Loop Integrands from Ambitwistor Strings

Similar documents
Ambitwistor Strings beyond Tree-level Worldsheet Models of QFTs

Loop Amplitudes from Ambitwistor Strings

Ambitwistor strings, the scattering equations, tree formulae and beyond

Amplitudes Conference. Edinburgh Loop-level BCJ and KLT relations. Oliver Schlotterer (AEI Potsdam)

Implication of CHY formulism

Twistors, Strings & Twistor Strings. a review, with recent developments

On the Null origin of the Ambitwistor String

Perturbative formulae for gravitational scattering

Progress on Color-Dual Loop Amplitudes

Progress on Color-Dual Loop Amplitudes

Connecting the ambitwistor and the sectorized heterotic strings

A New Identity for Gauge Theory Amplitudes

Twistor strings for N =8. supergravity

New Ambitwistor String Theories

Twistor Strings, Gauge Theory and Gravity. Abou Zeid, Hull and Mason hep-th/

CHY formalism and null string theory beyond tree level

Modern Approaches to Scattering Amplitudes

N = 4 SYM and new insights into

Color-Kinematics Duality for Pure Yang-Mills and Gravity at One and Two Loops

A New Regulariation of N = 4 Super Yang-Mills Theory

MHV Vertices and On-Shell Recursion Relations

Color-Kinematics Duality for QCD Amplitudes

arxiv: v3 [hep-th] 19 Jun 2018

Gravity as a Double Copy of Gauge Theory

Poles at Infinity in Gravity

Scattering Forms and (the Positive Geometry of) Kinematics, Color & the Worldsheet

Loop Amplitudes from MHV Diagrams

Strings 2012, Munich, Germany Gravity In Twistor Space

Supergravity from 2 and 3-Algebra Gauge Theory

Twistors, amplitudes and gravity

TWISTOR DIAGRAMS for Yang-Mills scattering amplitudes

arxiv: v2 [hep-th] 24 Mar 2017

Properties of Yang-Mills scattering forms

Contact interactions in string theory and a reformulation of QED

Non-Planar N =4 SYM at Four Loops and Supersum Structures

Coefficients of one-loop integral

The Non-commutative S matrix

Welcome: QCD Meets Gravity

Amplitudes beyond four-dimensions

Updates on ABJM Scattering Amplitudes

Gravity vs Yang-Mills theory. Kirill Krasnov (Nottingham)

Half BPS solutions in type IIB and M-theory

Free fields, Quivers and Riemann surfaces

abelian gauge theories DUALITY N=8 SG N=4 SG

Expansion of Einstein-Yang-Mills Amplitude

Scattering Amplitudes! in Three Dimensions

Scattering Forms from Geometries at Infinity

Amplitudes & Wilson Loops at weak & strong coupling

MHV Diagrams and Tree Amplitudes of Gluons

Are all supergravi2es double copies?

Is N=8 Supergravity Finite?

KLT-type relations for QCD amplitudes

A Brief Introduction to AdS/CFT Correspondence

Lecture 8: 1-loop closed string vacuum amplitude

Spinning strings and QED

Spectral flow as a map between (2,0) models

arxiv: v1 [hep-th] 11 Oct 2017

First Year Seminar. Dario Rosa Milano, Thursday, September 27th, 2012

Positive Geometries and Canonical Forms

Week 11 Reading material from the books

Color-Kinematics Duality for QCD and Pure Gravities

The Two-Loop Five-Point Amplitude in N=4 Super-Yang-Mills Theory and N=8 Supergravity

ABJM Amplitudes and! Orthogonal Grassmannian

Twistor Space, Amplitudes and No-Triangle Hypothesis in Gravity

On the Scattering Amplitude of Super-Chern-Simons Theory

Anomalous Strong Coupling

Gravity as a Double Copy of Gauge Theory

Towards Determining the UV Behavior of Maximal Supergravity

Surprises in UV Behavior of Gravity Theories

AdS/CFT Beyond the Planar Limit

N = 2 supersymmetric gauge theory and Mock theta functions

Status of Perturbative Approach to Supergravity

Four-point functions in the AdS/CFT correspondence: Old and new facts. Emery Sokatchev

