Research Article On Approximate Solutions for Fractional Logistic Differential Equation

Similar documents
BERNSTEIN COLLOCATION METHOD FOR SOLVING NONLINEAR DIFFERENTIAL EQUATIONS. Aysegul Akyuz Dascioglu and Nese Isler

Research Article Gauss-Lobatto Formulae and Extremal Problems

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings

Cubic Nonpolynomial Spline Approach to the Solution of a Second Order Two-Point Boundary Value Problem

A NEW NUMERICAL APPROACH FOR SOLVING HIGH-ORDER LINEAR AND NON-LINEAR DIFFERANTIAL EQUATIONS

Analysis of Lagrange Interpolation Formula

A Collocation Method for Solving Abel s Integral Equations of First and Second Kinds

EVALUATION OF FUNCTIONAL INTEGRALS BY MEANS OF A SERIES AND THE METHOD OF BOREL TRANSFORM

Comparing Different Estimators of three Parameters for Transmuted Weibull Distribution

Research Article A New Derivation and Recursive Algorithm Based on Wronskian Matrix for Vandermonde Inverse Matrix

Generalized Convex Functions on Fractal Sets and Two Related Inequalities

Derivation of 3-Point Block Method Formula for Solving First Order Stiff Ordinary Differential Equations

Functions of Random Variables

On the Interval Zoro Symmetric Single Step. Procedure IZSS1-5D for the Simultaneous. Bounding of Real Polynomial Zeros

Beam Warming Second-Order Upwind Method

Multi Objective Fuzzy Inventory Model with. Demand Dependent Unit Cost and Lead Time. Constraints A Karush Kuhn Tucker Conditions.

On Modified Interval Symmetric Single-Step Procedure ISS2-5D for the Simultaneous Inclusion of Polynomial Zeros

Solution of General Dual Fuzzy Linear Systems. Using ABS Algorithm

Generalized One-Step Third Derivative Implicit Hybrid Block Method for the Direct Solution of Second Order Ordinary Differential Equation

Uniform asymptotical stability of almost periodic solution of a discrete multispecies Lotka-Volterra competition system

Journal of Mathematical Analysis and Applications

Unimodality Tests for Global Optimization of Single Variable Functions Using Statistical Methods

A Remark on the Uniform Convergence of Some Sequences of Functions

A new Family of Distributions Using the pdf of the. rth Order Statistic from Independent Non- Identically Distributed Random Variables

5 Short Proofs of Simplified Stirling s Approximation

MOLECULAR VIBRATIONS

Analysis of a Repairable (n-1)-out-of-n: G System with Failure and Repair Times Arbitrarily Distributed

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions

A New Method for Decision Making Based on Soft Matrix Theory

Bootstrap Method for Testing of Equality of Several Coefficients of Variation

Nonlinear Piecewise-Defined Difference Equations with Reciprocal Quadratic Terms

Research Article Some Strong Limit Theorems for Weighted Product Sums of ρ-mixing Sequences of Random Variables

A Conventional Approach for the Solution of the Fifth Order Boundary Value Problems Using Sixth Degree Spline Functions

AN EULER-MC LAURIN FORMULA FOR INFINITE DIMENSIONAL SPACES

Numerical Analysis Formulae Booklet

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions.

Discrete Adomian Decomposition Method for. Solving Burger s-huxley Equation

Entropy ISSN by MDPI

ANALYSIS ON THE NATURE OF THE BASIC EQUATIONS IN SYNERGETIC INTER-REPRESENTATION NETWORK

Numerical Simulations of the Complex Modied Korteweg-de Vries Equation. Thiab R. Taha. The University of Georgia. Abstract

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines

Fractional Order Finite Difference Scheme For Soil Moisture Diffusion Equation And Its Applications

X ε ) = 0, or equivalently, lim

Research Article On the Rate of Convergence by Generalized Baskakov Operators

Stochastic Finite Element Based on Stochastic Linearization for Stochastic Nonlinear Ordinary Differential Equations with Random coefficients

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best

Some Notes on the Probability Space of Statistical Surveys

CHAPTER 4 RADICAL EXPRESSIONS

Research Article On the Number of Spanning Trees of Graphs

Chapter 5 Properties of a Random Sample

VOL. 3, NO. 11, November 2013 ISSN ARPN Journal of Science and Technology All rights reserved.

