Ambitwistor Strings beyond Tree-level Worldsheet Models of QFTs

Similar documents
Loop Amplitudes from Ambitwistor Strings

Loop Integrands from Ambitwistor Strings

Ambitwistor strings, the scattering equations, tree formulae and beyond

Twistors, Strings & Twistor Strings. a review, with recent developments

Amplitudes Conference. Edinburgh Loop-level BCJ and KLT relations. Oliver Schlotterer (AEI Potsdam)

On the Null origin of the Ambitwistor String

Perturbative formulae for gravitational scattering

Connecting the ambitwistor and the sectorized heterotic strings

Implication of CHY formulism

Twistor strings for N =8. supergravity

Twistor Strings, Gauge Theory and Gravity. Abou Zeid, Hull and Mason hep-th/

New Ambitwistor String Theories

CHY formalism and null string theory beyond tree level

Twistors, amplitudes and gravity

TWISTOR DIAGRAMS for Yang-Mills scattering amplitudes

Modern Approaches to Scattering Amplitudes

Progress on Color-Dual Loop Amplitudes

MHV Vertices and On-Shell Recursion Relations

A New Identity for Gauge Theory Amplitudes

Amplitudes & Wilson Loops at weak & strong coupling

Coefficients of one-loop integral

Half BPS solutions in type IIB and M-theory

Strings 2012, Munich, Germany Gravity In Twistor Space

Free fields, Quivers and Riemann surfaces

Progress on Color-Dual Loop Amplitudes

Scattering Forms from Geometries at Infinity

Gravity as a Double Copy of Gauge Theory

Spinning strings and QED

Contact interactions in string theory and a reformulation of QED

arxiv: v3 [hep-th] 19 Jun 2018

Poles at Infinity in Gravity

MHV Diagrams and Tree Amplitudes of Gluons

Expansion of Einstein-Yang-Mills Amplitude

Twistor Space, Amplitudes and No-Triangle Hypothesis in Gravity

Color-Kinematics Duality for QCD Amplitudes

Scattering Forms and (the Positive Geometry of) Kinematics, Color & the Worldsheet

Loop Amplitudes from MHV Diagrams

Supergravity from 2 and 3-Algebra Gauge Theory

Spectral flow as a map between (2,0) models

Review: Modular Graph Functions and the string effective action

Amplitudes beyond four-dimensions

A New Regulariation of N = 4 Super Yang-Mills Theory

Heterotic Torsional Backgrounds, from Supergravity to CFT

Instantons in string theory via F-theory

Introduction to AdS/CFT

N = 4 SYM and new insights into

Color-Kinematics Duality for Pure Yang-Mills and Gravity at One and Two Loops

Welcome: QCD Meets Gravity

Feynman integrals as Periods

abelian gauge theories DUALITY N=8 SG N=4 SG

Maximal Unitarity at Two Loops

Topological reduction of supersymmetric gauge theories and S-duality

Chern-Simons Theory and Its Applications. The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee

Week 11 Reading material from the books

Is N=8 Supergravity Finite?

N = 2 supersymmetric gauge theory and Mock theta functions

arxiv: v2 [hep-th] 24 Mar 2017

Recent Progress on Curvature Squared Supergravities in Five and Six Dimensions

Scattering Amplitudes

On-shell Recursion Relations of Scattering Amplitudes at Tree-level

M-theory S-Matrix from 3d SCFT

The Non-commutative S matrix

8.821 F2008 Lecture 12: Boundary of AdS; Poincaré patch; wave equation in AdS

Exact Solutions of 2d Supersymmetric gauge theories

Positive Geometries and Canonical Forms

arxiv: v1 [hep-th] 11 Oct 2017

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University

Supercurrents. Nathan Seiberg IAS

Updates on ABJM Scattering Amplitudes

Rigid Holography and 6d N=(2,0) Theories on AdS 5 xs 1

Towards Determining the UV Behavior of Maximal Supergravity

Current algebras and higher genus CFT partition functions

The boundary state from open string fields. Yuji Okawa University of Tokyo, Komaba. March 9, 2009 at Nagoya

