Universal entanglement of non-smooth surfaces

Similar documents
Entanglement entropy and the F theorem

Holographic Entanglement Entropy. (with H. Casini, M. Huerta, J. Hung, M. Smolkin & A. Yale) (arxiv: , arxiv: )

Anomalies and Entanglement Entropy

Entanglement, geometry and the Ryu Takayanagi formula

31st Jerusalem Winter School in Theoretical Physics: Problem Set 2

Aspects of Renormalized Entanglement Entropy

Stress tensor correlators from holography

Quantum Information and Entanglement in Holographic Theories

On the calculation of entanglement entropy in quantum field theory

D.Blanco, H.C., L.Y.Hung, R. Myers (2013)

Information Metric and Holography

Holographic Entanglement Entropy for Surface Operators and Defects

Higher Spin AdS/CFT at One Loop

AdS/CFT Correspondence and Entanglement Entropy

SPACETIME FROM ENTANGLEMENT - journal club notes -

Holographic Entanglement Beyond Classical Gravity

Review of Holographic (and other) computations of Entanglement Entropy, and its role in gravity

Entanglement Entropy for Disjoint Intervals in AdS/CFT

Holographic Entanglement Entropy

Holographic Entanglement entropy and second law of Black holes. Sudipta Sarkar

Entanglement Entropy in Flat Holography

Theory of Quantum Matter: from Quantum Fields to Strings

On the Holographic Entanglement Entropy for Non-smooth Entangling Curves in AdS 4

Introduction to AdS/CFT

Beyond the unitarity bound in AdS/CFT

5. a d*, Entanglement entropy and Beyond

Thermality of Spherical Causal Domains & the Entanglement Spectrum

Quantum Null Energy Condition A remarkable inequality in physics

Entanglement entropy in a holographic model of the Kondo effect

재규격화군흐름, 녹채 & Holography 과홀로그래피

Quantum phase transitions in condensed matter

arxiv: v1 [hep-th] 21 Sep 2017

Holographic Entanglement Entropy

Emergent gravity. Diana Vaman. Physics Dept, U. Virginia. September 24, U Virginia, Charlottesville, VA

A Proof of the Covariant Entropy Bound

One Loop Tests of Higher Spin AdS/CFT

21 Holographic Entanglement Entropy

Entanglement in Quantum Field Theory

Dynamical fields in de Sitter from CFT entanglement

Reconstructing Bulk from Boundary: clues and challenges

Holography and (Lorentzian) black holes

Quantum Fields in Curved Spacetime

Holographic signatures of. resolved cosmological singularities

One-loop Partition Function in AdS 3 /CFT 2

Quantum gravity and entanglement

Quantum mechanics and the geometry of spacetime

Holographic construction of CFT excited states. Kostas Skenderis

Lattice study of quantum entanglement in SU(3) Yang-Mills theory at zero and finite temperatures

Quantum critical dynamics: CFT, Monte Carlo & holography. William Witczak-Krempa Perimeter Institute

Universal terms in the Entanglement Entropy of Scale Invariant 2+1 Dimensional Quantum Field Theories

Mutual Information in Conformal Field Theories in Higher Dimensions

Properties of entropy in holographic theories

Complex entangled states of quantum matter, not adiabatically connected to independent particle states. Compressible quantum matter

Entanglement Entropy In Gauge Theories. Sandip Trivedi Tata Institute of Fundamental Research, Mumbai, India.

Hyperscaling violation and entanglement entropy in gauge/string theory

HOLOGRAPHIC RECIPE FOR TYPE-B WEYL ANOMALIES

Time Evolution of Holographic Complexity

Holographic Geometries from Tensor Network States

Entanglement signatures of QED3 in the kagome spin liquid. William Witczak-Krempa

From Black holes to Qubits through String Theoretic Microscopes

Black holes, Holography and Thermodynamics of Gauge Theories

Exact holography and entanglement entropy from one-point functions

Black hole entropy of gauge fields

Probing Universality in AdS/CFT

Holographic entanglement entropy beyond AdS/CFT

RÉNYI ENTROPY ON ROUND SPHERES:

Tensor Networks, Renormalization and Holography (overview)

