Boosted hadronic object identification using jet substructure in ATLAS Run-2

Similar documents
bb and TopTagging in ATLAS

ATLAS jet and missing energy reconstruction, calibration and performance in LHC Run-2

ATLAS Jet Reconstruction, Calibration, and Tagging

Measurement of Jet Energy Scale and Resolution at ATLAS and CMS at s = 8 TeV

Jet substructure, top tagging & b-tagging at high pt Pierre-Antoine Delsart and Jeremy Andrea

Large R jets and boosted. object tagging in ATLAS. Freiburg, 15/06/2016. #BoostAndNeverLookBack. Physikalisches Institut Universität Heidelberg

THE ATLAS TRIGGER SYSTEM UPGRADE AND PERFORMANCE IN RUN 2

Top tagging at CMS. Torben Dreyer on behalf of the CMS Collaboration. BOOST 2017, Buffalo

Improving Jet Substructure Performance in ATLAS with Unified Tracking and Calorimeter Inputs Connecting The Dots 2018

Evidence for tth production at ATLAS

ATLAS Jet Reconstruction, Calibration, and Tagging of Lorentzboosted

QCD Jets at the LHC. Leonard Apanasevich University of Illinois at Chicago. on behalf of the ATLAS and CMS collaborations

Performance of muon and tau identification at ATLAS

arxiv: v1 [hep-ex] 28 Aug 2017

Tagging Boosted Top Quarks and Higgs Bosons in ATLAS

Hard And Soft QCD Physics In ATLAS

Resolved Top Tagger in CMS

Nikos Varelas. University of Illinois at Chicago. CTEQ Collaboration Meeting Northwestern November 20, Nikos Varelas. CTEQ Meeting Nov 20, 2009

Highlights of top quark measurements in hadronic final states at ATLAS

Measurement of the jet production properties at the LHC with the ATLAS Detector

Physics with Tau Lepton Final States in ATLAS. Felix Friedrich on behalf of the ATLAS Collaboration

Boosted Top Resonance Searches at CMS

Boosted Top Tagging with Neural Networks

Effects of Jet Substructure Selection in

Top production measurements using the ATLAS detector at the LHC

Upgrade of ATLAS and CMS for High Luminosity LHC: Detector performance and Physics potential

Search for heavy BSM particles coupling to third generation quarks at CMS

Physics potential of ATLAS upgrades at HL-LHC

Top quarks objects definition and performance at ATLAS

Jet physics in ATLAS. Paolo Francavilla. IFAE-Barcelona. Summer Institute LNF , QCD, Heavy Flavours and Higgs physics

Top Quark Production at the LHC. Masato Aoki (Nagoya University, Japan) For the ATLAS, CMS Collaborations

arxiv: v1 [hep-ex] 7 Jan 2019

Measurement of t-channel single top quark production in pp collisions

Pre-Processing and Re-Weighting Jet Images with Different Substructure Variables

Physics at Hadron Colliders

Reconstructing low mass boosted A bb at LHCb

Optimizing Selection and Sensitivity Results for VV->lvqq, 6.5 pb -1, 13 TeV Data

Jet tagging with ATLAS for discoveries in Run II

Measurement of multijets and the internal structure of jets at ATLAS

Measurement of the Z ττ cross-section in the semileptonic channel in pp collisions at s = 7 TeV with the ATLAS detector

Jet Reconstruction and Energy Scale Determination in ATLAS

Top-tagging at high jet multiplicity

Distinguishing quark and gluon jets at the LHC

Measurements of the tt Cross Section and Top Mass at CDF

Highlights of top-quark measurements in hadronic nal states at ATLAS

Physics object reconstruction in the ATLAS experiment

Jet Substructure. Adam Davison. University College London

Particle Identification at LHCb. IML Workshop. April 10, 2018

Jet Physics. Yazid Delenda. 1st Jijel Meeting on Theoretical Physics. Jijel, October 29-31, University Batna 1