N = 2 heterotic string compactifications on orbifolds of K3 T 2

8.821 String Theory Fall 2008

Introduction to AdS/CFT

1 Polyakov path integral and BRST cohomology

From maximal to minimal supersymmetry in string loop amplitudes

THE. Secret Life OF SCATTERING AMPLITUDES. based on work with Lionel Mason and with Mat Bullimore. David Skinner - Perimeter Institute

AdS/CFT Beyond the Planar Limit

Lecture 9: RR-sector and D-branes

Durham Research Online

Non-Planar N =4 SYM at Four Loops and Supersum Structures

Scattering Amplitudes! in Three Dimensions

Lecture 8: 1-loop closed string vacuum amplitude

e θ 1 4 [σ 1,σ 2 ] = e i θ 2 σ 3

On Flux Quantization in F-Theory

ABJM Amplitudes and! Orthogonal Grassmannian

Gravity vs Yang-Mills theory. Kirill Krasnov (Nottingham)

One-loop Partition Function in AdS 3 /CFT 2

Lectures on Twistor Strings and Perturbative Yang-Mills Theory

Recent Advances in Two-loop Superstrings

First Year Seminar. Dario Rosa Milano, Thursday, September 27th, 2012

MIFPA PiTP Lectures. Katrin Becker 1. Department of Physics, Texas A&M University, College Station, TX 77843, USA. 1

The ultraviolet structure of N=8 supergravity at higher loops

1 Canonical quantization conformal gauge

How I learned to stop worrying and love the tachyon

Scattering Amplitudes and Holomorphic Linking

What is F-theory? David R. Morrison. University of California, Santa Barbara

A Landscape of Field Theories

Transcription:

Ambitwistor Strings beyond Tree-level Worldsheet Models of QFTs Yvonne Geyer Strings 2017 Tel Aviv, Israel arxiv:1507.00321, 1511.06315, 1607.08887 YG, L. Mason, R. Monteiro, P. Tourkine arxiv:170x.xxxx with R. Monteiro

Motivation: worldsheet models String Theory + + +... α 0 (0) + (1) +... integration over moduli space: g 0 M g,n (... ) map: Σ M

Motivation: worldsheet models String Theory + + +... α 0 (0) + (1) +... integration over moduli space: g 0 (... ) M g,n map: Σ M Worldsheet models of QFT [Witten, Berkovits, RSV; Hodges, Cachazo-YG, Skinner-Mason] + + +... = (0) + (1) +... map: Σ T CP 3 4 D = 4, maximal supersymmetry

Motivation: worldsheet models String Theory + + +... α 0 (0) + (1) +... integration over moduli space: g 0 (... ) M g,n map: Σ M Worldsheet models of QFT [Witten, Berkovits, RSV; Hodges, Cachazo-YG, Skinner-Mason] + + +... = (0) + (1) +... map: Σ T CP 3 4 D = 4, maximal supersymmetry

Motivation: worldsheet models String Theory + + +... α 0 (0) + (1) +... integration over moduli space: g 0 (... ) M g,n map: Σ M Worldsheet models of QFT [CHY, Skinner-Mason, Adamo-Casali-Skinner, CGMMR] + + +... E (g) i = 0 = (0) + (1) +...

Motivation: worldsheet models String Theory + + +... α 0 (0) + (1) +... integration over moduli space: g 0 (... ) M g,n map: Σ M Worldsheet models of QFT [CHY, Skinner-Mason, Adamo-Casali-Skinner, CGMMR] + + +... E (g) i = 0 = (0) + (1) +... integration fully localised on the Scattering Equations {E (g) i } map: Σ A = {phase space of complex null rays} upshot: generic for massless QFTs

Ambitwistor Strings: two-dimensional chiral CFTs auxiliary target space: complexified phase-space of null geodesics

Starting Point: Tree-level S-matrix CHY formulae [Cachazo-He-Yuan] dσ M n,0 = M0,n n k i k j δ vol G σ i σ j I n i j i

Starting Point: Tree-level S-matrix CHY formulae [Cachazo-He-Yuan] dσ M n,0 = M0,n n k i k j δ vol G σ i σ j I n i j i Integration over M 0,n localised onto the scattering equations E i Integrand I n (ɛ, k, σ) K 2 i encodes kinematic data

