Types of Chemical Reactors. Nasir Hussain Production and Operations Engineer PARCO Oil Refinery

Similar documents
Lecture (9) Reactor Sizing. Figure (1). Information needed to predict what a reactor can do.

Chemical Reaction Engineering - Part 16 - more reactors Richard K. Herz,

TABLE OF CONTENT. Chapter 4 Multiple Reaction Systems 61 Parallel Reactions 61 Quantitative Treatment of Product Distribution 63 Series Reactions 65

Reactors. Reaction Classifications

1. Introductory Material

BAE 820 Physical Principles of Environmental Systems

Chemical Engineering

Chemical Reaction Engineering. Multiple Reactions. Dr.-Eng. Zayed Al-Hamamre

Structure of the chemical industry

ERT 208 REACTION ENGINEERING

Chemical Reactions. Writing chemical reactions Types of chemical reactions Reactions in aqueous solutions. (ionic equations and solubility rules)

4 Energy and Rates of Chemical Reactions

Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore

What does rate of reaction mean?

OCR Chemistry Checklist

Course: Practical Science with Chemistry Year: Teacher: Ziccardi

Unit C1: Chemistry in our world Page 1 of 5

Physicochemical Processes

Describe how the inter-conversion of solids, liquids and gases are achieved and recall names used for these inter-conversions

Basic Concepts in Reactor Design

CHLORINE RECOVERY FROM HYDROGEN CHLORIDE

Be prepared to discuss the quantitative comparison method in the oral exam.

Lecture 25: Manufacture of Maleic Anhydride and DDT

Module 1: Mole Balances, Conversion & Reactor Sizing (Chapters 1 and 2, Fogler)

Edexcel Chemistry Checklist

Student Achievement. Chemistry 12

AQA Chemistry (Combined Science) Specification Checklists. Name: Teacher:

Chemical Reactor flnolysis

Analyzing Mass and Heat Transfer Equipment

Same theme covered in Combined but extra content Extra parts atomic symbols (first 20, Group 1 and Group 7)

Process design decisions and project economics Dr. V. S. Moholkar Department of chemical engineering Indian Institute of Technology, Guwahati

THE FUTURE OF THE CHEMISTRY: CONTINUOUS FLOW REACTIONS BASEL 2016

FDE 211 Material & Energy Balances. Instructor: Dr. Ilgin Paker Yikici Fall 2015

Chemical Reaction Engineering

GCSE CHEMISTRY REVISION LIST

Carbon dioxide removal processes by alkanolamines in aqueous organic solvents Hamborg, Espen Steinseth

Adsorption (Ch 12) - mass transfer to an interface

New Specification 2018 Recurring Exam Questions. How Science Works. C1 - Particles. Atom with the same atomic number and different mass number

We use a special symbol to denote a reaction which is reversible: The double-headed arrow means the reaction can go in either direction

Nirma University Institute of Technology Chemical Engineering Department, Handouts -RRP- CRE-II. Handouts

Investigation of adiabatic batch reactor

CLASSIFYING MATTER. What is matter? -Anything that has mass and takes up space You are matter. The wall is matter. Light and sound are NOT matter

Y8 Science Controlled Assessment Topics & Keywords

Integrated Knowledge Based System for Process Synthesis

CHEMICAL ENGINEERING

CHEMICAL REACTION ENGINEERING LAB

AQA Chemistry Checklist

The Concept of Equilibrium

Chapter Practice Test

CHEMICAL ENGINEERING LABORATORY CHEG 4137W/4139W. Reaction Kinetics Saponification of Isopropyl Acetate with Sodium Hydroxide

Chemistry in Biology. Section 1. Atoms, Elements, and Compounds

Chapter 6: Chemical Bonds

What does rate of reaction mean?

Engineering and. Tapio Salmi Abo Akademi Abo-Turku, Finland. Jyri-Pekka Mikkola. Umea University, Umea, Sweden. Johan Warna.