Glueballs at finite temperature from AdS/QCD

Quantum entanglement, it s entropy, and why we calculate it

Holography and the (Exact) Renormalization Group

Holography for non-relativistic CFTs

Holography on the Horizon and at Infinity

Talk based on: arxiv: arxiv: arxiv: arxiv: arxiv:1106.xxxx. In collaboration with:

Holographic c-theorems and higher derivative gravity

Holographic relations at finite radius

Black Hole Entropy and Gauge/Gravity Duality

Holographic Entanglement and Interaction

An Inverse Mass Expansion for Entanglement Entropy. Free Massive Scalar Field Theory

Overview: Entanglement Entropy

Emergent Spacetime. Udit Gupta. May 14, 2018

String / gauge theory duality and ferromagnetic spin chains

Linear response of entanglement entropy from holography

Holography of compressible quantum states

Quantum Entanglement of locally perturbed thermal states

Entanglement & C-theorems

Gravity Actions from Tensor Networks

arxiv: v3 [hep-th] 11 Feb 2015

Local RG, Quantum RG, and Holographic RG. Yu Nakayama Special thanks to Sung-Sik Lee and Elias Kiritsis

HIGHER SPIN CORRECTIONS TO ENTANGLEMENT ENTROPY

arxiv: v1 [hep-th] 29 Jun 2017

Holography for 3D Einstein gravity. with a conformal scalar field

Holographic renormalization and reconstruction of space-time. Kostas Skenderis Southampton Theory Astrophysics and Gravity research centre

10 Interlude: Preview of the AdS/CFT correspondence

Dynamics of Entanglement Entropy From Einstein Equation

Entanglement Inequalities

From Path Integral to Tensor Networks for AdS/CFT

Spiky strings, light-like Wilson loops and a pp-wave anomaly

CFTs with O(N) and Sp(N) Symmetry and Higher Spins in (A)dS Space

A Comment on Curvature Effects In CFTs And The Cardy-Verlinde Formula

RG Flows, Entanglement & Holography Workshop. Michigan Center for Theore0cal Physics September 17 21, 2012

Transcription:

Universal entanglement of non-smooth surfaces Pablo Bueno IFT, Madrid Based on P.B., R. C. Myers and W. Witczak-Krempa, PRL 115, 021602 (2015); P.B. and R. C. Myers arxiv:1505.07842; + work in progress with the gentlemen above Gravity - New perspectives from strings and higher dimensions Benasque July 16 th, 2015 Pablo Bueno (IFT, Madrid) Universality of corner entanglement in CFTs 16/07/2015 1 / 22

Introduction Outline 1 Introduction 2 Holographic calculations 3 QFT comparison 4 A universal ratio 5 Generalizations Pablo Bueno (IFT, Madrid) Universality of corner entanglement in CFTs 16/07/2015 2 / 22

Introduction Corner contribution to entanglement entropy Let us consider a 3d CFT. If V has a corner of opening angle Ω, the entanglement entropy is given by S EE = c 1 δ q(ω) log ( ) H 2πc 0, δ where q(ω) is a positive even function of Ω constrained to behave as Casini, Huerta; Myers, Singh q(ω 0) = κ/ω, q(ω π) = σ (Ω π) 2. κ and σ encode well-defined information about the CFT. 0 4 2 34 Pablo Bueno (IFT, Madrid) Universality of corner entanglement in CFTs 16/07/2015 3 / 22

Introduction Stress tensor 2-point function The stress tensor 2-point function defines a central charge for CFT s in any spacetime dimension. In the vacuum, functional form completely fixed by conformal symmetry and energy conservation Erdmenger, Osborn, Petkou where T ab (x) T cd (0) = C T x 2d I ab,cd(x), I ab,cd (x) 1 2 (I ac(x) I db (x) + I ad (x) I cb (x)) 1 d δ ab δ cd, I ab (x) δ ab 2 x a x b x 2. In 2d CFT s, standard definition of the central charge c: C T = c. In 4d CFT s, C T = 40 c/π 4 where c is the coefficient of the Weylsquared term in the trace anomaly. Pablo Bueno (IFT, Madrid) Universality of corner entanglement in CFTs 16/07/2015 4 / 22