Starting Point: Tree-level S-matrix CHY formulae [Cachazo-He-Yuan] dσ M n,0 = M0,n n k i k j δ vol G σ i σ j I n i j i Integration over M 0,n localised onto the scattering equations E i Integrand I n (ɛ, k, σ) K 2 i encodes kinematic data progress on evaluation without solving the SE [Cachazo-Gomez, Baadsgaard et al, Sogard-Zhang,...] family of massless models: Gravity: I n = Pf (M) Pf ( M) Yang-Mills theory: I n = C n Pf (M) Bi-adjoint scalar: I n = C n C n

Scattering Equations [Fairlie-Roberts, Gross-Mende][Cachazo-He-Yuan, Mason-Skinner] Construction: for n null momenta k i, define P µ (σ, σ i ) Ω 0 (Σ, K Σ ) n k iµ P µ (σ) = dσ. σ σ i i=1 z 1 z 2 z n

Scattering Equations [Fairlie-Roberts, Gross-Mende][Cachazo-He-Yuan, Mason-Skinner] Construction: for n null momenta k i, define P µ (σ, σ i ) Ω 0 (Σ, K Σ ) n k iµ P µ (σ) = dσ. σ σ i i=1 z 1 z 2 z n Scattering Equations at tree-level Enforce P 2 = 0 on Σ: E i = Res σi P 2 k i k j (σ) = k i P(σ i ) = = 0. σ i σ j j i

Scattering Equations [Fairlie-Roberts, Gross-Mende][Cachazo-He-Yuan, Mason-Skinner] Construction: for n null momenta k i, define P µ (σ, σ i ) Ω 0 (Σ, K Σ ) n k iµ P µ (σ) = dσ. σ σ i i=1 z 1 z 2 z n Scattering Equations at tree-level Enforce P 2 = 0 on Σ: E i = Res σi P 2 k i k j (σ) = k i P(σ i ) = = 0. σ i σ j j i σ a i E i = 0 for a = 0, 1, 2 SL(2, C) invariant (n 3) independent equations = dim(m 0,n ) (n 3)! solutions factorisation properties [Dolan-Goddard, YG-Mason-Monteiro-Tourkine,...]

Scattering Equations Universality for massless QFTs Scattering Equations at tree-level: E i = Res σi P 2 k i k j (σ) = k i P(σ i ) = = 0. σ i σ j j i

Scattering Equations Universality for massless QFTs Scattering Equations at tree-level: E i = Res σi P 2 k i k j (σ) = k i P(σ i ) = = 0. σ i σ j Factorisation: j i SE 1 k 2 I boundary of M 0,n factorisation channel

Scattering Equations Universality for massless QFTs Scattering Equations at tree-level: E i = Res σi P 2 k i k j (σ) = k i P(σ i ) = = 0. σ i σ j Factorisation: j i SE 1 k 2 I boundary of M 0,n factorisation channel With σ i = σ I + εx i for i I, the pole is given by i I x i E (I) i = i,j I x i k i k j x i x j = 1 2 k i k j = ki 2. i,j I

Scattering Equations Universality for massless QFTs Scattering Equations at tree-level: E i = Res σi P 2 k i k j (σ) = k i P(σ i ) = = 0. σ i σ j Factorisation: j i SE 1 k 2 I boundary of M 0,n factorisation channel Upshot: amplitudes take the form M = σ j E i (σ j )=0 I(σ i, k i, ɛ i ) J(σ i, k i ).

The Ambitwistor String [Mason-Skinner, Berkovits] Moduli integral: CHY correlator of CFT on Σ. S = 1 2π P X + 1 2 r Ψ r Ψ r e 2 P2 χ r P Ψ r, where P µ Ω 0 (Σ, K Σ ), Ψ µ r ΠΩ 0 (Σ, K 1/2 Σ ).

The Ambitwistor String [Mason-Skinner, Berkovits] Moduli integral: CHY correlator of CFT on Σ. S = 1 2π P X + 1 2 r Ψ r Ψ r e 2 P2 χ r P Ψ r, where P µ Ω 0 (Σ, K Σ ), Ψ µ r ΠΩ 0 (Σ, K 1/2 Σ ). Geometrically: gauge fields e and χ r impose the constraints P 2 = P Ψ r = 0 target space: Ambitwistor space A gauge freedom: δx µ = αp µ, δp µ = 0, δe = α...