BASIC DESIGN EQUATIONS FOR MULTIPHASE REACTORS

Engineering. Green Chemical. S. Suresh and S. Sundaramoorthy. and Chemical Processes. An Introduction to Catalysis, Kinetics, CRC Press

Lesson Aiming for 4 Aiming for 6 Aiming for 8. I can use the periodic table to find the relative atomic mass of all elements.

Elements, Compounds Mixtures Physical and Chemical Changes

Chapter Objectives. Chapter 9 Energy and Chemistry. Chapter Objectives. Energy Use and the World Economy. Energy Use and the World Economy

4.1.1 A simple model of the atom, symbols, relative atomic mass, electronic charge and isotopes. Unit 1 Unit 2 Unit 3. C2.1.1a Structure and bonding

POSITION R & D Officer M.Tech. No. of questions (Each question carries 1 mark) 1 Verbal Ability Quantitative Aptitude Test 34

3.2 Alkanes. Refining crude oil. N Goalby chemrevise.org 40 C 110 C 180 C. 250 C fuel oil 300 C 340 C. Fractional Distillation: Industrially

Sulfuric acid is hazardous: Safety glasses are REQUIRED during this experiment.

Technical Resource Package 1

Data requirements for reactor selection. Professor John H Atherton

CHEM 103 Aqueous Solutions

H 0 r = -18,000 K cal/k mole Assume specific heats of all solutions are equal to that of water. [10]

Process Design Decisions and Project Economics Prof. Dr. V. S. Moholkar Department of Chemical Engineering Indian Institute of Technology, Guwahati

Lab 7: Metathesis Reactions. Pre-lab: Pages Post-Lab: Pages 164

Unit 6.3 Types of Chemical reactions

Chapter Chemical Kinetics

Enduring Understandings & Essential Knowledge for AP Chemistry

Chemical Kinetics and Reaction Engineering

LECTURE 1D. REACTIONS AND REACTORS

BAE 820 Physical Principles of Environmental Systems

Atoms and Periodic Table Unit Notes

Review Chemistry Paper 1

Le Lycee Mauricien. Proposed Syllabus Chemistry (5070) - Form 5

Section 3.1 Matter, Elements, & Atoms. 8 th Grade Earth & Space Science - Class Notes

Advanced Chemical Reaction Engineering Prof. H. S. Shankar Department of Chemical Engineering IIT Bombay. Lecture - 01 Course Overview-1

Lecture 7. Sorption-Separation Equipment

Atoms, Elements, Atoms, Elements, Compounds and Mixtures. Compounds and Mixtures. Atoms and the Periodic Table. Atoms and the.

Matter and Energy. Chapter 3

EXECUTIVE SUMMARY. especially in last 50 years. Industries, especially power industry, are the large anthropogenic

Chapter Introduction Lesson 1 Understanding Chemical Reactions Lesson 2 Types of Chemical Reactions Lesson 3 Energy Changes and Chemical Reactions

Reaction Rates and Equilibrium

CHEMICAL REACTORS - PROBLEMS OF REACTOR ASSOCIATION 47-60

Learning Model Answers Year 11 Double Chemistry

GCSE OCR Revision Chemistry. GCSE OCR Revision Chemistry. GCSE OCR Revision Chemistry. Bonding. GCSE OCR Revision Chemistry

Elements and Their Oxides

Chemistry I-H Types of Reactions / Reaction Prediction / Reaction Theory

Types of Chemical Reactions

Basic Chemistry. Chemistry Review. Bio 250: Anatomy & Physiology

Chemical reactions. C2- Topic 5

Part 01 - Notes: Reactions & Classification

ICSE Board Class IX Chemistry Paper 3 Solution

Section 1 Chemical Changes

Chapter 7 Chemical Reactions

Reaction Rates and Chemical Equilibrium

Reaction Rates and Chemical Equilibrium

Transcription:

Types of Chemical Reactors Nasir Hussain Production and Operations Engineer PARCO Oil Refinery

Introduction Reactor is the heart of Chemical Process. A vessel designed to contain chemical reactions is called a reactor. An industrial reactor is a complex chemical device in which heat transfer, mass transfer, diffusion and friction may occur along with chemical with the provisions of safety and controls

Basic Principle All chemical processes are centered in a chemical reactor. The design of a chemical reactor Is the most important factor in determining the overall process economics.

