Some Remarks on Minimal Clones

Similar documents
Polynomials as Generators of Minimal Clones

Chapter 6: Rational Expr., Eq., and Functions Lecture notes Math 1010

Discrete Mathematics. CS204: Spring, Jong C. Park Computer Science Department KAIST

Finite Simple Abelian Algebras are Strictly Simple

Bernhard Nebel, Julien Hué, and Stefan Wölfl. June 27 & July 2/4, 2012

COLLAPSING PERMUTATION GROUPS

THE JOIN OF TWO MINIMAL CLONES AND THE MEET OF TWO MAXIMAL CLONES. Gábor Czédli, Radomír Halaš, Keith A. Kearnes, Péter P. Pálfy, and Ágnes Szendrei

ADDITIVE DECOMPOSITION SCHEMES FOR POLYNOMIAL FUNCTIONS OVER FIELDS

3. Abstract Boolean Algebras

A GUIDE FOR MORTALS TO TAME CONGRUENCE THEORY

Small Non-Associative Division Algebras up to. Isotopy

On the Structure of Rough Approximations

Infinitely many maximal primitive positive clones in a diagonalizable algebra

CLASSIFYING THE COMPLEXITY OF CONSTRAINTS USING FINITE ALGEBRAS

A strongly rigid binary relation

A monoidal interval of clones of selfdual functions

Northwood High School Algebra 2/Honors Algebra 2 Summer Review Packet

Subdirectly Irreducible Modes

A function is a special kind of relation. More precisely... A function f from A to B is a relation on A B such that. f (x) = y

TROPICAL SCHEME THEORY

A NOTE ON MULTIPLIERS OF SUBTRACTION ALGEBRAS

2 Two-Point Boundary Value Problems

Testing assignments to constraint satisfaction problems

1 The Algebraic Normal Form

A field F is a set of numbers that includes the two numbers 0 and 1 and satisfies the properties:

plus = +:RxR--->R, a binary operation; times = *:RxR--->R, another binary operation; constant elements zero = 0, one = 1 in R ;

Math 110 Midterm 1 Study Guide October 14, 2013

ON STRUCTURE AND COMMUTATIVITY OF NEAR - RINGS

NOTES ON CONGRUENCE n-permutability AND SEMIDISTRIBUTIVITY

A Generalization of Boolean Rings

where c R and the content of f is one. 1

CHAPTER 10: POLYNOMIALS (DRAFT)

RINGS IN POST ALGEBRAS. 1. Introduction

Algebras. Riley Chien. April 27, 2015

Lesson 3: Polynomials and Exponents, Part 1

G52DOA - Derivation of Algorithms Predicate Logic

BINARY REPRESENTATIONS OF ALGEBRAS WITH AT MOST TWO BINARY OPERATIONS. A CAYLEY THEOREM FOR DISTRIBUTIVE LATTICES

Contents. Appendix D (Inner Product Spaces) W-51. Index W-63

POSITIVE POLYNOMIALS LECTURE NOTES (09: 10/05/10) Contents

arxiv: v1 [math.ra] 22 Dec 2018

Existence and uniqueness: Picard s theorem

Math 418 Algebraic Geometry Notes

Section VI.33. Finite Fields

Chapter 5. Modular arithmetic. 5.1 The modular ring

Generalized Boolean and Boolean-Like Rings

International Workshop on Mathematics of Constraint Satisfaction: Algebra, Logic and Graph Theory

ON A THEOREM OF TARTAKOWSKY

THE WONDERLAND OF REFLECTIONS

10. Noether Normalization and Hilbert s Nullstellensatz

Algebraic closure of some generalized convex sets

MATH 409 Advanced Calculus I Lecture 12: Uniform continuity. Exponential functions.

Clones (3&4) Martin Goldstern. TACL Olomouc, June Discrete Mathematics and Geometry, TU Wien

On a quasi-ordering on Boolean functions

3 FUNCTIONS. 3.1 Definition and Basic Properties. c Dr Oksana Shatalov, Fall

Quasi-reducible Polynomials

arxiv:cs/ v1 [cs.cc] 13 Jun 2006

Section 33 Finite fields

Preprint MCS-P , Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Ill., November 1993.