Boosted Top Tagging with Deep Neural Networks

The Heavy Quark Search at the LHC

JET FRAGMENTATION DENNIS WEISER

Risultati dell esperimento ATLAS dopo il run 1 di LHC. C. Gemme (INFN Genova), F. Parodi (INFN/University Genova) Genova, 28 Maggio 2013

Recent QCD results from ATLAS

Search for a SM-like Higgs boson. Zijun Xu Peking University ISHP, Beijing Aug 15, 2013

Search for the Higgs boson in the t th production mode using the ATLAS detector

How to Measure Top Quark Mass with CMS Detector??? Ijaz Ahmed Comsats Institute of Information Technology, Islamabad

Substructure at CMS:

2 ATLAS operations and data taking

Results on QCD jet production at the LHC (incl. Heavy flavours)

b hadron properties and decays (ATLAS)

tt production in the forward region at LHCb

Dark matter searches and prospects at the ATLAS experiment

Higgs Searches with taus in the final state in ATLAS

Christian Wiel. Reconstruction and Identification of Semi-Leptonic Di-Tau Decays in Boosted Topologies at ATLAS

Jet reconstruction. What are jets? How can we relate the measured jets to the underlying physics process? Calibration of jets Tagging of jets

Measurement of the associated production of direct photons and jets with the Atlas experiment at LHC. Michele Cascella

Demystifying Multivariate Searches

Measurement of photon production cross sections also in association with jets with the ATLAS detector

QCD Multijet Background and Systematic Uncertainties in Top Physics

Feasibility of a cross-section measurement for J/ψ->ee with the ATLAS detector

Flavour Tagging at ATLAS

Preparations for SUSY searches at the LHC

Statistical Tools in Collider Experiments. Multivariate analysis in high energy physics

A Measurement Of WZ/ZZ ll+jj Cross Section. Rahmi Unalan Michigan State University Thesis Defense

Boosted searches for WW/WZ resonances in

Search for W' tb in the hadronic final state at ATLAS

Top Quark Mass Reconstruction from High Pt Jets at LHC

How to find a Higgs boson. Jonathan Hays QMUL 12 th October 2012

Introduction to Jets. Hsiang nan Li ( 李湘楠 ) Academia Sinica, Taipei. July. 11, 2014

PoS(ICHEP2012)311. Identification of b-quark jets in the CMS experiment. Sudhir Malik 1

Preparations for SUSY searches at the LHC

Optimization of selection and data-driven background estimation for the boosted di-higgs to 4b final state search

arxiv: v1 [hep-ex] 16 Jan 2019

Charged Particle Multiplicity in pp Collisions at s = 13 TeV

CDF top quark " $ )(! # % & '

QCD and Top physics studies in proton-proton collisions at 7 TeV centre-of-mass energy with the ATLAS detector

Mono-X, Associate Production, and Dijet searches at the LHC

Measurement of the top pair invariant mass distribution and search for New Physics using the CMS experiment

Factorization for Jet Substructure. Andrew Larkoski Reed College

Probing electroweak symmetry breaking! with Higgs pair production at the LHC

QCD at the Tevatron: The Production of Jets & Photons plus Jets

Tau Lepton Reconstruction in ATLAS. Tau 2016 Conference, Beijing, 21st September 2016

Physics at Hadron Colliders Part II

Search for single production of vector-like quarks decaying into a W-boson and a b-quark at 13 TeV

QCD Studies at LHC with the Atlas detector

Top production at the Tevatron

Thesis. Wei Tang. 1 Abstract 3. 3 Experiment Background The Large Hadron Collider The ATLAS Detector... 4

New physics searches with top quarks at ATLAS

Top properties and ttv LHC

Transcription:

Boosted hadronic object identification using jet substructure in ATLAS Run-2 Emma Winkels on behalf of the ATLAS collaboration HEPMAD18

Outline Jets and jet substructure Top and W tagging H bb tagging Mass-decorrelated taggers Summary 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 1

Jets 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 2

What is a jet? Jets are objects constructed from the energy deposits left by collimated sprays of particles. Attempt to group inputs from common sources together.