Basics for Design Reaction Type Removal/addition of heat Need for catalyst Phases involve The mode of temperature and pressure control. Production capacity or flow Residence time Contact/mixing between the reactants

Reaction Types Direct Combination or Synthesis Reaction A + B = AB Chemical Decomposition or Analysis Reaction AB = A + B

Reaction Types Single Displacement or Substitution Reaction A + BC = AC + B Metathesis or Double Displacement Reaction AB + CD = CB

In addition to the basic data, include: A heat and mass transfer characteristics Physical, chemical and thermodynamic properties of components taking part in the reaction. Corrosion- erosion characteristics of any potential hazard associated with reaction system. Reaction Rate

Endothermic/Exothermic Reactions within- heating describes a process or reaction that absorbs energy in the form of heat. Release energy in the form of heat, light, or sound. S > 0 H < 0

Reaction Rate Speed at which a chemical reaction proceeds, in terms of amount of product formed or amount of reactant consumed per unit time.

Factors Influencing Reaction Rate Concentration The nature of reaction Temperature Pressure Catalyst

Modeling Principle: Inputs + Sources = Output + Sink + Accumulations

Basic Reactor Element Material Balances Heat Transfer and Mass Transfer

Material Balances Also called mass balance. Is an application of conservation of mass to the analysis of physical systems. The mass that enters a system must, by conservation of mass, either leave the system or accumulate within the system.

Mass Balance Mathematically the mass balance for a system without a chemical reaction is as follows Input = Output + Accumulation

Mass Transfer Is the phrase commonly used in engineering for physical processes that involve molecular and convective transport of atoms and molecules within physical system. Transfer of mass from high concentration to low concentration.

Heat Transfer Is the transition of thermal energy from a heated item to a cooler item. Transfer of Thermal Energy

Modes Of Heat Transfer jacket, internal coils, external heat exchanger, cooling by vapor phase condensation fired heater.

Reactor Types They can be classified according to the; 1. Mode of operation 2. End use application 3. No of Phases 4. A catalyst is used

Classification by Mode of Operation Batch Reactors Continuous reactors Semi-batch reactors

Batch Reactor A batch of reactants is introduced into the reactor operated at the desired conditions until the target conversion is reached. Batch reactors are typically tanks in which stirring of the reactants is achieved using internal impellers, gas bubbles, or a pumparound loop where a fraction of the reactants is removed and externally recirculated back to the reactor.

Batch Reactors Temperature is regulated via internal cooling surfaces (such as coils or tubes), jackets, reflux condensers, or pumparound loop that passes through an exchanger. Batch processes are suited to small production rates, too long reaction times, to achieve desired selectivity, and for flexibility in campaigning different products

Batch Reactor

Applications of Batch reactor Fermentation of beverage products Waste water treatment

Continuous Reactors Reactants are added and products removed continuously at a constant mass flow rate. Large daily production rates are mostly conducted in continuous equipment.

Continuous Reactors CSTR Plug Flow Reactor Tubular flow reactor

CSTR A continuous stirred tank reactor (CSTR) is a vessel to which reactants are added and products removed while the contents within the vessel are vigorously stirred using internal agitation or by internally (or externally) recycling the contents. CSTRs may be employed in series or in parallel.

CSTR Residence time average amount of time a discrete quantity of reagents spend inside the tank Residence time = volumetric flow rate volume of the tank At steady state, the flow rate in must be equal the mass flow rate out.