Derivatives in 2D. Outline. James K. Peterson. November 9, Derivatives in 2D! Chain Rule

x y More precisely, this equation means that given any ε > 0, there exists some δ > 0 such that

Algebras with finite descriptions

Logic Synthesis and Verification

STEP Support Programme. Pure STEP 1 Questions

Computation of De Morgan and Quasi-De Morgan Functions

Class Meeting # 9: Poisson s Formula, Harnack s Inequality, and Liouville s Theorem

THE DEGREE DISTRIBUTION OF RANDOM PLANAR GRAPHS

Lecture Notes on Metric Spaces

be any ring homomorphism and let s S be any element of S. Then there is a unique ring homomorphism

ON ENDOMORPHISM MONOIDS OF PARTIAL ORDERS AND CENTRAL RELATIONS 1

On Additive Polynomials

Lagrange Multipliers

Immerse Metric Space Homework

Disjointness conditions in free products of. distributive lattices: An application of Ramsay's theorem. Harry Lakser< 1)

Math Boot Camp Functions and Algebra

Determining elements of minimal index in an infinite family of totally real bicyclic biquadratic number fields

First order Logic ( Predicate Logic) and Methods of Proof

Chapter 8. Exploring Polynomial Functions. Jennifer Huss

TESTING FOR A SEMILATTICE TERM

Class Meeting # 9: Poisson s Formula, Harnack s Inequality, and Liouville s Theorem

Boolean Algebra CHAPTER 15

Extending Algebraic Operations to D-Completions

Mathematics 426 Robert Gross Homework 9 Answers

Degree of commutativity of infinite groups

LATTICE AND BOOLEAN ALGEBRA

MA22S3 Summary Sheet: Ordinary Differential Equations

Mathematical Foundations of Logic and Functional Programming

(z 0 ) = lim. = lim. = f. Similarly along a vertical line, we fix x = x 0 and vary y. Setting z = x 0 + iy, we get. = lim. = i f

BURGESS INEQUALITY IN F p 2. Mei-Chu Chang

Expansions of Heyting algebras

A note on the Isomorphism Problem for Monomial Digraphs

Irreducible multivariate polynomials obtained from polynomials in fewer variables, II

EQ-algebras: primary concepts and properties

MATH 307: Problem Set #3 Solutions

Finite Fields. [Parts from Chapter 16. Also applications of FTGT]

1 Absolute values and discrete valuations

STRICTLY ORDER PRIMAL ALGEBRAS

Warm Up Lesson Presentation Lesson Quiz. Holt Algebra 2 2

SPECIAL POINTS AND LINES OF ALGEBRAIC SURFACES

Complete permutation polynomials of monomial type

Series Solutions of Differential Equations

Transcription:

ALGORITHMIC COMPLEXITY and UNIVERSAL ALGEBRA 2007. 7. 16. 7. 20. Szeged, Hungary Some Remarks on Minimal Clones Hajime MACHIDA (Tokyo) Joint Work with Michael PINSKER (Wien)

ALGORITHMIC COMPLEXITY and UNIVERSAL ALGEBRA 2007. 7. 16. 7. 20. Szeged, Hungary Some Remarks on Minimal Clones A Minimal Adventure to the World of Béla Csákány Hajime MACHIDA (Tokyo) Joint Work with Michael PINSKER (Wien)

1 Where to Start 3

1 Where to Start Béla Csákány 4

1 Where to Start Béla Csákány In 1983, B. Csákány published the following paper : B. Csákány, All minimal clones on the three element set, Acta Cybernet., Vol. 6, 227-238, 1983 where he determined all minimal clones on a three-element set. Number of minimal clones = 84 5

0 Just in Case... Definitions clone C ( O k ) : clone on E k (i) (ii) C : closed under composition C J k L k : lattice of all clones on E k minimal clone C ( L k ) : minimal clone (i) C J k (ii) for C L k, J k C C = C = C 6

1 Where to Start... Continued Generators of Minimal Clones on a Three-Element Set ( B. Csákány, 1983 ) Each of the following operations generates mutually distinct minimal clone. 7

(II) Binary idempotent operations 0 0 0 0 1 1 0 2 2 b 0 = 0 1 0 b 364 = 1 1 1 b 728 = 2 1 2 0 0 2 1 1 2 2 2 2 0 0 0 0 1 1 0 0 0 b 8 = 0 1 0 b 368 = 1 1 1 b 80 = 2 1 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 2 2 b 36 = 1 1 1 b 40 = 1 1 1 b 692 = 1 1 1 0 0 2 1 1 2 2 2 2 0 0 0 0 1 0 0 1 2 b 10 = 0 1 1 b 280 = 1 1 1 b 458 = 1 1 2 0 1 2 0 1 2 2 2 2 0 0 0 0 1 2 0 0 2 b 20 = 0 1 2 b 448 = 1 1 1 b 188 = 0 1 2 0 2 2 2 1 2 2 2 2 8