What is a jet? Jets are objects constructed from the energy deposits left by collimated sprays of particles. Attempt to group inputs from common sources together. Hard scattering

What is a jet? Parton shower Jets are objects constructed from the energy deposits left by collimated sprays of particles. Attempt to group inputs from common sources together. Hard scattering

Parton shower What is a jet? Jets are objects constructed from the energy deposits left by collimated sprays of particles. Attempt to group inputs from common sources together. Hard scattering Hadronization

11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 7

Inputs to jets ATLAS uses calorimeter objects and tracks as jet inputs. Calorimeter measures energy of particles. Starts with topological clustering of calorimeter cells. The ATLAS detector Muon Neutrino Proton Neutron Muon spectrometer Seed cells, E > 4σ above noise Hadronic calorimeter Growth cells, E > 2σ above noise Boundary cells Final topoclusters Inner detector Photon Electron Electromagnetic calorimeter LHC beampipe 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 8

How to define a jet There is no unique way to define a jet Different jet algorithms to cluster energy constituents into a jet: Anti-k ' : cluster hard (high-p ' ) and close (small R) energy deposits first k ' : cluster soft (low-p ' ) and close Cambridge/Aachen: cluster close 12 constituents = large E = small E R 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 9

Boosted jets Different jet radii (R) for different purposes: Small jets for quarks and gluons Large jets for hadronic decays of W, Z, H, top.. θ 2m/pT Increasing pt 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 10

Jet substructure Access the inner structure of large jets* Jet substructure variables are some function of Number of constituents Energy of the constituents Angular separation of the constituents ( R) Jet substructure helps us in jet tagging R 12 constituents = large E = small E * We use jet grooming to cut away the soft parts of jets, see 1510.05821 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 11

Jet tagging Identify the particle that produced the jet. Used in broad range of physics analyses. Analyses looking at boosted top/higgs/w: distinguish these large jets from quark/gluon jets Analyses with b-hadrons or c-hadrons in the final state: heavy flavour tagging (b-, c-quark jets) 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 12

Top/W tagging ATLAS-CONF-2017-064 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 13

Commissioning of a tagger ATLAS process from idea to tagger used for physics analyses: Use MC to choose tagger Check data/mc Measure efficiencies in data & MC Calculate uncertainties on efficiencies 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 14

Use MC to choose tagger Two-variable tagging Simple cut-based tagging works well: W: m 1234 + D 7 Top: m 1234 + τ 97 m 1234 : Combined mass, combines calorimeter clusters with tracks to give more stable mass performance at high-p '. D 7 : Energy correlation ratio, distinguishes between one-prong and two-prong jets. τ 97 : N-subjettiness, distinguishes between two-prong and three-prong jets. 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 15

Use MC to choose tagger Two-variable tagging Simple cut-based tagging works well: W: m 1234 + D 7 Top: m 1234 + τ 97 m 1234 : Combined mass, combines calorimeter clusters with tracks to give more stable mass performance at high-p '. D 7 : Energy correlation ratio, distinguishes between one-prong and two-prong jets. τ 97 : N-subjettiness, distinguishes between two-prong and three-prong jets. W tagging performance ATLAS-CONF-2017-064 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 16

Use MC to choose tagger Machine learning taggers - BDT Machine learning techniques allow for the use of multiple variables Boosted decision tree (BDT): sequentially adding variables improves classification over two-variable tagging W tagging Top tagging bkg ) Relative background rejection (1/ rel 60 50 40 30 20 10 0 D 2 comb m p T ATLAS Simulation Preliminary s = 13 TeV, BDT W Tagging Trimmed anti-k t R = 1.0 jets rel sig p true 21 KtDR τ T comb m = 50% = [200,2000] GeV 3 a > 40 GeV, η true < 2.0 1 τ P FW R 2 A 2 C 2 τ z cut d 12 3 e bkg ) Relative background rejection (1/ rel 9 8 7 6 5 4 3 2 1 0 τ 32 comb m 23 d ATLAS Simulation Preliminary s = 13 TeV, BDT Top Tagging Trimmed anti-k t R = 1.0 jets rel sig p D 2 true T comb m W Q = 80% = [350,2000] GeV > 40 GeV, η true < 2.0 d 12 21 τ 3 e 2 τ p T 2 C 1 τ τ 3 ATLAS-CONF-2017-064 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 17