GAUGE THEORY AMPLITUDES, SCALAR GRAPHS AND TWISTOR SPACE

ASPECTS OF FREE FERMIONIC HETEROTIC-STRING MODELS. Alon E. Faraggi

Introduction to AdS/CFT

Lecture 7 SUSY breaking

Scattering Equations and Matrices: From Einstein To Yang Mills, DBI and NLSM

M-theory S-Matrix from 3d SCFT

Superstring Amplitudes as a Mellin Transform of Supergravity. Tomasz Taylor Northeastern University, Boston

Elliptic dilogarithms and two-loop Feynman integrals

Gravity Scattering Amplitudes

The boundary state from open string fields. Yuji Okawa University of Tokyo, Komaba. March 9, 2009 at Nagoya

Gauged supergravities from the Double Copy

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University

THE. Secret Life OF SCATTERING AMPLITUDES. based on work with Lionel Mason and with Mat Bullimore. David Skinner - Perimeter Institute

How I learned to stop worrying and love the tachyon

Quantising Gravitational Instantons

Review: Modular Graph Functions and the string effective action

arxiv: v2 [hep-th] 17 Sep 2018

Gauge Threshold Corrections for Local String Models

Supercurrents. Nathan Seiberg IAS

Durham Research Online

Maximal Unitarity at Two Loops

Aspects of integrability in classical and quantum field theories

Hexagons and 3pt functions

Finite Temperature Field Theory

The ultraviolet structure of N=8 supergravity at higher loops

Scattering amplitudes and AdS/CFT

Computing amplitudes using Wilson loops

Transcription:

Loop Integrands from Ambitwistor Strings Yvonne Geyer Institute for Advanced Study QCD meets Gravity UCLA arxiv:1507.00321, 1511.06315, 1607.08887 YG, L. Mason, R. Monteiro, P. Tourkine arxiv:1711.09923 with R. Monteiro work in progress

The Double Copy from the Worldsheet Yvonne Geyer Institute for Advanced Study QCD meets Gravity UCLA arxiv:1507.00321, 1511.06315, 1607.08887 YG, L. Mason, R. Monteiro, P. Tourkine arxiv:1711.09923 with R. Monteiro work in progress

Quantum fields from ambitwistor strings Worldsheet models of QFT M = (0) + (1) +... = + + +... E (g) i = 0 localisation on SE E i = + + +... E (g) i = 0

Starting Point: Tree-level S-matrix CHY formulae [Cachazo-He-Yuan] dσ M n,0 = M0,n n k i k j δ vol G σ i σ j I n(k i, ɛ i, σ i ) i j i Scattering Equations: For n null momenta k i, define n k iµ P µ (σ) = dσ Ω 0 (Σ, K Σ ). σ σ i i=1 E i = Res σi P 2 k i k j (σ) = k i P(σ i ) = = 0. σ i σ j j i σ 1 σ 2 σ n

Scattering Equations Universality for massless QFTs Scattering Equations at tree-level: E i = Res σi P 2 k i k j (σ) = k i P(σ i ) = = 0. σ i σ j enforce P 2 = 0 on Σ. Möbius invariant dim(m 0,n ) = (n 3) constraints Factorisation: [Dolan-Goddard, YG-Mason-Monteiro-Tourkine,...] j i SE 1 k I 2 boundary of M 0,n factorisation channel With σ i = σ I + εx i for i I, the pole is given by i I x i E (I) i = i,j I x i k i k j x i x j = 1 2 k i k j = ki 2. i,j I

Comment: Colour-Kinematic Duality Gravity YM 2 [Bern-Carrasco-Johansson] Biadjoint scalar: Gauge theory: colour C i colour C j colour C i kinematics N i Gravity: kinematics N i kinematics N i N Gauge theory amplitude: i C i A = D i With C i satisfying the Jacobi identity Γ i + = 0 Find N i satisfying Jacobi, then f dae f ebc f abe f ecd + f ace f edb = 0 M = Γ i N i N i D i