0 0 0 0 1 0 0 0 2 b 11 = 0 1 1 b 286 = 1 1 1 b 215 = 1 1 2 0 2 2 2 1 2 2 2 2 0 0 0 0 1 0 0 1 0 b 16 = 0 1 1 b 281 = 1 1 1 b 296 = 1 1 2 2 1 2 0 2 2 2 2 2 0 0 0 0 0 2 0 0 2 b 47 = 1 1 2 b 205 = 1 1 1 b 179 = 0 1 1 0 2 2 2 1 2 2 2 2 0 0 0 0 1 0 0 0 0 b 17 = 0 1 1 b 287 = 1 1 1 b 53 = 1 1 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 2 b 38 = 1 1 1 b 43 = 1 1 1 b 206 = 1 1 1 0 2 2 2 1 2 2 2 2 0 0 0 0 1 2 0 0 0 b 26 = 0 1 2 b 449 = 1 1 1 b 37 = 1 1 1 2 2 2 2 2 2 0 1 2 9

0 0 0 0 0 1 0 2 0 b 33 = 1 1 0 b 122 = 1 1 1 b 557 = 2 1 1 2 0 2 1 2 2 2 2 2 0 0 0 0 0 1 0 0 0 b 35 = 1 1 0 b 125 = 1 1 1 b 71 = 2 1 1 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 2 0 b 42 = 1 1 1 b 41 = 1 1 1 b 530 = 1 1 1 2 0 2 1 2 2 2 2 2 0 0 0 0 2 0 0 0 1 b 68 = 2 1 1 b 528 = 1 1 1 b 116 = 1 1 0 1 2 2 2 0 2 2 2 2 0 0 0 0 0 1 b 178 = 1 1 0 b 290 = 1 1 1 2 0 2 1 2 2 10

0 2 1 b 624 = 2 1 0 1 0 2 11

(III) Ternary majority operations 0 0 0 0 1 0 0 0 2 m 0 = 0 1 0 1 1 1 0 1 2 0 0 2 0 1 2 2 2 2 0 0 0 0 1 1 0 1 2 m 364 = 0 1 1 1 1 1 1 1 2 0 1 2 1 1 2 2 2 2 0 0 0 0 1 2 0 2 2 m 728 = 0 1 2 1 1 1 2 1 2 0 2 2 2 1 2 2 2 2 0 0 0 0 1 1 0 0 2 m 109 = 0 1 0 1 1 1 1 1 2 0 1 2 0 1 2 2 2 2 0 0 0 0 1 2 0 1 2 m 473 = 0 1 1 1 1 1 2 1 2 0 2 2 1 1 2 2 2 2 12

0 0 0 0 1 0 0 2 2 m 510 = 0 1 2 1 1 1 0 1 2 0 0 2 2 1 2 2 2 2 0 0 0 0 1 2 0 1 2 m 624 = 0 1 2 1 1 1 0 1 2 0 1 2 0 1 2 2 2 2 13

(IV) Ternary semiprojections 0 0 0 1 1 0 2 0 2 s 0 = 0 0 0 1 1 1 0 2 2 0 0 0 0 1 1 2 2 2 0 0 0 1 1 1 2 1 2 s 364 = 0 0 1 1 1 1 1 2 2 0 1 0 1 1 1 2 2 2 0 0 0 1 1 2 2 2 2 s 728 = 0 0 2 1 1 1 2 2 2 0 2 0 2 1 1 2 2 2 0 0 0 1 1 0 2 2 2 s 8 = 0 0 0 1 1 1 2 2 2 0 0 0 0 1 1 2 2 2 0 0 0 1 1 1 2 2 2 s 368 = 0 0 1 1 1 1 2 2 2 0 1 0 1 1 1 2 2 2 14