Use MC to choose tagger Machine learning taggers - DNN ATLAS evaluated TopoDNN* top tagger. Uses deep neural network (DNN) with topocluster jet constituents as inputs. Performance is better with lowlevel inputs than standard machine learning taggers. Background rejection (1 / bkg ) 4 10 3 10 2 10 10 DNN top BDT top Shower Deconstruction 2-var optimised tagger TopoDNN ATLAS-CONF-2017-064 ATLAS Simulation Preliminary s = 13 TeV Trimmed anti-k t R = 1.0 jets η true < 2.0 true p = [1500, 2000] GeV T Top tagging HEPTopTagger v1, m comb > 60 GeV τ 32 TopoDNN: Low level inputs (four momenta) * More details on TopoDNN: 1704.02124. DNN: High level inputs (constructed variables) 1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Signal efficiency ( sig ) 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 18

Measurements in data Use MC to choose tagger Check data/mc Events / 5 GeV 10000 ATLAS Preliminary Data 2015+2016-1 s = 13 TeV, 36.1 fb tt (top) Trimmed anti-k tt (W ) t R=1.0 jets tt (other) 8000 R(large-R jet, b-jet) > 1.0 Single Top (W ) p > 200 GeV T Single Top (other) W + jets 6000 VV, Z + jets, multijet Total uncert. Stat. uncert. tt modelling uncert. 4000 W enriched sample Events / 5 GeV 2500 Data 2015+2016 tt (top) tt (W ) tt (other) 2000 Single Top (W ) Single Top (other) W + jets 1500 VV, Z + jets, multijet Total uncert. Stat. uncert. tt modelling uncert. 1000 Top enriched sample ATLAS Preliminary -1 s = 13 TeV, 36.1 fb Trimmed anti-k t R=1.0 jets R(large-R jet, b-jet) < 1.0 p > 350 GeV T 2000 500 Data/Pred. 1.5 1 0.5 Data/Pred. 1.5 1 0.5 60 80 100 120 140 160 180 200 220 240 60 80 100 120 140 160 180 200 220 240 comb Leading large-r jet m [GeV] ATLAS-CONF-2017-064 60 80 100 120 140 160 180 200 220 240 comb Leading large-r jet m [GeV] 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 19

Use MC to choose tagger Check data/mc Measure efficiencies in data & MC Calculate uncertainties on efficiencies W/top tagging efficiency Need to measure efficiency in data and get uncertainty on this efficiency*. Full ATLAS 2015-2016 dataset of 36.1 36.7 fb CD Measure top/w tagging efficiency in tt lepton+jets samples. Measure multijet rejection in dijet and γ +jets samples. * Also done in V+jets: ATLAS-CONF-2018-016 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 20

Use MC to choose tagger Check data/mc Measure efficiencies in data & MC Calculate uncertainties on efficiencies W/top tagging efficiency vs. pile-up Pile-up is the resulting signal in the detector from other interactions besides the hard scatter we want to look at. Expressed as the mean number of interactions per bunch crossing. 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 21

Use MC to choose tagger Check data/mc Measure efficiencies in data & MC Calculate uncertainties on efficiencies W/top tagging efficiency vs. pile-up pre-fit ϵ IJ = SQOOTU L MNOPQR SQOOTU L VLMNOPQR MNOPQR PWS SQOOTU ϵ XYZY = SQOOTU L [NSSTU MNOPQR SQOOTU PWS SQOOTU L [NSSTU MNOPQR VL [NSSTU MNOPQR post-fit Signal efficiency ( sig ) Data/MC 0.6 ATLAS Preliminary -1 Data 2015+2016 0.5 0.4 0.3 0.2 1.5 0.5 1 s = 13 TeV, 36.1 fb lepton+jets selection Trimmed anti-k t R=1.0 jets W tagger ( = 50%): m comb sig + D 2 p > 200 GeV T W tagger PowhegPythia6 Total uncert. 10 20 30 40 10 20 30 40 Mean number of interactions per bunch crossing µ 10 20 30 40 ATLAS-CONF-2017-064 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 22 Signal efficiency ( sig ) Data/MC 1.5 1 0.5 1.2 0.8 1 ATLAS Preliminary s = 13 TeV, 36.1 fb lepton+jets selection Trimmed anti-k t R=1.0 jets Top tagger ( sig = 80%): TopoDNN p > 450 GeV T TopoDNN tagger -1 Data 2015+2016 PowhegPythia6 Total uncert. 10 20 30 40 Mean number of interactions per bunch crossing µ