CHY formulae and the Double Copy [Cachazo-He-Yuan] Tree-level S-matrix of massless theories: dσ M n,0 = M0,n n k i k j δ vol G σ i σ j I n i j i Gravity: I n = Pf (M) Pf ( M) Yang-Mills theory: I n = C n Pf (M) Bi-adjoint scalar: with building blocks I n = C n C n Parke-Taylor factor: C n (1,..., n) = tr(ta 1 T a 2...T an ) σ 1 2...σ n 1 n σ n 1 + non-cyclic Reduced Pfaffian: Pf (M) = ( 1)i+j σ ij Pf(M ij ij ) ( ) A C T M = C B A ij = k i k j, B ij = ɛ i ɛ j, C ij = ɛ i k j, σ ij σ ij σ ij A ii = 0, B ii = 0, C ii = C ij. j i

The Ambitwistor String [Mason-Skinner, Berkovits] Moduli integral: CHY correlator of CFT on Σ. S = 1 2π P X + 1 2 r Ψ r Ψ r e 2 P2 χ r P Ψ r, where P µ Ω 0 (Σ, K Σ ), Ψ µ r ΠΩ 0 (Σ, K 1/2 Σ ). Geometrically: gauge fields e and χ r impose the constraints P 2 = P Ψ r = 0 target space: Ambitwistor space A gauge freedom: δx µ = αp µ, δp µ = 0, δe = α δx µ = v X µ, δp µ = (vp µ ), δe = v e e v BRST quantisation: Q = ct + cp 2 + γ r P Ψ r Vertex operators: V = c cδ 2 (γ) ɛ µ ɛ ν Ψ µ 1 Ψνeik X 2 Q 2 = 0 for d = 10 [Q, V] = 0 k 2 = ɛ k = 0 spectrum: type II sugra

Localisation and the Scattering Equations Action: S = 1 2π P X + 1 2 r Ψ r Ψ r e 2 P2 χ r P Ψ r, Vertex operators: V = c cδ 2 (γ) ɛ µ ɛ ν Ψ µ 1 Ψνeik X 2 Integrate out X in presence of vertex operators: P µ = 2πi k iµ δ(σ σ i )dσ, so P µ (σ) = n i=1 k iµ σ σ i dσ. Moduli of gauge field e forces P 2 = 0; scattering equations map to A Correlator = CHY Res σi P 2 (σ) = k i P(σ i ) = 0.

Loop Integrands from the Riemann Sphere

One Loop: Scattering Equations and Integrand SE on the torus: P 2 (z τ) = 0 Solve P = 2πi i k i δ(z z i )dz: ( θ 1 P µ = 2πi l µ + k (z z ) i) iµ dz. θ 1 (z z i ) Res zi P 2 (z) := 2k i P(z i ) = 0, P 2 (z 0 ) = 0. i - 1 2 [Adamo-Casali-Skinner, Casali-Tourkine] 1 2 z 1 τ One-loop integrand of type II supergravity n M (1) SG = d 10 l dτ δ(p 2 (z 0 )) δ(k i P(z i )) Z (1) (z i )Z (2) (z i ) i=2 spin struct. } {{ }} {{ } Scattering Equations I q, fermion correlator modular invariant: τ τ + 1 1/τ

From the Torus to the Riemann Sphere localisation on SE & modular invariance: localisation on q e 2iπτ = 0 τ = i τ 1-1 2 2 Contour argument in the fundamental domain Alternatively: Residue theorem: M (1) SG = 1 d 10 l dq ( ) n 2πi q 1 δ(k P 2 i P(z i )) I q (z 0 ) i=2 d 10 l n q=0 = δ(k l 2 i P(z i )) I 0. i=2

One-loop off-shell scattering equations On the nodal Riemann Sphere: l l n k i P = + σ σ + σ σ σ σ dσ. i Define S = P 2 ( l σ σ + l i=1 σ σ ) 2 dσ 2. σ+ σ One-loop off-shell scattering equations E (nod) i = Res σi S = k i l k i l + σ i σ + σ i σ E (nod) j i = Res σ S = E (nod) + = Res σ+ S = j j k i k j σ i σ j = 0, l k j σ σ j = 0, l k j σ + σ j = 0. Nodal measure: dµ (nod) 1,n = dµ 0,n+2 l 2 =0, where l = l + η, η k i = η l = 0.