0 0 0 1 1 2 2 2 2 s 80 = 0 0 0 1 1 1 2 2 2 0 0 0 2 1 1 2 2 2 0 0 0 1 1 1 2 0 2 s 36 = 0 0 0 1 1 1 0 2 2 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 1 2 s 40 = 0 0 0 1 1 1 1 2 2 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 s 692 = 0 0 2 1 1 1 2 2 2 0 2 0 1 1 1 2 2 2 0 0 0 1 1 0 2 2 2 s 26 = 0 0 0 1 1 1 2 2 2 0 0 0 2 1 1 2 2 2 0 0 0 1 1 1 2 2 2 s 449 = 0 0 1 1 1 1 2 2 2 0 2 0 1 1 1 2 2 2 0 0 0 1 1 1 2 0 2 s 37 = 0 0 0 1 1 1 1 2 2 0 0 0 1 1 1 2 2 2 15

0 0 0 1 1 2 2 1 2 s 76 = 0 0 0 1 1 1 1 2 2 0 0 0 2 1 1 2 2 2 0 0 0 1 1 1 2 0 2 s 684 = 0 0 2 1 1 1 0 2 2 0 2 0 1 1 1 2 2 2 0 0 0 1 1 0 2 2 2 s 332 = 0 0 1 1 1 1 2 2 2 0 1 0 0 1 1 2 2 2 0 0 0 1 1 0 2 0 2 s 424 = 0 0 1 1 1 1 1 2 2 0 2 0 2 1 1 2 2 2 16

2 Tools of Our Research Polynomials over a Finite Field 17

2 Tools of Our Research Polynomials over a Finite Field Let k (> 1) be a power of a prime. We consider the base set E k = {0, 1,..., k 1} as a finite field (Galois field) GF(k), and express a function defined on E k as a polynomial over GF(k). 18

QUIZ ( Easy ) 19

QUIZ ( Easy ) Given polynomials f, g over GF(2) ( i.e., f, g : Boolean function ) f(x, y) = x y + 1 g(x, y) = x y + x + y 20

QUIZ ( Easy ) Given polynomials f, g over GF(2) ( i.e., f, g : Boolean function ) f(x, y) = x y + 1 g(x, y) = x y + x + y QUESTION : Which is weaker, f or g? ( with respect to the productive power of functions ) 21

ANSWER : g is much weaker than f 22

ANSWER : g is much weaker than f Because : f(x, y) = NAND (x, y) g(x, y) = OR (x, y) 23

QUIZ ( Hard ) 24

QUIZ ( Hard ) Given polynomials u v w over GF(3) u(x, y) = x 2 y 2 + xy 2 + x 2 y + 2xy + x + y v(x, y) = x 2 y 2 + xy 2 + x 2 y + xy + x + y w(x, y) = x 2 y 2 + xy 2 + x 2 y + 2xy + x + y + 1 25

QUIZ ( Hard ) Given polynomials u v w over GF(3) u(x, y) = x 2 y 2 + xy 2 + x 2 y + 2xy + x + y v(x, y) = x 2 y 2 + xy 2 + x 2 y + xy + x + y w(x, y) = x 2 y 2 + xy 2 + x 2 y + 2xy + x + y + 1 QUESTION : Which is the weakest among u v and w? ( with respect to the productive power of functions ) 26

ANSWER : u is the weakest. 27

ANSWER : u is the weakest. Because : (1) u(x, y) generates a minimal clone. (3) w(x, y) is Webb function which generates all functons. (2) v(x, y) is inbetween. 28

Our Hope!!............................... To characterize polynomials generating minimal clones in terms of the form of polynomials or To discover principles or rules that are common to polynomials generating minimal clones.............................. 29

3 Basic Facts on Minimal Clones Lemma A minimal clone is generated by a single function, i.e., for any minimal clone C L k there exists f O k such that C = f Proposition For any f O k, suppose f satisfies the following : (i) (ii) f J k For h f, if h J k then f h Then f generates a minimal clone. 30

Type Theorem for Minimal Clones An function f on E k is minimal if (i) it generates a minimal clone, and (ii) every function from f whose arity is smaller than the arity of f is a projection 31

Type Theorem for Minimal Clones An function f on E k is minimal if (i) it generates a minimal clone, and (ii) every function from f whose arity is smaller than the arity of f is a projection Theorem ( I. G. Rosenberg, 1986 ; Inspired by Csákány s work,... ) Every minimal function is classified in one of the following five types: (1) Unary function (2) Idempotent binary function (3) Majority function (4) Semiprojection (5) If k = 2 m, the ternary function f(x, y, z) := x + y + z where E k ; + is an elementary 2-group 32