Use MC to choose tagger Check data/mc Measure efficiencies in data & MC Calculate uncertainties on efficiencies Multijet rejection vs. pile-up Background rejection (1/ bkg ) 160 140 120 100 80 60 40 20 W tagger ATLAS Preliminary -1 s = 13 TeV, 36.7 fb Trimmed anti-k t R=1.0 jets Multijet Selection W tagger ( sig = 50%): comb m + D 2 Data 2015+2016 Pythia8 Herwig++ Stat. uncert. Total uncert. Background rejection (1/ bkg ) 50 45 40 35 30 25 20 15 10 5 TopoDNN tagger ATLAS Preliminary Data 2015+2016-1 s = 13 TeV, 36.7 fb Pythia8 Trimmed anti-k Herwig++ t R=1.0 jets Stat. uncert. Multijet Selection Total uncert. Top tagger ( sig = 80%): TopoDNN Data/Pred. 2 1.5 1 0.5 0 5 10 15 20 25 30 35 40 Mean number of interactions per bunch crossing µ Data/Pred. ATLAS-CONF-2017-064 25 10 15 20 25 30 35 40 1.5 1 0.5 0 5 10 15 20 25 30 35 40 Mean number of interactions per bunch crossing µ 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 23

H bb tagging ATL-PHYS-PUB-2017-010 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 24

Overview b H BOOST b b] H BOOST b] b H b] Current nominal tagger identifies b-jets with multivariate algorithm on anti-k ' R=0.2 track-jets. Loses efficiency at high-p ' due to b- jets merging. 3 new subjet reconstruction techniques to mitigate this loss. 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 25

1 Variable radius track jets Subjets with dynamic radius parameter: ATL-PHYS-PUB-2017-010 R^ p ' = ` a b with low (R cde ) and high (R cfg ) cutoff. Scans performed over ρ, R cde, R cfg to find optimal values 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 26

2 Exclusive-k ' Recluster trimmed large-r jet calorimeter constituents with k ' algorithm and stop when 2 jets are obtained. Splits the large-r jet into two parts, each of which is expected to contain one b-hadron. 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 27

3 Centre-of-mass Boost jet calorimeter clusters to the centre-of-mass frame of the large-r jet (jet rest frame) and reconstruct subjets. Tracks for b-tagging are also boosted to the centre-of-mass frame. 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 28

Results New methods show large improvement over nominal tagger for p ' > 1000 GeV. New methods Nominal ATL-PHYS-PUB-2017-010 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 29

Mass decorrelation ATL-PHYS-PUB-2018-014 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 30

Mass decorrelated taggers Jet substructure variables are correlated with jet mass. When you put many of them into a multivariate analysis the correlation gets very strong. Sculpting of the multijet background -> resembles the resonance jet mass distribution Depopulates side-band regions Aim to decorrelate jet substructure classifiers from jet mass ATL-PHYS-PUB-2017-004 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 31

Designed decorrelated taggers (DDT) τ 7D variable distinguishes 1-prong from 2-prong jets Has a linear relationship to jet scaling variable ρ kkl for masses > 80 GeV ATL-PHYS-PUB-2018-014 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 32

Designed decorrelated taggers (DDT) τ 7D variable distinguishes 1-prong from 2-prong jets Has a linear relationship to jet scaling variable ρ kkl for masses > 80 GeV ATL-PHYS-PUB-2018-014 τ 7D after DDT transformation Standard τ 7D 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 33