Integrands Double Copy again One-loop integrand on the nodal Riemann sphere d M (1) d l d n+2 σ = δ ( ) E a (nod) I vol (G) l 2 a=i,± Supersymmetric: I sugra = I 0 Ĩ 0 I sym = I 0 I PT Non-supersymmetric I NS = I (1) NS I(1) NS I YM = I (1) NS IPT I d=4 grav = ( ) I (1) 2 ( NS 2 (σ + ) Pf (M3 ) ) 2. 4 Building blocks Parke-Taylor: I PT = n i=1 tr(t a 1 T a 2...T an ) σ + i σ i+1 i σ i+2 i+1...σ i+n σ + + non-cycl. Susy: I 0 = I (1) + NS I(1) R NS and R: I (1) = NS r Pf (M r NS ), M r NS = Mtree n+2 l 2 =0, ɛ+=ɛ r, ɛ =(ɛ r ) M 3 = M tree Cii =ɛ i P(σ i ) I(1) R = c d Pf (M σ 2 2 ) + σ M 2 = M tree ( ) 1 σ ij 1 σi+ σ j σi σ j+ ij σ i σ + j+ σ i+ σ j C ii =ɛ i P(σ i )

The representation of the integrand One-loop integrand on the nodal Riemann sphere d M (1) d l d n+2 σ = δ ( ) E a (nod) I vol (G) l 2 a=i,± Puzzle: Only depends on 1/l 2, remainder l k i, l ɛ i,... Solution: Shifted integrands Repeated partial fractions: Take K a = i I a k i and D a = (l + K a ) 2 1 a D a = i 1 D a b a(d b D a ). a + i i 1 = i i i 1 +

The representation of the integrand One-loop integrand on the nodal Riemann sphere d M (1) d l d n+2 σ = δ ( ) E a (nod) I vol (G) l 2 a=i,± Puzzle: Only depends on 1/l 2, remainder l k i, l ɛ i,... Solution: Shifted integrands Repeated partial fractions: Take K a = i I a k i and D a = (l + K a ) 2 1 a D a = 1 D a b a(d b D a ). a Generalisation: Q-cuts [Baadsgaard et al] N ( l, l 2) I qdr = I lin = 1 N ( l K a, 2l K a + K 2 ) a Γ a Γ D a l 2, Γ a Γ b a(d b D a ) l l Ka Example: 1 l 2 (l + K) 2 = 1 l 2 (2l K + K 2 ) + 1 (l + K) 2 ( 2l K K 2 ) 1 ( ) 1 l 2 2l K + K 2 + 1 2l K + K 2

BCJ numerators from the Worldsheet Integrands without solving the Scattering Equations

1-loop BCJ numerators from ambitwistor strings The main idea with R. Monteiro, see also [CHY, Fu-Du-Huang-Feng, He-Schlotterer-Zhang] Expand YM and gravity integrands into DDM half-ladder basis I YM n = C(+, ρ, ) I YM (+, ρ, ) ρ(1) ρ(2) ρ(n) ρ S n I grav n = N(+, ρ, ) I YM (+, ρ, ) + ρ S n Then coefficients N(+, ρ, ) satisfy Jacobis! Ambitwistor string integrands: Pf ( M r ) NS = N(+, ρ, ) PT(+, ρ, ) r ρ S n mod E (nod) a Strategy: expand into simpler Pfaffians, whose expansion into PT is known [Fu-Du-Huang-Feng]