Introduction Conjecture P.B., Myers, Witczak-Krempa Based on strong evidence, we conjecture that σ and C T equal up to a numerical factor for general 3d CFT s are σ C T = π2 24 Pablo Bueno (IFT, Madrid) Universality of corner entanglement in CFTs 16/07/2015 5 / 22

Holographic calculations Holographic entanglement entropy Ryu-Takayanagi prescription for the EE of CFT s dual to Einstein gravity Ryu, Takayanagi S EE (V ) = ext m V [ ] A(m). 4G We extremize the area functional A(m) over all possible bulk surfaces m whose boundary coincides with V. Result for a corner region: Hirata, Takayanagi S EE = L 2 ( ) H H 2G δ q E (Ω) log + O(δ 0 ), δ q E (Ω) = L 2 2G h0 Ω(h 0) = dh 0 [ dy 1 0 1 + h 0(Ω) 2 (1 + y 2 ) 2 + h 0(Ω) 2 (1 + y 2 ) 2h 2 1 + h0 2 1 + h 2 (h0 2 h2 )(h0 2 + (1 + h2 0 )h2 ) ], 8πG. = σ E = L 2 Pablo Bueno (IFT, Madrid) Universality of corner entanglement in CFTs 16/07/2015 6 / 22

Holographic calculations Holographic entanglement entropy L 2 /G L 2 /l 2 Planck # d.o.f. For Einstein gravity this ratio appears everywhere, so we cannot distinguish among charges higher-derivative terms, which introduce new dimensionless quantities λ i. Higher-derivative terms Ryu-Takayanagi no longer valid. Replace by Hung, Myers, Smolkin; Dong; Fursaev, Patrushev, Solodukhin; Sarkar, Wall... S EE (V ) = ext m V S grav(m). Not Wald! Corner contribution for the higher-order theory I = 1 d 4 x [ 6 g 16πG L + R + ( ) 2 L2 λ 1 R 2 + λ 2 R µν R µν + λ GB X 4 +L 4 ( λ 3,0 R 3 + λ 1,1 RX 4 ) + L 6 ( λ 4,0 R 4 + λ 2,1 R 2 X 4 + λ 0,2 X 2 4 ) ]. The final expressions take the form P.B., Myers q(ω) = α q E (Ω) σ = α σ E, α = 1 24λ 1 6λ 2 + 432λ 3,0 + 24λ 1,1 6912λ 4,0 576λ 2,1 + O(λ 2 ). Pablo Bueno (IFT, Madrid) Universality of corner entanglement in CFTs 16/07/2015 7 / 22

Holographic calculations Stress tensor 2-point function In holography, the stress tensor is dual to the normalizable mode of the metric Witten; Gubser, Klebanov, Polyakov metric fluctuations in AdS 4. α [ + 2 L ] h µν λ 2L 2 [ + 2 L ] 2 h µν = 8πGT µν 2 2 2 2 where again P.B., Myers α = 1 24λ 1 6λ 2 + 432λ 3,0 + 24λ 1,1 6912λ 4,0 576λ 2,1 + O(λ 2 ). C T = αc T,E = α 3 π 3 L 2 G. Then, for all the holographic theories considered This is not the case for other charges, e.g., σ = σ E = π2 C T C T,E 24. S disk EE = c 1 δ F σ F = ( 1 2λ GB 24λ 1,1 + 288λ 2,1 + 96λ 0,2 + O(λ 2 ) ) σ E F E, s th. = c s T 2 σ c s = ( 1 16λ 0,2 + O(λ 2 ) ) σ E c s,e. Pablo Bueno (IFT, Madrid) Universality of corner entanglement in CFTs 16/07/2015 8 / 22

QFT comparison Comparison with QFT calculations Holographic calculations strongly coupled 3d CFT s dual to our bulk theories. Remarkably, q(ω) known for a free scalar and a free Dirac fermion with certain precision. Casini, Huerta C T C fermion T known exactly since long ago in those cases: Osborn, Petkou = 2C scalar T = 3/(16π 2 ). Notably, results for q(π/2)/c T also known for the N = 1, 2, 3, O(N) Wilson-Fisher CFT s. Kallin, Stoudenmire, Frendley, Singh, Melko Given the different nature of the theories, even a qualitative agreement would look surprising... Pablo Bueno (IFT, Madrid) Universality of corner entanglement in CFTs 16/07/2015 9 / 22