Summary 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 34

Summary Top/W tagging: Machine learning taggers perform better than 2-variable taggers Machine learning tagger with low-level inputs (TopoDNN) performs the best for top tagging Signal efficiency & background rejection in data are well modelled by MC H bb tagging: 3 new subjet reconstruction techniques to overcome loss of efficiency at high p ' due to b-jet merging Large improvement over nominal tagger for p ' > 1000 GeV Mass decorrelated taggers: Various approaches studied with promising results 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 35

Fin. 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 36

Back-up 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 37

The ATLAS coordinate system η = ln tan θ 2 R = η 7 + φ 7 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 38

Granularity of ATLAS calorimeter The hadronic calorimeter is coarser than the EM calorimeter. If we want to use all calorimeter layers we are limited by coarsest layer (R cde ~0.2). But we can also ignore coarse layers and use only very fine layers. EM granularity: η φ 0.025 π/128 Hadronic granularity: η φ 0.1 π/32 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 39

Jet trimming 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 40

Combined mass Track-assisted mass: m lx = m ZyY1z { }QRW { S~Q} ATLAS-CONF-2016-035 in which m ZyY1z and p l ZyY1z are the invariant mass and pt calculated from tracks associated with the large-r trimmed calorimeter jet and p l 1Y 2 is the pt of the original trimmed large-r jet. Calorimeter mass: m fƒ = E d d 7 p d d 7 m 1234 = a m 1Y 2 + b m lx with a = ˆ}QRW Š ˆ}QRW Š Vˆ and b = ˆ Š Š ˆ}QRW Š Š Vˆ where σ 1Y 2 and σ lx are the calorimeter-based jet mass resolution function and the track-assisted mass resolution function respectively. 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 41

JSS variables Energy correlation ratio: D 7 = Œ (Œ Š ) where e 7 and e 9 are the 2- and 3-prong energy correlation functions which are sensitive to the 2- and 3-prong structure in a jet. N-subjettiness: τ 97 = τ 9 /τ 7 where τ L = 1 p d l,z min ( R Dz, R 7z,, R Lz ), d = p lz R z R is radius parameter of the jet, p lz is transverse momentum of constituent k, and δr z is the distance between the subjet i and the constituent k. The N-subjettiness variable τ L expresses how well a jet can be described as containing N subjets. Jet mass calculated from constituents: m 7 = E d d 7 p 7 d d z 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 42

W tagging with ML methods Background rejection (1 / bkg ) 4 10 3 10 2 10 10 DNN W BDT W 2-var optimised tagger, m comb D 2 [60, 100] GeV Low pt ATLAS Simulation Preliminary s = 13 TeV Trimmed anti-k t R = 1.0 jets η true < 2.0 true p = [200, 500] GeV T W tagging Background rejection (1 / bkg ) 4 10 3 10 2 10 10 DNN W BDT W 2-var optimised tagger, m comb D 2 [60, 100] GeV High pt ATLAS Simulation Preliminary s = 13 TeV Trimmed anti-k t R = 1.0 jets η true < 2.0 true p = [1000, 1500] GeV T W tagging 1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Signal efficiency ( sig ) 1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Signal efficiency ( sig ) 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 43

TopoDNN Uses p l, η, φ of 10 leading topoclusters in trimmed large-r jet. Normalized units 0.16 0.14 0.12 ATLAS Simulation Preliminary s = 13 TeV Pythia 8 Pythia 8 Multijet Z Cluster 0 Cluster 1 Cluster 2 Cluster 9 0.1 0.08 0.06 Trimmed anti-k t R=1.0 jets Light Quark Jet Sample : p > 450 GeV T Top Quark Jet Sample: p > 150 GeV T 0.04 0.02 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 fraction of cluster 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 44 p T