The Ambitwistor String [Mason-Skinner, Berkovits] Moduli integral: CHY correlator of CFT on Σ. S = 1 2π P X + 1 2 r Ψ r Ψ r e 2 P2 χ r P Ψ r, where P µ Ω 0 (Σ, K Σ ), Ψ µ r ΠΩ 0 (Σ, K 1/2 Σ ). Geometrically: gauge fields e and χ r impose the constraints P 2 = P Ψ r = 0 target space: Ambitwistor space A gauge freedom: δx µ = αp µ, δp µ = 0, δe = α... BRST quantisation: Q = ct + cp 2 + γ r P Ψ r Vertex operators: V = c cδ 2 (γ) ɛ µ ɛ ν Ψ µ 1 Ψν 2 eik X Q 2 = 0 for d = 10 [Q, V] = 0 k 2 = ɛ k = 0 spectrum: type II sugra

Localisation and the Scattering Equations Action: S = 1 2π P X + 1 2 r Ψ r Ψ r e 2 P2 χ r P Ψ r, Vertex operators: V = c cδ 2 (γ) ɛ µ ɛ ν Ψ µ 1 Ψν 2 eik X

Localisation and the Scattering Equations Action: S = 1 2π P X + 1 2 r Ψ r Ψ r e 2 P2 χ r P Ψ r, Vertex operators: V = c cδ 2 (γ) ɛ µ ɛ ν Ψ µ 1 Ψν 2 eik X Integrate out X in presence of vertex operators: P µ = 2πi k iµ δ(σ σ i )dσ, so P µ (σ) = n i=1 k iµ σ σ i dσ.

Localisation and the Scattering Equations Action: S = 1 2π P X + 1 2 r Ψ r Ψ r e 2 P2 χ r P Ψ r, Vertex operators: V = c cδ 2 (γ) ɛ µ ɛ ν Ψ µ 1 Ψν 2 eik X Integrate out X in presence of vertex operators: P µ = 2πi k iµ δ(σ σ i )dσ, so P µ (σ) = n i=1 k iµ σ σ i dσ. Moduli of gauge field e forces P 2 = 0; scattering equations map to A Correlator = CHY Res σi P 2 (σ) = k i P(σ i ) = 0.

Loop Integrands from the Riemann Sphere

Upshot Loops Worldsheet models of QFT M = (0) + (1) +... = + + +... E (g) i = 0

Upshot Loops Worldsheet models of QFT M = (0) + (1) +... = + + +... E (g) i = 0 localisation on SE E i = + + +... E (g) i = 0

Scattering Equations on the Torus Genus 1 moduli space of torus Σ τ : τ τ z z + 1 z + τ τ τ + 1 1/τ - 1 2 1 2 Solve P = 2πi i k i δ(z z i )dz: ( θ 1 P µ = 2πi l µ + k (z z ) i) iµ dz, θ 1 (z z i ) i z 1

Scattering Equations on the Torus Genus 1 moduli space of torus Σ τ : τ τ z z + 1 z + τ τ τ + 1 1/τ - 1 2 1 2 Solve P = 2πi i k i δ(z z i )dz: ( θ 1 P µ = 2πi l µ + k (z z ) i) iµ dz, θ 1 (z z i ) i z 1 Scattering Equations on the torus: P 2 (z τ) = 0 Res zi P 2 (z) := 2k i P(z i ) = 0, P 2 (z 0 ) = 0.

The 1-loop Integrand [Adamo-Casali-Skinner, Casali-Tourkine] One-loop integrand of type II supergravity n M (1) SG = d 10 l dτ δ(p 2 (z 0 )) δ(k i P(z i )) Z (1) (z i )Z (2) (z i ) i=2 spin struct. } {{ }} {{ } Scattering Equations I q, fermion correlator

The 1-loop Integrand [Adamo-Casali-Skinner, Casali-Tourkine] One-loop integrand of type II supergravity n M (1) SG = d 10 l dτ δ(p 2 (z 0 )) δ(k i P(z i )) Z (1) (z i )Z (2) (z i ) i=2 spin struct. } {{ }} {{ } Scattering Equations I q, fermion correlator modular invariance: τ τ + 1 1/τ Scattering Equations: P 2 (z τ) = 0 checks: factorisation correct tensor structure at n = 4: t 8 t 8 R 4 Why rational function?