QFT comparison Comparison with QFT calculations P.B., Myers, Witczak-Krempa qct 14 12 10 8 6 AdS/CFT Free scalar Free fermion Ising (N=1) XY (N=2) Heisenberg (N=3) Swingle 4 2 0 1.12 qct qctholo 1.1 1.08 1.06 1.04 1.02 1 Pablo Bueno (IFT, Madrid) Universality of corner entanglement in CFTs 16/07/2015 10 / 22

QFT comparison Comparison with QFT calculations Good agreement among all results. q(ω) and C T seem to have the same kind of emergent scaling with the number of d.o.f. In particular, q O(N) (π/2) N q Ising (π/2) and C T O(N) (π/2) NC T Ising (π/2). All curves/data points lie above the holographic curve. Does the holographic q(ω)/c T represent some kind of universal bound? A striking feature occurs as Ω π, where [q(ω)/c T ]/[q(ω)/c T ] AdS/CFT seems to tend to 1 both for the free scalar and the free fermion. This suggests that [σ/c T ]/[σ/c T ] AdS/CFT = 1. Pablo Bueno (IFT, Madrid) Universality of corner entanglement in CFTs 16/07/2015 11 / 22

QFT comparison A universal ratio σ computed approximately for the free fermion and the free scalar by Casini and Huerta: σ fermion 0.007813, σ scalar 0.0039063, Using the values for C T, one finds σ fermion C fermion 0.411235, T σ scalar C scalar 0.411235. T For all our holographic theories we had found All the results agree within 0.0003%! σ = σ E = π2 C T C T,E 24 0.411234. Given the extremely different nature of the theories and the calculations, we are led to conjecture that this is a universal quantity for general 3d CFT s. Pablo Bueno (IFT, Madrid) Universality of corner entanglement in CFTs 16/07/2015 12 / 22

QFT comparison A universal ratio The EE of a region with an almost smooth corner would be fully determined by the two point function of the stress tensor. We can use our conjecture to predict the exact values of σ scalar and σ fermion σ scalar = 1 256, σ fermion = 1 128. We are using holography to improve free field theory results! But we can do even better... Pablo Bueno (IFT, Madrid) Universality of corner entanglement in CFTs 16/07/2015 13 / 22

QFT comparison A universal ratio Let us revisit the original free field computations... Casini, Huerta. + + σ scalar = 2π dm db µ H a(1 a) m sech 2 (πb), 1/2 0 + + [ σ fermion = 4π dm db µ H a(1 a) F ] m cosech 2 (πb), 1/2 0 4π H c 2h X1T 1 ( 2c X2T + 1 16πa(a 1), h 2 a(a 1) + m 2 ) sin 2 (πa) m 2 cos(2πa) + cos (π 1 4m 2)), ( ( 2 2a 1 πa(1 a) sec π2 2a + 1 4m 2)) Γ( 32 a + 1 ) 2 1 4m 2 c ( m Γ(2 a) 2 Γ a 2 1 + 2 1 ), 1 4m 2 [ Γ( a) π sinh ( πµ X 1 ( 2 2a+1 µ Γ(a + 1) Γ X 2 X 1 with a replaced by (1 a), T F F1 ( ( ), F 1 a 2 8πc 2 m 2 + 1 F 2 ( ) + a 8πc 2 m 2 X 1T 8πhm 2 X 2T + ch F 2 8c h ( a 2 a + m 2) 2 (2a 1)µ ) ( 2 ψ (0)( a + iµ ) 2 + 1 2 ψ (0)( a iµ ))] 2 + 1 2 ) ( ), a iµ 2 + 1 2 Γ a + iµ 2 + 1 2 (cos(2πa) + cosh(πµ)) h(a 2 a + (h + 1)m 2 ),, µ 4m 2 1, ( ) ) ) X 1T + 8πh m 2 + 1 X 2T ch 16πa 3 T (c 2 X 1 + hx 2 ) + 8πa 4 T (c 2 X 1 + hx 2 ch(h + 1)m 2, { i b + 1 a 2 for the scalar, i b for the fermion, Pablo Bueno (IFT, Madrid) Universality of corner entanglement in CFTs 16/07/2015 14 / 22