Note f(x 1,..., x n ) : idempotent f(x,..., x) = x for x E k 33

Generators of all minimal clones of type (2) over GF(3) (Originally from B. Csákány) b 11 = xy 2 b 624 = 2x + 2y b 68 = 2x + 2xy 2 b 0 = 2x 2 y + 2xy 2 b 449 = x + y + 2x 2 y b 368 = x + y 2 + 2x 2 y 2 b 692 = x + 2y 2 + x 2 y 2 b 33 = x + 2x 2 y + xy 2 b 41 = x 2 + xy 2 + 2x 2 y 2 b 71 = 2x 2 + xy 2 + x 2 y 2 b 26 = 2x + x 2 + 2xy + 2x 2 y b 37 = 2x + 2x 2 + xy + 2x 2 y b 17 = 2x + x 2 + 2xy 2 + 2x 2 y 2 b 38 = 2x + 2x 2 + 2xy 2 + x 2 y 2 b 10 = xy + 2x 2 y + 2xy 2 + 2x 2 y 2 34

b 20 = 2xy + 2x 2 y + 2xy 2 + x 2 y 2 b 43 = x + xy + 2x 2 y + xy 2 + 2x 2 y 2 b 53 = x + 2xy + 2x 2 y + xy 2 + x 2 y 2 b 35 = x + xy + x 2 y + 2xy 2 + 2x 2 y 2 b 42 = x + 2xy + x 2 y + 2xy 2 + x 2 y 2 b 530 = x + y + y 2 + 2x 2 y + 2x 2 y 2 b 125 = x + y + 2y 2 + 2x 2 y + x 2 y 2 b 116 = x + y + xy + 2y 2 + 2xy 2 b 528 = x + y + 2xy + y 2 + 2xy 2 b 206 = x + 2y + y 2 + x 2 y + 2x 2 y 2 b 287 = x + 2y + 2y 2 + x 2 y + x 2 y 2 b 215 = x + 2y + 2xy + y 2 + xy 2 b 286 = x + 2y + xy + 2y 2 + xy 2 b 122 = y + x 2 + 2y 2 + 2x 2 y + xy 2 b 557 = y + 2x 2 + y 2 + 2x 2 y + xy 2 b 16 = 2x + x 2 + xy + 2x 2 y + x 2 y 2 b 47 = 2x + 2x 2 + 2xy + 2x 2 y + 2x 2 y 2 b 178 = 2x + 2y + x 2 + xy + y 2 b 290 = 2x + 2y + 2x 2 + 2xy + 2y 2 b 40 = x 2 + xy + 2x 2 y + 2xy 2 + x 2 y 2 35

b 80 = 2x 2 + 2xy + 2x 2 y + 2xy 2 + 2x 2 y 2 b 364 = x 2 + xy + y 2 + 2x 2 y + 2xy 2 b 728 = 2x 2 + 2xy + 2y 2 + 2x 2 y + 2xy 2 b 448 = x + y + xy + x 2 y + xy 2 + 2x 2 y 2 b 458 = x + y + 2xy + x 2 y + xy 2 + x 2 y 2 b 205 = x + 2y + xy + y 2 + xy 2 + x 2 y 2 b 296 = x + 2y + 2xy + 2y 2 + xy 2 + 2x 2 y 2 b 188 = 2x + 2y + x 2 + 2xy + y 2 + 2x 2 y 2 b 280 = 2x + 2y + 2x 2 + xy + 2y 2 + x 2 y 2 b 8 = 2x + x 2 + xy + x 2 y + xy 2 + x 2 y 2 b 36 = 2x + 2x 2 + 2xy + x 2 y + xy 2 + 2x 2 y 2 b 179 = 2x + 2y + x 2 + y 2 + x 2 y + 2xy 2 + x 2 y 2 b 281 = 2x + 2y + 2x 2 + 2y 2 + x 2 y + 2xy 2 + 2x 2 y 2 36

4 More Properties of Minimal Clones For f, g O k we write f g if g f ( Note : Binary relation on O k is a quasi-order ) Lemma Let f O (2) k be an essentially binary function. If f satisfies (1) and (2) then f is minimal. (1) f is idempotent (2) For any g O (m) k ( m 2 ) if f g then g is a projection or g f 37