From the Torus to the Riemann Sphere Contour argument localisation on scattering equations contour integral argument in fundamental domain modular invariance: sides and unit circle cancel localisation on q e 2iπτ = 0 τ = i τ 1-1 2 2 Contour argument in the fundamental domain

From the Torus to the Riemann Sphere More explicitly: residue theorem One-loop integrand of type II supergravity n M (1) SG = d d l dτ δ(p 2 (z 0 )) δ(k i P(z i )) I q i=2 σ + σ Residue theorem: elliptic curve nodal Riemann spere at q = 0.

From the Torus to the Riemann Sphere More explicitly: residue theorem One-loop integrand of type II supergravity n M (1) SG = d d l dτ δ(p 2 (z 0 )) δ(k i P(z i )) I q i=2 σ + σ Residue theorem: elliptic curve nodal Riemann spere at q = 0. M (1) SG = 1 d 10 l dq ( ) n 2πi q 1 δ(k P 2 i P(z i )) I q (z 0 ) i=2 = d 10 1 n l dq P 2 (z 0 ) δ(q) δ(k i P(z i )) I 0 i=2 d 10 l n q=0 = δ(k l 2 i P(z i )) I 0. i=2

One-loop off-shell scattering equations On the nodal Riemann Sphere: l l n k i P = + σ σ l + σ σ l σ σ i dσ. Define S = P 2 ( i=1 l σ σ l l + σ σ l ) 2 dσ 2. σ + σ One-loop off-shell scattering equations Res σi S = k i P(σ i ) = k i l k i l σ i σ l + σ i σ l k i k j + = 0, σ i σ j j j i l k j Res σl S = = 0, σ l σ j l k j Res σl + S = = 0. σ l + σ j j

The integrand One-loop integrand on the nodal Riemann sphere d M (1) d l d n+2 σ ( = δ l 2 Resσi S ) I vol (G) i,l } ± {{ } off-shell scattering equations type II sugra: I = I q 0, limit of g = 1 correlator manifestly rational upshot: widely applicable for supersymmetric and non-supersymmetric theories

The integrand One-loop integrand on the nodal Riemann sphere d M (1) d l d n+2 σ ( = δ l 2 Resσi S ) I vol (G) i,l } ± {{ } off-shell scattering equations Puzzle: Only depends on 1/l 2, remainder l k i, l ɛ i,... Solution: Shifted integrands partial fractions: 1 i D i = i shift: D i l 2 formalised: Q-cuts [Baadsgaard et al] 1 D i j i(d j D i )

The integrand One-loop integrand on the nodal Riemann sphere d M (1) d l d n+2 σ ( = δ l 2 Resσi S ) I vol (G) i,l } ± {{ } off-shell scattering equations Puzzle: Only depends on 1/l 2, remainder l k i, l ɛ i,... Solution: Shifted integrands partial fractions: 1 i D i = i shift: D i l 2 formalised: Q-cuts [Baadsgaard et al] 1 D i j i(d j D i ) Example: 1 l 2 (l + K) 2 = 1 l 2 (2l K + K 2 ) + 1 (l + K) 2 ( 2l K K 2 ) 1 ( ) 1 l 2 2l K + K 2 + 1 2l K + K 2

Integrands Double Copy again One-loop integrand on the nodal Riemann sphere d M (1) d l d n+2 σ = δ(res l 2 σi S) I vol (G) i,l ± Supersymmetric: I sugra = 1 I (σ l + l ) 4 0 Ĩ 0 I sym = 1 I (σ l + l ) 4 0 I PT Building blocks Parke-Taylor: I PT = n i=1 σ l + l tr(t a 1T a 2...T an ) σ l + i σ i+1 i σ i+2 i+1...σ i+n l + non-cycl. Pfaffian: I 0 = r Pf (M r NS ) c d σ 2 l + l Pf (M 2 )