QFT comparison A universal ratio We can improve the accuracy of the numerical results: These agree with our predictions σ scalar 0.00390625000000(5), σ fermion 0.00781250000000(7), σ scalar = 1 256 = 0.00390625, σ fermion = 1 128 = 0.0078125, with a precision of 1 part in 10 12 (the precision at which we computed the integrals). Recently, the integrals have been evaluated analitically Helvang, Hadjiantonis The results agree with our expectations. Pablo Bueno (IFT, Madrid) Universality of corner entanglement in CFTs 16/07/2015 15 / 22

Comments and summary of the 3d EE results q(ω)/c T is an almost universal ratio for a broad class of 3d CFTs. Is the holographic curve q(ω)/c T a universal lower bound (reminiscent of η/s = 1/(4π))? Conjecture: σ/c T is a universal quantity for general 3d CFTs: very different theories and procedures (holographic vs field theoretical methods), same result. This result allowed us to improve the free field theory results for σ. Pablo Bueno (IFT, Madrid) Universality of corner entanglement in CFTs 16/07/2015 16 / 22

Generalizations to come soon... Higher-dimensions (cones) Rényi entropies Pablo Bueno (IFT, Madrid) Universality of corner entanglement in CFTs 16/07/2015 17 / 22

Universal holographic cones P.B., Myers Sharpening spheres: cone coefficients σ (d) for general holographic theories in higher-dimensions (Using Mezei s formula) ( 1) d+2 2 d even σ (d) = C (d) π d 1 (d 1)Γ[ d 1 2 ]2 T Γ[ d 2 2 ]Γ[ d 2 ]Γ[d + 2] Cones with non-spherical cross-sections? π/4 d = 3 ( 1) d+1 2 π d = 5 Pablo Bueno (IFT, Madrid) Universality of corner entanglement in CFTs 16/07/2015 18 / 22

Corner Rényi entropies P.B., Myers, Witczak-Krempa Rényi entropies: S n (V ) = 1 1 n log Tr ρn V. Analogous corner coefficients σ n : S n = B n H δ q n(ω) log(h/δ) + c n q n (Ω π) = σ n (π Ω) 2. Twist operators τ n (V ): line operators (3d) extending over V, τ n n = Tr ρ n V. Its scaling dimension h n, defined by the coefficient of the leading divergence in T µν τ n n, e.g., T ab τ n n = h n 2π δ ab y 3. h n independent of the geometry of the entangling surface. Pablo Bueno (IFT, Madrid) Universality of corner entanglement in CFTs 16/07/2015 19 / 22

Corner Rényi entropies P.B., Myers, Witczak-Krempa Generalized conjecture: σ n = h n π(n 1) It reduces to our previous conjecture for n = 1. It works n for a free scalar and a free fermion! Some interesting consequences, e.g., Π 2 σ n 0 = 1 24 C T c s 12π 3 n 2, s thermal = c s T 2 0 1 n Σn 1 12 Π 3 c S n 2 Σ 0 Pablo Bueno (IFT, Madrid) Universality of corner entanglement in CFTs 16/07/2015 20 / 22

The end? Pablo Bueno (IFT, Madrid) Universality of corner entanglement in CFTs 16/07/2015 21 / 22

Bonus slide: a heuristic argument σ n universal response of S n to a small deformation of an originally smooth surface. In the case of EE, this response is determined by correlators of the stress tensor and the modular Hamiltonian H. H involves an integral of the stress tensor over V the calculation involves TT C T. Natural to expect σ C T. In the case n > 1, the calculation involves in turn T τ n h n. Natural to expect σ n h n. σn θ π Pablo Bueno (IFT, Madrid) Universality of corner entanglement in CFTs 16/07/2015 22 / 22