Top/W tagging in data 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 45

W/top tagging efficiency Need to measure efficiency in data and get uncertainty on this efficiency. Measure signal-like events in data to fit large-r jet mass for events passing/failing a tagger Passing tag Failing tag Events / 10 GeV 1200 ATLAS Preliminary -1 Data 2015+2016 s = 13 TeV, 36.1 fb tt signal 1000 non-tt background tt background 800 600 400 200 lepton+jets selection Trimmed anti-k t R=1.0 jets Top tagger ( = 80%): m comb sig + τ 32 Tag pass 350 GeV < p < 400 GeV T Events / 10 GeV 800 600 400 200 ATLAS Preliminary s = 13 TeV, 36.1 fb -1 Data 2015+2016 tt signal non-tt background tt background lepton+jets selection Trimmed anti-k t R=1.0 jets Top tagger ( = 80%): m comb sig + τ 32 Tag fail 350 GeV < p < 400 GeV T Data/MC 1.50 100 200 300 400 1 0.5 0 100 200 300 400 m comb [GeV] Data/MC 1.50 100 200 300 400 1 0.5 0 100 200 300 400 m comb [GeV] 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 46

W/top tagging efficiency vs. jet pt pre-fit ϵ IJ = SQOOTU L MNOPQR SQOOTU L VLMNOPQR MNOPQR PWS SQOOTU ϵ XYZY = SQOOTU L [NSSTU MNOPQR SQOOTU PWS SQOOTU L [NSSTU MNOPQR VL [NSSTU MNOPQR post-fit Signal efficiency ( sig ) Data/MC 0.6 ATLAS Preliminary -1 Data 2015+2016 0.5 0.4 0.3 0.2 W tagger s = 13 TeV, 36.1 fb lepton+jets selection Trimmed anti-k t R=1.0 jets W tagger ( = 50%): m comb sig + D 2 PowhegPythia6 Total uncert. 1.5 200 300 400 500 600 0.5 1 200 300 400 500 600 Leading large-r jet p [GeV] T Signal efficiency ( sig ) Data/MC 1.5 1 0.5 1.5 1 0.5 ATLAS Preliminary TopoDNN tagger s = 13 TeV, 36.1 fb lepton+jets selection Trimmed anti-k t R=1.0 jets Top tagger ( sig = 80%): TopoDNN -1 Data 2015+2016 PowhegPythia6 Total uncert. 500 600 700 800 900 1000 500 600 700 800 900 1000 Leading large-r jet p [GeV] T 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 47

Multijet rejection vs. jet pt Background rejection (1/ bkg ) 160 140 120 100 80 60 40 W tagger ATLAS Preliminary -1 s = 13 TeV, 36.7 fb Trimmed anti-k t R=1.0 jets Multijet Selection W tagger ( sig = 50%): comb m + D 2 Data 2015+2016 Pythia8 Herwig++ Stat. uncert. Total uncert. Background rejection (1/ bkg ) 40 35 30 25 20 15 10 TopoDNN tagger ATLAS Preliminary Data 2015+2016-1 s = 13 TeV, 36.7 fb Pythia8 Trimmed anti-k Herwig++ t R=1.0 jets Stat. uncert. Multijet Selection Total uncert. Top tagger ( sig = 80%): TopoDNN 20 5 Data/Pred. 2500 1000 1500 2000 2500 1.5 1 0.5 0 500 1000 1500 2000 2500 Data/Pred. 2 1.5 1 0.5 0 500 1000 1500 2000 2500 Leading large-r Jet p T [GeV] Leading large-r Jet p T [GeV] 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 48

Variable radius track jets 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 49

Results H->bb tagging techniques 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 50

H->bb tagging results 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 51

Designed decorrelated taggers Linear fit on the relationship between τ 7D and rho. Transformation is: τ 7D ' = τ 7D a ρ ' 1.5 a is the slope of the fit in the plot. DDT transformation removes the linear correlation of τ 7D with ρ. Since ρ has info on kinematics of the jet (m and pt), the DDT transform yields a JSS discriminant which is decorrelated from the jet mass. 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 52

Mass decorrelation 11/09/2018 Emma Winkels ewinkels@cern.ch HEPMAD18 53