Integrands Double Copy again One-loop integrand on the nodal Riemann sphere d M (1) d l d n+2 σ = δ(res l 2 σi S) I vol (G) i,l ± Supersymmetric: I sugra = 1 I (σ l + l ) 4 0 Ĩ 0 I sym = 1 I (σ l + l ) 4 0 I PT Non-supersymmetric I YM = ( r Pf (M r )) IPT NS I grav = ( r Pf (M r NS ))2 α (Pf (M 3 ) q 0) 2. Building blocks Parke-Taylor: I PT = n i=1 σ l + l tr(t a 1T a 2...T an ) σ l + i σ i+1 i σ i+2 i+1...σ i+n l + non-cycl. Pfaffian: I 0 = r Pf (M r NS ) c d σ 2 l + l Pf (M 2 ) α = 1 2 (d 2)(d 3) + 1: d.o.f. of B-field and dilaton

Integrands Double Copy again One-loop integrand on the nodal Riemann sphere d M (1) d l d n+2 σ = δ(res l 2 σi S) I vol (G) i,l ± Supersymmetric: I sugra = 1 I (σ l + l ) 4 0 Ĩ 0 I sym = 1 I (σ l + l ) 4 0 I PT Non-supersymmetric I YM = ( r Pf (M r )) IPT NS I grav = ( r Pf (M r NS ))2 α (Pf (M 3 ) q 0) 2. Building blocks Parke-Taylor: I PT = n i=1 σ l + l tr(t a 1T a 2...T an ) σ l + i σ i+1 i σ i+2 i+1...σ i+n l + non-cycl. Pfaffian: I 0 = r Pf (M r NS ) c d σ 2 l + l Pf (M 2 ) α = 1 2 (d 2)(d 3) + 1: d.o.f. of B-field and dilaton Checks: numerical, factorisation

BCJ numerators with R. Monteiro Manifest Colour-Kinematics duality: Tree-level: [Fu-Du-Huang-Feng] Loop-level: susy [He-Schlotterer-Zhang] non-susy? Algorithm: 1 Pick an ordered gauge (+ 1... n ) 2 For a disjoint split into ρ 1, ρ 2, find all ordered splittings of ρ 2 3 Calculate n = ( 1) n ρ W (+ρ1 ) ρ 1 OS(ρ 2 ) subsets W with W (+ρ1 ) = tr(f ρ1...f ρnρ ) W = ɛ pnp F pnp 1... F p1 Z p1 for OS {p 1...p np } Proof: Expansion of Pfaffian into PT factors

Question: Beyond one loop? M = + + +... E i (σ j ) = 0

Heuristics: Higher genus Riemann surface Σ g residue theorems contract g a-cycles nodal RS 2g 3 moduli 2g new marked points mod SL(2, C) 1-form P µ g P = l r ω (g) dσ r + k i, σ σ i ω r (g) = (σ r + σ r ) dσ (σ σ r +)(σ σ r +) r=1 i : basis of g global holomorphic 1-forms

The Scattering Equations The multiloop off-shell scattering equations are Res σa S = 0, A = 1,..., n + 2g g S(σ) := P 2 lr 2 ω 2 r + a rs (lr 2 + ls 2 )ω r ω s. r=1 r<s

The Scattering Equations The multiloop off-shell scattering equations are Res σa S = 0, A = 1,..., n + 2g g S(σ) := P 2 lr 2 ω 2 r + a rs (lr 2 + ls 2 )ω r ω s. r=1 r<s At two-loops: Factorisation: a 12 = 1 Two-loop integrand M (2) = 1 l 2 1 l2 2 M 0,n+4 d n+4 σ Vol G n+4 A=1 δ ( Res A S(σ A ) ) I, integrands known for n = 4 sym and type II sugra Similar complexity as tree amplitudes with n + 4 particles!

Conclusion and Outlook Summary: massless QFTs from chiral worldsheet theories moduli integrals localised on scattering equations loop integrands on nodal Riemann spheres M = + + +... E i (σ j ) = 0

Conclusion and Outlook Summary: massless QFTs from chiral worldsheet theories moduli integrals localised on scattering equations loop integrands on nodal Riemann spheres M = + + +... E i (σ j ) = 0 Future directions: Short-term: Medium-term: explore one and two loops model on nodal Riemann sphere

Conclusion and Outlook Summary: massless QFTs from chiral worldsheet theories moduli integrals localised on scattering equations loop integrands on nodal Riemann spheres M = + + +... E i (σ j ) = 0 Future directions: Short-term: Medium-term: Long-term: explore one and two loops model on nodal Riemann sphere connection with string theory