CSTR Applications Continuous stirred-tank reactors are most commonly used in industrial processing, primarily in homogeneous liquid-phase flow reactions, where constant agitation is required. They may be used by themselves, in series, or in a battery. Fermentors are CSTRs used in biological processes in many industries, such as brewing, antibiotics, and waste treatment. In fermentors, large molecules are broken down into smaller molecules, with alcohol produced as a by-product.

Advantages/Disadvantages of CSTR Good temperature control is easily maintained Cheap to construct Reactor has large heat capacity Interior of reactor is easily accessed Disadvantage: Conversion of reactant to product per volume of reactor is small compared to other flow reactors

Plug Flow Reactor Plug flow, or tubular, reactors consist of a hollow pipe or tube through which reactants flow. Pictured below is a plug flow reactor in the form of a tube wrapped around an acrylic mold which is encased in a tank. Water at a controlled temperature is circulated through the tank to maintain constant reactant temperature.

Plug Flow Reactor Reagents may be introduced into the reactor s inlet All calculations performed with PFR s assume no upstream or downstream mixing. Has a higher efficiency than a CSTR at the same value

Schematic Diagram of Plug Flow Reactor

Applications of Plug flow reactor Plug flow reactors have a wide variety of applications in either gas or liquid phase systems. Common industrial uses of tubular reactors are in gasoline production, oil cracking, synthesis of ammonia from its elements, and the oxidation of sulfur dioxide to sulfur trioxide.

Tubular Flow Reactor A tubular flow reactor (TFR) is a tube (or pipe) through which reactants flow and are converted to product. The TFR may have a varying diameter along the flow path. In such a reactor, there is a continuous gradient (in contrast to the stepped gradient characteristic of a CSTR-inseries battery) of concentration in the direction of flow. Several tubular reactors in series or in parallel may also be used. Both horizontal and vertical orientations are common

Tubular Flow Reactor Chemical reactions take place in a stream of gas that carries reactants from the inlet to the outlet The catalysts are in tubes Uniform loading is ensured by using special equipment that charges the same amount of catalyst to each tube at a definite rate.

Semi Batch Reactor Some of the reactants are loaded into the reactor, and the rest of the reactants are fed gradually. Alternatively, one reactant is loaded into the reactor, and the other reactant is fed continuously. Once the reactor is full, it may be operated in a batch mode to complete the reaction. Semi-batch reactors are especially favored when there are large heat effects and heat-transfer capability is limited. Exothermic reactions may be slowed down and endothermic reactions controlled by limiting reactant concentration.

Semi Batch reactors In bioreactors, the reactant concentration may be limited to minimize toxicity. Other situations that may call for semibatch reactors include control of undesirable byproducts or when one of the reactants is a gas of limited solubility that is fed continuously at the dissolution rate.

Classification By End Use Chemical reactors are typically used for the synthesis of chemical intermediates for a variety of specialty (e.g., agricultural, pharmaceutical) or commodity (e.g., raw materials for polymers) applications.

Classification by End use Polymerization Reactors Bio-reactors Electrochemical Reactors

Polymerization Reactors Polymerization reactors convert raw materials to polymers having a specific molecular weight and functionality. The difference between polymerization and chemical reactors is artificially based on the size of the molecule produced.

Bio Reactors Bioreactors utilize (often genetically manipulated) organisms to catalyze biotransformations either aerobically (in the presence of air) or an-aerobically (without air present).

Electrochemical reactors Electrochemical reactors use electricity to drive desired reactions. Examples include synthesis of Na metal from NaCl and Al from bauxite ore. A variety of reactor types are employed for specialty materials synthesis applications (e.g., electronic, defense, and other).

Classification by Phase Despite the generic classification by operating mode, reactors are designed to accommodate the reactant phases and provide optimal conditions for reaction. Reactants may be fluid(s) or solid(s), and as such, several reactor types have been developed. Single phase reactors are typically gas- (or plasma- ) or liquid-phase reactors. Two-phase reactors may be gas-liquid, liquid-liquid, gas-solid, or liquid-solid reactors.