Let m 3 and g O (m) k. We say g is a quasi-projection if g becomes a projection whenever two arguments of g are identified, i.e., if g(x 1,..., x i,..., x i,..., x m ) is always a projection. Lemma Let f O (2) k be a binary idempotent function. Then f is minimal (1) and (2) hold (1) For g O (2) k \ J k if f g then g f (2) For m 3 and g O (m) k \ J k if f g then g is not a quasiprojection. 38

For f O (2) k let Γ (x,y) f be : { f(f(x, y), x), f(f(x, y), y), f(x, f(x, y)), f(y, f(x, y)), f(f(x, y), f(y, x)) } Then let Γ f = Γ (x,y) f Γ (y,x) f Lemma Let f O (2) k be a binary idempotent function which is not a projection. Suppose that, for any γ Γ f, one of the following holds: γ(x, y) f(x, y) or γ(x, y) f(y, x) Then f is minimal ( Here, by h 1 (x, y) h 2 (x, y) we mean h 1 (x, y) = h 2 (x, y) for all (x, y) E 2 k ) 39

5 Polynomials generating Minimal Clones Here we consider only Binary Idempotent Minimal Functions 40

5 Polynomials generating Minimal Clones Here we consider only Binary Idempotent Minimal Functions Our Strategy Step 1 : Take arbitrary f(x, y) O (2) 3 from Csákány s list. Step 2 : Search for a polynomial g(x, y) O (2) k for k 3 whose counterpart for k = 3 is f(x, y) Step 3 : Examine if g is minimal. 41

(1) Linear Polynomials For k = 3, the binary linear polynomial is minimal. f(x, y) = 2x + 2y For k = 5, the binary linear polynomial f(x, y) = 2x + 4y is minimal, whose Cayley table is : f(x, y) = 2x + 4y x\y 0 1 2 3 4 0 0 4 3 2 1 1 2 1 0 4 3 2 4 3 2 1 0 3 1 0 4 3 2 4 3 2 1 0 4 42

Theorem (Á. Szendrei) Let k be a prime. Let f(x, y) be a binary linear polynomial on E k Then f is minimal if and only if f(x, y) = ax + (k + 1 a)y for some 1 < a < k Moreover, all such linear polynomials generate the same minimal clone. 43

(2) Monomials Consider x s y t for 1 s t < k For k = 3, f(x, y) = x y 2 is minimal. For k = 5, f(x, y) = x y 4 is minimal whose Cayley table is : f(x, y) = x y 4 x\y 0 1 2 3 4 0 0 0 0 0 0 1 0 1 1 1 1 2 0 2 2 2 2 3 0 3 3 3 3 4 0 4 4 4 4 44

Theorem Let k be a prime. (1) x y k 1 is a minimal function. (2) For any 1 < s < k 1, x s y k s is not a minimal function. 45

(3) More Examples 46

(3) More Examples Recall!! Our Strategy Step 1 : Take arbitrary f(x, y) O (2) 3 from Csákány s list. Step 2 : Search for a polynomial g(x, y) O (2) k for k 3 whose counterpart for k = 3 is f(x, y) Step 3 : Examine if g is minimal. 47

(3) More Examples (3-1) Example A Step 1 : k = 3 : x + y + 2 x y 2 48

(3) More Examples (3-1) Example A Step 1 : k = 3 : x + y + 2 x y 2 Step 2 : k 3 :??? 49

(3) More Examples (3-1) Example A Step 1 : k = 3 : x + y + 2 x y 2 Step 2 : k 3 : x + y + (k 1) x y k 1 50

(3) More Examples (3-1) Example A Step 1 : k = 3 : x + y + 2 x y 2 Step 2 : k 3 : x + y + (k 1) x y k 1 Example. k = 5 : f(x, y) = x + y + 4 x y 4 x\y 0 1 2 3 4 0 0 1 2 3 4 1 1 1 2 3 4 2 2 1 2 3 4 3 3 1 2 3 4 4 4 1 2 3 4 51

(3-2) Example B Step 1 : k = 3 : x + 2y 2 + x 2 y 2 52

(3-2) Example B Step 1 : k = 3 : x + 2y 2 + x 2 y 2 Step 2 : k 3 :??? 53

(3-2) Example B Step 1 : k = 3 : x + 2y 2 + x 2 y 2 Step 2 : k 3 : x + (k 1)y k 1 + x k 1 y k 1 54