Pfaffian expansion Pfaffian as sum over permutations: I (1) Pf ( M r ) NS NS = ( 1) sgn(ρ) W IM J...M K. σ r ρ S n+2 + I σ J...σ K tr(i) := tr(f i1...f ini ) for n I > 1 σ i1 i M I = σ I = 2 σ i2 i 3...σ ini i 1 for n I > 1 C ii for n I = 1 σ I = 1 for n I = 1 W I = ɛ r F i1...f ini (ɛ r ) tr ( ) F i1...f ini for n I > 0 = r D 2 for n I = 0 Decompose the sum: I (1) = NS ( 1) sgn(ρ) W I σ I ρ S I + I ( 1) sgn( ρ) M J...M K σ ρ S J...σ K Ī = ( 1) sgn(ρ) Pf ( ) M W Ī I I ρ S I + σ I = W I Ỹ Ī PT(+, ρ, ) ρ S n I } {{ } N(+,ρ, )

The algorithm Master numerators N (+ a 1 a 2 a 3 a 4 ): 1 Fix reference ordering RO = (+ 12...n ) 2 Dependence of N on RO and CO: split orderings SO Decompose {1,..., n} = I Ī, Ī = R r=1 α(r) s.t. 1 α (r) respects CO 2 last elements α n (r) r respect RO 3 last element α n (r) r smallest in RO Then SO = (+ I α (1)...α (R) ). 3 Calculate N RO (CO) = ( 1) n I W I Y ( α (r)) 1 W I = tr(i) = tr(f i1... F ini ), W I= = d 2 2 Y ( { α (r)) ɛ = a Z a α (r) = {a} ɛ anr F a(nr 1)... F a1 Z a1 α (r) = {a 1,..., a nr }. 3 Z a = i k i i<a in CO and SO I SO r

Example: N RO (+1243 ) Ī Split(Ī) SO tr(i) numerator factor Y ( α (r)) {1, 2, 4, 3} {{1}, {2}, {3}, {4}} (+1234 ) (d 2) ɛ 1 l ɛ 2 (l + k 1 ) ɛ 4 (l k 3 ) ɛ 3 (l k 4 ) {{1}, {2}, {4, 3}} (+1243 ) (d 2) ɛ 1 l ɛ 2 (l + k 1 ) ɛ 3 F 4 (l k 3 ) {1, 2} {{1}, {2}} (+4312 ) tr(43) ɛ 1 l ɛ 2 (l + k 1 ) {4, 3} {{3}, {4}} (+1234 ) tr(12) ɛ 4 (l k 3 ) ɛ 3 (l k 4 ) {{4, 3}} (+1243 ) tr(12) ɛ 3 F 4 (l k 3 ).. {1} {{1}} (+2431 ) tr(243) ɛ 1 l.. {} (+1243 ) tr(1243) 1 Remarks: Master numerators: N RO (CO) = N CO (CO). ( ɛ ɛ) All-plus: N RO (CO) = N CO (CO) Amplitude independent of RO

Integrands from BCJ numerators N i = N RO (CO) satisfy Jacobi relations: + = 0 Integrands for YM and NS-NS gravity, with linear propagators D i : I YM = Γ i N i C i I NS-NS N i N i = D i D Γ i i Pure gravity: I grav = Γ i N i N i D i (d 2) 2 (d 2) 2 2, d 4 Checks: YM amplitude, known all-plus numerators, NS-NS gravity amplitude, gauge invariance

Outlook: Beyond one loop M = + + +... E i (σ j ) = 0

Outlook: Beyond one loop 1 RNS-Correlator at g = 2, sum over spin structures 2 Riemann surface Σ g residue theorems contract g a-cycles nodal RS 3 NS-sector: I (2) NS? = r,s Pf ( ) M (2) NS If so, then simply extract BCJ numerators by analogous procedure! Nodal operators, see Kai s talk. Relation to BCJ numerators for standard representation of the integrand?

Thank you!