PGE 310: Formulation and Solution in Geosystems Engineering. Dr. Balhoff. Interpolation

Numerical Solution of Linear Second Order Ordinary Differential Equations with Mixed Boundary Conditions by Galerkin Method

Some Statistical Inferences on the Records Weibull Distribution Using Shannon Entropy and Renyi Entropy

arxiv: v4 [math.nt] 14 Aug 2015

Comparison of Dual to Ratio-Cum-Product Estimators of Population Mean

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity

ON THE LOGARITHMIC INTEGRAL

Application of Generating Functions to the Theory of Success Runs

Approximate Solution of the Singular-Perturbation Problem on Chebyshev-Gauss Grid

MAX-MIN AND MIN-MAX VALUES OF VARIOUS MEASURES OF FUZZY DIVERGENCE

Overview of the weighting constants and the points where we evaluate the function for The Gaussian quadrature Project two

CHAPTER VI Statistical Analysis of Experimental Data

The Mathematical Appendix

ESS Line Fitting

Research Article Multidimensional Hilbert-Type Inequalities with a Homogeneous Kernel

Bayes Estimator for Exponential Distribution with Extension of Jeffery Prior Information

On quaternions with generalized Fibonacci and Lucas number components

Point Estimation: definition of estimators

DIFFERENTIAL GEOMETRIC APPROACH TO HAMILTONIAN MECHANICS

Asymptotic Formulas Composite Numbers II

Finite Difference Approximations for Fractional Reaction-Diffusion Equations and the Application In PM2.5

Bayes Interval Estimation for binomial proportion and difference of two binomial proportions with Simulation Study

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory

Dynamic Analysis of Axially Beam on Visco - Elastic Foundation with Elastic Supports under Moving Load

Numerical Study for the Fractional Differential Equations Generated by Optimization Problem Using Chebyshev Collocation Method and FDM

Fourth Order Four-Stage Diagonally Implicit Runge-Kutta Method for Linear Ordinary Differential Equations ABSTRACT INTRODUCTION

Available online at ScienceDirect. Procedia Engineering 127 (2015 ) P R Mistry a,v H Pradhan b

Lecture 12 APPROXIMATION OF FIRST ORDER DERIVATIVES

2006 Jamie Trahan, Autar Kaw, Kevin Martin University of South Florida United States of America

Summary of the lecture in Biostatistics

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS

Lecture 07: Poles and Zeros

A Penalty Function Algorithm with Objective Parameters and Constraint Penalty Parameter for Multi-Objective Programming

Non-uniform Turán-type problems

ECON 5360 Class Notes GMM

A Note on Ratio Estimators in two Stage Sampling

LINEAR RECURRENT SEQUENCES AND POWERS OF A SQUARE MATRIX

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables

Econometric Methods. Review of Estimation

Chapter 2 - Free Vibration of Multi-Degree-of-Freedom Systems - II

ECE 595, Section 10 Numerical Simulations Lecture 19: FEM for Electronic Transport. Prof. Peter Bermel February 22, 2013

Special Instructions / Useful Data

ECE606: Solid State Devices Lecture 13 Solutions of the Continuity Eqs. Analytical & Numerical

TESTS BASED ON MAXIMUM LIKELIHOOD

STK4011 and STK9011 Autumn 2016

PTAS for Bin-Packing

A Study on Generalized Generalized Quasi hyperbolic Kac Moody algebra QHGGH of rank 10

Lebesgue Measure of Generalized Cantor Set

Research Article Some Characterizations of the Cobb-Douglas and CES Production Functions in Microeconomics

Transcription:

Hdaw Publshg Corporato Mathematcal Problems Egeerg Volume 2013, Artcle ID 391901, 7 pages http://dx.do.org/10.11/2013/391901 Research Artcle O Approxmate Solutos for Fractoal Logstc Dfferetal Equato M. M. Khader 1,2 ad Mohammed M. Babat 1 1 Departmet of Mathematcs ad Statstcs, College of Scece, Al-Imam Mohammed Ib Saud Islamc Uversty (IMSIU), P.O.Box6892,Ryadh1166,SaudAraba 2 Departmet of Mathematcs, Faculty of Scece, Beha Uversty, Beha, Egypt Correspodece should be addressed to M. M. Khader; mohamedmbd@yahoo.com Receved 6 March 2013; Revsed 1 Aprl 2013; Accepted 2 Aprl 2013 Academc Edtor: Guo-Cheg Wu Copyrght 2013 M. M. Khader ad M. M. Babat. Ths s a ope access artcle dstrbuted uder the Creatve Commos Attrbuto Lcese, whch permts urestrcted use, dstrbuto, ad reproducto ay medum, provded the orgal work s properly cted. A ew approxmate formula of the fractoal dervatves s derved. The proposed formula s based o the geeralzed Laguerre polyomals. Global approxmatos to fuctos defed o a sem-fte terval are costructed. The fractoal dervatves are preseted terms of Caputo sese. Specal atteto s gve to study the covergece aalyss ad estmate a error upper boud of the preseted formula. The ew spectral Laguerre collocato method s preseted for solvg fractoal Logstc dfferetal equato (FLDE). The propertes of Laguerre polyomals approxmato are used to reduce FLDE to solve a system of algebrac equatos whch s solved usg a sutable umercal method. Numercal results are provded to cofrm the theoretcal results ad the effcecy of the proposed method. 1. Itroducto Ordary ad partal fractoal dfferetal equatos (FDEs) have bee the focus of may studes due to ther frequet appearace varous applcatos flud mechacs, vscoelastcty, bology, physcs, ad egeerg [1]. Fractoal calculus s a geeralzato of ordary dfferetato ad tegrato to a arbtrary oteger order. May physcal processes appear to exhbt fractoal order behavor that mayvarywthtmeorspace.mostfdesdoothaveexact solutos, so approxmate ad umercal techques [2 8] must be used. Several umercal ad approxmate methods tosolvefdeshavebeegvesuchasvaratoalterato method [9 12], homotopy perturbato method [13], Adoma s decomposto method [14, 1], ad collocato method [16, 17]. The fractoal Logstc model ca be obtaed by applyg the fractoal dervatve operator o the Logstc equato. The model s tally publshed by Perre Verhulst 1838 [18, 19]. The cotuous Logstc model s descrbed by frstorder ordary dfferetal equato. The dscrete Logstc model s smple teratve equato that reveals the chaotc property certa regos [20]. There are may varatos of the populato modelg [19, 21]. The Verhulst model s the classc example to llustrate the perodc doublg ad chaotc behavor dyamcal system [20]. The model whch s descrbed the populato growth may be lmted by certa factors lke populato desty [18, 19, 21]. Applcatos of Logstc Equato. A typcal applcato of the Logstc equato s a commo model of populato growth. Aother applcato of Logstc curve s medce, where the Logstc dfferetal equato s used to model the growth of tumors. Ths applcato ca be cosdered a exteso of the above-metoed use the framework of ecology. Deotg by u(t) the sze of the tumor at tme t. The soluto of Logstc equato s explaed the costat populato growth rate whch ot cludes the lmtato o food supply or spread of dseases [19]. The soluto curve of the model s creasg expoetally from the multplcato factor up to saturato lmt whch s maxmum carryg capacty [19], dn/dt = ρn(1 (N/K)) where N s the populato sze wth respect to tme, ρ s the rate of maxmum populato growth, ad K s the carryg capacty.