Classification by phase Multiphase reactors typically have more than two phases present. The most common type of multiphase reactor is a gas-liquid-solid reactor; however, liquid-liquid-solid reactors are also used. The classification by phases will be used to develop the contents of this section.

Classification by Phase In addition, a reactor may perform a function other than reaction alone. Multifunctional reactors may provide both reaction and mass transfer (e.g., reactive distillation, reactive crystallization, reactive membranes, etc.), or reaction and heat transfer. This coupling of functions within the reactor inevitably leads to additional operating constraints on one or the other function. Multifunctional reactors are often discussed in the context of process intensification. The primary driver for multifunctional reactors is functional synergy and equipment cost savings.

CATALYSIS

CATALYSIS It is the acceleration of chemical reaction by means of substance called catalyst.

Principles of Catalysis: Typical mechanism: A + C AC (1) B + AC ABC (2) ABC CD (3) CD C + D (4)

Catalysis and reaction energetic.

What is Phase?

Two Types of Catalyst: Homogeneous Heterogeneous

Homogeneous the catalyst in the same phase as the reactants.

Heterogeneous Involves the use of a catalyst in a different phase from the reactants.

How the heterogeneous catalyst works? Adsorption Active Sites Desorption

Adsorption Is where something sticks to a surface.

Active Sites Is a part of the surface which is particularly good at adsorbing things and helping them to react.

Desorption means that the product molecules break away.

Kinds of Catalyst Strong Acids Base Catalysis Metal oxides, Sulfides, and Hydrides Metal and Alloys Transition-metal Organometallic Catalysts

Strong Acids Is an acid that ionizes completely in an aqueous solution

Base Catalysis Is most commonly thought of as an aqueous substance that can accept protons. Base the chemical opposite of acids. Often referred to as an alkali if OH ions are involved.

Metal Oxides Form a transition between acid/base and metal catalysts.

Metal and Alloy Metal is a chemical elements whose atoms readily lose electrons to form positive ions (cations), and form metallic bonds between other metal atoms and ionic bonds between nonmetal atoms. The principal industrial metallic catalyst, are found in periodic group VII

Transition-metal Organometallic Catalysts More effective hydrogenation than are metals such as platinum.

Fluid and Solid Catalysis Multitubular reactors Fluidized beds Fixed Bed Spray Tower Two-Phase Flow

Multitubular reactors These reactors are shelland-tube configuration and have catalyst in the tubes.

Multi tubular Reactor

Fluidized Bed Device that can be used to carry out a variety of multiphase chemical reactions. A catalyst possibly shaped as tiny spheres.

Fluidized Bed Reactor

Fixed Bed Fixed bed reactor is a cylindrical tube, randomly filled with catalyst particles, which may be spheres or cylindrical pellets.

Fixed Bed Reactor

SPRAY TOWER Are a form of pollution control technology. Consist of empty cylindrical vessels made of steel or plastic and nozzles that spray liquid into the vessels

Two types of Spray Towers: 1.Cocurrent Flow -are smaller than countercurrent-flow spray towers 2.Crosscurrent Flow - the gas and liquid flow in directions perpendicular to each other.

Two-Phase Flow occurs in a system containing gas and liquid with a meniscus separating the two phases.

Two-phase flow may be classified according to the phases involved as: gas-solid mixture gas-liquid mixture liquid-solid mixture two-immiscible-liquids mixture

Diesel Hydrotreator reactor

Hydrotreating Hydrotreating is an established refinery process for reducing sulphur, nitrogen and aromatics while enhancing cetane number, density and smoke point. The refining industry s efforts to meet the global trend for more-stringent clean fuels specifications, the growing demand for transportation fuels and the shift toward diesel mean that hydrotreating has become an increasingly important refinery process in recent years.