman Propagator 126 7.3 Normal Ordering 128 7.4 Electromagnetic Interactions 128 7.5 Isospin 129 7.6 Parity 131 7.7 Charge Conjugation 132 7.8 Time Reversal 133 8 Dynamics of Interacting Fields 139 8.1 Time Evolution 139 8.2 Interaction Picture 140 8.3 Adiabatic Switching 142 8.4 Correlation Functions in the Interaction Picture 145 8.5 S-Matrix and Scattering 147

Contents IIX 8.6 Scattering Cross Section 148 8.7 Potential Scattering 151 8.8 Adiabatic Theorem 154 9 Feynman Graphs 159 9.1 Perturbation Theory 159 9.2 Time-Ordered and Normal Products 160 9.3 Wick's Theorem 161 9.4 Feynman Rules for Scalar Theory 164 9.5 Types of Feynman Graphs 169 9.5.1 Vacuum Graph 169 9.5.2 Self-Energy Graph 170 9.5.3 Connected Graph 170 9.6 Wick Rotation 171 9.7 Regularization Schemes 172 9.8 Linked-Cluster Theorem 173 9.9 Vacuum Graphs 174 10 Vacuum Correlation Functions 181 10.1 Feynman Rules 181 10.2 Reduction Formula 184 10.3 The Generating Functional 187 10.4 Connected Correlation Functions 188 10.5 Lehmann Representation 189 10.6 Dyson-Schwinger Equations 192 10.7 Bound States 195 10.8 Bethe-Salpeter Equation 198 11 Quantum Electrodynamics 203 11.1 Interaction Hamiltonian 203 11.2 Photon Propagator 205 11.3 Feynman Graphs 209 11.4 Feynman Rules 214 11.5 Properties of Feynman Graphs 215 12 Processes in Quantum Electrodynamics 219 12.1 Compton Scattering 219 12.2 Electromagnetic Form Factors 223 12.3 Anomalous Magnetic Moment 227 12.4 Charge Distribution 230 13 Perturbative Renormalization 235 13.1 Primitive Divergences in QED 235 13.2 Electron Self-Energy 237 13.3 Vacuum Polarization 241 13.4 Running Coupling Constant 244 13.5 Full Vertex 245

X I Contents 13.6 Ward Identity 246 13.7 Renormalization to Second Order 248 13.8 Renormalization to All Orders 249 13.9 Callan-Symanzik Equation 253 13.10 Triviality 255 14 Path Integrals 261 14.1 Path integrals in Quantum Mechanics 261 14.2 Time-ordering 264 14.3 Imaginary Time 265 14.4 Path Integrals in Quantum Field Theory 266 14.5 Euclidean Space-time 267 14.6 Vacuum Amplitudes 268 14.7 Statistical Mechanics 271 14.8 Gaussian Integrals 273 14.9 Perturbation Theory 276 14.10 The Loop Expansion 279 14.11 Boson and Fermion Loops 280 14.12 Grassmann Variables 282 15 Broken Symmetry 291 15.1 Why Broken Symmetry 291 15.2 Ferromagnetism 294 15.3 Spin Waves 296 15.4 Breaking Gauge Invariance 299 15.5 Superfluidity 302 15.6 Ginsburg-Landau Theory 305 15.7 Effective Action 307 15.8 Effective Potential 308 16 Renormalization 315 16.1 The Cutoff as Scale Parameter 315 16.2 RG Trajectories 318 16.3 Fixed points 319 16.4 Momentum Space RG 320 16.5 Real Space RG 322 16.6 Renormalization of Correlation Functions 325 16.7 Relevant and Irrelevant Parameters 326 16.8 The Free Field 327 16.9 IR Fixed Point and Phase Transition 329 16.10 Crossover 330 16.11 Perturbative Renormalization Revisited 331 16.12 Critical Evaluation 332 16.13 Why Correct Theories Are Beautiful 333 17 The Gaussian Fixed Point 339 17.1 Stability of the Free Field 339

Contents IXI 17.2 General Scalar Field 340 17.3 Feynman Graphs 341 17.4 Wegner-Houghton Equation 343 17.5 Renormalized Couplings 346 17.6 The RG Matrix 348 17.7 Non-Triviality and Asymptotic Freedom 351 17.8 The Case d = 2 353 18 In two Dimensions 357 18.1 Absence of Long-Range Order 357 18.2 Topological Order 358 18.3 XY Model 360 18.4 Kosterlitz-Thouless Transition 364 18.5 Vortex Model 364 18.6 2D Superfluidity 366 18.7 RG Trajectories 368 18.8 Universal Jump of Superfluid Density 372 19 Topological Excitations 375 19.1 Topological Soliton 375 19.2 Instanton and Tunneling 378 19.3 Depinning of Charge Density Waves 379 19.4 Nonlinear Sigma Model 383 19.5 The Skyrmion 385 19.6 The Hopf Invariant 389 19.7 Fractional Spin 391 19.8 Monopoles, Vortices, and Anomalies 393 Appendix A Background Material 399 A.1 Notation 399 A.2 Classical Mechanics 400 A.3 Quantum Mechanics 401 Appendix B Superfluidity 405 B.1 Linear Response 405 B.2 Normal Fluid and Superfluid 406 B.3 Superfluid Density 408 Appendix C Polchinski's Renormalization Equation 411 C.1 Renormalization Scheme 411 C.2 The Equation 412 C.3 Asymptotically Free Scalar Field 414 Index 417