2 Mathematcal Problems Egeerg The soluto of cotuous Logstc equato s the form of costat growth rate as formula N(t) = N 0 e ρt where N 0 s the tal populato [22]. I ths paper, we cosder FLDE of the form D ] u (t) =ρu(t)(1 u(t)), t > 0, ρ > 0, (1) here, the parameter ] refers to the fractoal order of tme dervatve wth 0<] 1. We also assume a tal codto u (0) =u 0, u 0 >0. (2) For ] =1,(1) s the stadard Logstc dfferetal equato du (t) dt =ρu(t)(1 u(t)). (3) The exact soluto to ths problem s u(t) = u 0 /((1 u 0 )e ρt + u 0 ). The exstece ad the uqueess of the proposed problem (1) are troduced detals [23, 24]. The ma am of the preseted paper s cocered wth a exteso of the prevous work o FDEs ad derve a approxmate formula of the fractoal dervatve of the Laguerre polyomals ad the we apply ths approach to obta the umercal soluto of FLDE. Also, we preset study of the covergece aalyss ad estmate a error upper boud of the proposed formula. The structure of ths paper s arraged the followg way: Secto 2, we troduce some basc deftos about Caputo fractoal dervatves ad propertes of the Laguerre polyomals. I Secto 3, wegveaapproxmateformula ofthefractoaldervatveoflaguerrepolyomalsad ts covergece aalyss. I Secto4, we mplemet the proposed method for solvg FLDE to show the accuracy of the preseted method. Fally, Secto, thepapereds wth a bref cocluso ad some remarks. 2. Prelmares ad Notatos I ths secto, we preset some ecessary deftos ad mathematcal prelmares of the fractoal calculus theory that wll be requred the preset paper. 2.1. The Caputo Fractoal Dervatve Defto 1. The Caputo fractoal dervatve operator D ] of order ] sdefedthefollowgform: D ] x 1 f (x) = Γ (m ]) f (m) (t) 0 (x t) ] m+1 dt, ] >0, x>0, where m 1<] m, m N. Smlar to teger-order dfferetato, Caputo fractoal dervatve operator s lear (4) D ] (λf (x) +μg(x)) =λd ] f (x) +μd ] g (x), () where λ ad μ are costats. For the Caputo s dervatve we have D ] C=0, Cs a costat, (6) D ] x = { 0, for N 0,< ] ; { Γ (+1) { Γ (+1 ]) x ], for N 0, ]. We use the celg fucto ] to deote the smallest teger greaterthaorequalto], adn 0 = {0, 1, 2,...}. Recallthat for ] N, the Caputo dfferetal operator cocdes wth the usual dfferetal operator of teger order. For more detals o fractoal dervatves deftos ad ther propertes see [1, 2 28]. 2.2. The Defto ad Propertes of the Geeralzed Laguerre Polyomals. Spectral collocato methods are effcet ad hghly accurate techques for umercal soluto of olear dfferetal equatos. The basc dea of the spectral collocato method s to assume that the ukow soluto u(t) ca be approxmated by a lear combato of some bass fuctos, called the tral fuctos, such as orthogoal polyomals. The orthogoal polyomals ca be chose accordg to ther specal propertes, whch make them partcularly sutable for a problem uder cosderato. I [16], Khader troduced a effcet umercal method for solvg the fractoal dffuso equato usg the shfted Chebyshev polyomals. I [29] thegeeralzedlaguerrepolyomals were used to compute a spectral soluto of a olear boudary value problems. The geeralzed Laguerre polyomals costtute a complete orthogoal sets of fuctos o the sem-fte terval [0, ). Covoluto structures of Laguerre polyomals were preseted [30]. Also, other spectral methods based o other orthogoal polyomals are used to obta spectral solutos o ubouded tervals [31]. The geeralzed Laguerre polyomals [L (α) (x)] =0, α> 1 are defed o the ubouded terval (0, ) ad ca be determed wth the ad of the followg recurrece formula: (+1) L (α) +1 (x) + (x 2 α 1) L(α) (x) (7) + (+α) L (α) 1 (x) =0, =1,2,..., (8) where L (α) 0 (x) = 1 ad L(α) 1 (x)=α+1 x. The aalytc form of these polyomals of degree s gve by L (α) (x) = ( 1) k ( +α k! k )xk k=0 = ( +α ( ) k x k (α+1) k k!, ) k=0 (9)