(3-2) Example B Step 1 : k = 3 : x y 2 + 2 x 2 + x 2 y 2 Step 2 : k 3 : x + (k 1)y k 1 + x k 1 y k 1 Example. k = 5 : f(x, y) = x + 4 y 4 + x 4 y 4 x\y 0 1 2 3 4 0 0 4 4 4 4 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 55

(3-3) Example C Step 1 : k = 3 : x y 2 + 2 x 2 + x 2 y 2 56

(3-3) Example C Step 1 : k = 3 : x y 2 + 2 x 2 + x 2 y 2 Step 2 : k 3 :??? 57

(3-3) Example C Step 1 : k = 3 : x y 2 + 2 x 2 + x 2 y 2 Step 2 : k 3 : x y k 1 +(k 1)x k 1 +x k 1 y k 1 58

(3-3) Example C Step 1 : k = 3 : x y 2 + 2 x 2 + x 2 y 2 Step 2 : k 3 : x y k 1 +(k 1)x k 1 +x k 1 y k 1 Example. k = 5 : f(x, y) = x y 4 + 4 x 4 + x 4 y 4 x\y 0 1 2 3 4 0 0 0 0 0 0 1 4 1 1 1 1 2 4 2 2 2 2 3 4 3 3 3 3 4 4 4 4 4 4 59

(3-4) Example D A bit more difficult example! 60

(3-4) Example D Step 1 : k = 3 : 2 x + 2 x y 2 61

(3-4) Example D Step 1 : k = 3 : 2 x + 2 x y 2 Step 2 : k 3 :??? 62

(3-4) Example D Step 1 : k = 3 : 2 x + 2 x y 2 Step 2 : k 3 : (k 1) x + (k 1) x y k 1 is not good! 63

(3-4) Example D Step 1 : k = 3 : 2 x + 2 x y 2 Step 2 : k 3 : (k 1) x + 2 x y k 1 64

(3-4) Example D Step 1 : k = 3 : 2 x + 2 x y 2 Step 2 : k 3 : (k 1) x + 2 x y k 1 Example. k = 5 : f(x, y) = 4 x + 2 x y 4 x\y 0 1 2 3 4 0 0 0 0 0 0 1 4 1 1 1 1 2 3 2 2 2 2 3 2 3 3 3 3 4 1 4 4 4 4 65

(3-5) Example E This example requires better skill even to find a candidate of generalization!! 66

(3-5) Example E Step 1 : k = 3 : 2 x 2 y + 2 x y 2 67

(3-5) Example E Step 1 : k = 3 : 2 x 2 y + 2 x y 2 Step 2 : k 3 :??? 68

(3-5) Example E Step 1 : k = 3 : 2 x 2 y + 2 x y 2 Step 2 : k 3 : (k 1) x k 1 y + (k 1) x y k 1 is not good! 69

(3-5) Example E Step 1 : k = 3 : 2 x 2 y + 2 x y 2 Step 2 : k 3 : (k 1) x k 1 y + (k 1) x y k 1 is not good! 2 x k 1 y + (k 1) x y k 1 is also not good!! 70

(3-5) Example E Step 1 : Step 2 : k = 3 : 2 x 2 y + 2 x y 2 k 3 : (k 1) k 1 i=1 xk i y i 71

(3-5) Example E Step 1 : Step 2 : k = 3 : 2 x 2 y + 2 x y 2 k 3 : (k 1) k 1 i=1 xk i y i Step 3 (Sketch of Proof): f(x, x) = x since (k 1) 2 = 1 For x y, let D = k 1 i=1 xk i y i Then xy 1 D = D Hence xd = yd which implies D = 0 Therefore f(x, y) = x if x = y and f(x, y) = 0 if x y It is easy to see that f is minimal 72

(3-5) Example E Step 1 : Step 2 : k = 3 : 2 x 2 y + 2 x y 2 k 3 : Example. k = 5 : (k 1) k 1 i=1 xk i y i f(x, y) = 4 x 4 y + 4 x 3 y 2 + 4 x 2 y 3 + 4 x y 4 x\y 0 1 2 3 4 0 0 0 0 0 0 1 0 1 0 0 0 2 0 0 2 0 0 3 0 0 0 3 0 4 0 0 0 0 4 73

More and More Examples 74

More and More Examples You will hear at the conference celebrating the 80th Birthday of Béla Csákány!! 75

More and More Examples You will hear at the conference celebrating the 80th Birthday of Béla Csákány!! Thank you 76