Mathematcal Problems Egeerg 3 L (α) +α (0) = ( ). Thesepolyomalsareorthogoalothe terval [0, ) wth respect to the weght fucto w(x) = (1/Γ(1 + α))x α e x.theorthogoaltyrelatos 1 Γ (1+α) 0 x α e x L (α) m (x) L(α) (x) dx=(+α Also, they satsfy the dfferetato formula D k L (α) )δ m. (10) (x) = ( 1)k L (α+k) k (x), k=0,1,...,. (11) Ay fucto u(x) belogs to the space L 2 w [0, ) of all square tegrable fuctos o [0, ) wth weght fuctow(x) ca be expaded the followg Laguerre seres: u (x) = =0 c L (α) (x), (12) where the coeffcets c are gve by Γ (+1) c = Γ (+α+1) x α e x L (α) (x) u (x) dx, =0,1,... 0 (13) Cosder oly the frst (m + 1) terms of geeralzed Laguerre polyomals, so we ca wrte u m (x) = m =0 c L (α) (x). (14) For more detals o Laguerre polyomals, ts deftos, ad propertes, see [29, 31, 32]. 3. A Approxmate Fractoal Dervatve of (x) ad Its Covergece Aalyss L (α) The ma goal of ths secto s to troduce the followg theorems to derve a approxmate formula of the fractoal dervatves of the geeralzed Laguerre polyomals ad study the trucatg error ad ts covergece aalyss. Lemma 2. Let L (α) (x) be a geeralzed Laguerre polyomal the (x) =0, =0,1,..., ] 1, ] >0. (1) Proof. Ths lemma ca be proved drectly by applyg (6)-(7) o (9). The ma approxmate formula of the fractoal dervatve of u(x) s gve the followg theorem. Theorem 3. Let u(x) be approxmated by the geeralzed Laguerre polyomals as (14) ad also suppose ] > 0;the ts approxmated fractoal dervatve ca be wrtte the followg form: D ] (u m (x)) m = ] k= ] c w (]), k xk ], (16) where w (]), k s gve by w (]), k = ( 1) k Γ (k+1 ]) (+α ). (17) k Proof. Sce the Caputo s fractoal dfferetato s a lear operato, we obta D ] (u m (x)) = m =0 c D ] (L (α) (x)). (18) Also, from (9)wecaget (x) =0, =0,1,..., ] 1, ] >0. (19) Therefore, for = ], ] +1,...,m,adbyusg(6)-(7) (9), we get ( 1) k (x) = ( +α k! k )D] x k k=0 = k= ] ( 1) k Γ (k+1 ]) (+α k )xk ]. (20) A combato of (18) (20) leads to the desred result (16) ad eds the proof of the theorem. Test Example.Cosderthefuctou(x) = x 3 wth m=3, ] = 1.,adα= 0., the geeralzed Laguerre seres of x 3 s x 3 = 1.87L (α) 0 (x) 11.2L (α) 1 (x) + 1L (α) 2 (x) 6L (α) 3 (x). (21) Now, by usg formula (16), we obta D 1. x 3 = 3 =2 c w (1.),k xk 1., (22) k=2 where w (1.) 2,2 = 1.12838, w (1.) 3,2 = 2.8209, w (1.) 3,3 = 0.7223, therefore, D 1. x 3 =c 2 w (1.) 2,2 x0. +c 3 w (1.) 3,2 x0. +c 3 w (1.) 3,3 x1. = Γ (4) Γ (2.) x1., whch agrees wth the exact dervatve (7). (23) Theorem 4. The Caputo fractoal dervatve of order ] for the geeralzed Laguerre polyomals ca be expressed terms of the geeralzed Laguerre polyomals themselves the followg form: where Ω k = r=0 (x) = k ] k= ] =0 Ω k L (α) (x), = ], ] +1,...,m, ( 1) r+k (α+)! ()! (k+α ] +r)! (24) (k ])! ( k)! (α+k)!r! ( r)! (α+r)!. (2)

4 Mathematcal Problems Egeerg Proof. From the propertes of the geeralzed Laguerre polyomals [33] ad expadg x k ] (20) thefollowg form: x k ] = k ] =0 c k L (α) (x), (26) where c k ca be obtaed usg (13), where u(x) = x k ],the Γ(+1) c k = Γ(+1+α) = r=0 0 x k+α ] e x L (α) (x) dx ( 1) r ()! (k ] +α+r)!, r! ( r)! (α+r)! =0,1,..., (27) ths by substtutg from (9) adusgthedeftoof Gamma fucto. Now, we ca wrte (26) thefollowg form: x k ] = k ] =0 r=0 ( 1) r ()! (k ] +α+r)! r! ( r)! (α+r)! L (α) (x). (28) Therefore, the Caputo fractoal dervatve (x) (20) caberewrttethefollowgform: (x) = k= ] k ] =0 r=0 (( 1) r+k (α+)! ()! (k ] +α+r)! ((k ])! ( k)! (α+k)!r! ( r)! (α+r)!) 1 )L (α) (x), (29) for = ], ] +1,...,m.Equato(29) leads to the desred result (24) ad ths completes the proof of the theorem. Theorem. For the Laguerre polyomals L (α) (x), oe has the followg global uform bouds estmates: (α+1)! L(α) (x) { { { e x/2, (2 (α+1) )e x/2,! for α 0,x 0, = 0, 1,... ; for 1<α 0, x 0,=0,1,... (30) Proof. These estmates were preseted [33 3]. Theorem 6. The error approxmatg D ] u(x) by D ] u m (x) s bouded by E T (m) c Π ] (, ) (α+1) e x/2, =m+1! α 0, x 0, =0,1,..., E T (m) =m+1 c Π ] (, ) (2 (α+1) )e x/2,! 1<α 0, x 0, =0,1,..., (31) where E T (m) = D ] u(x) D ] u m (x) ad Π ] (, ) = k= ] k ] =0 Ω k. Proof. A combato of (12), (14), ad (24)leadsto E T (m) = D] u (x) D ] u m (x) (32) c Π ] (, ) L(α) (x), =m+1 usg (30) ad subtractg the trucated seres from the fte seres, boudg each term the dfferece, ad summg the bouds completes the proof of the theorem. 4. Implemetato of Laguerre Spectral Method for Solvg FLDE I ths secto, we troduce a umercal algorthm usg Laguerre spectral method for solvg the fractoal Logstc dfferetal equato of the form (1). The procedure of the mplemetato s gve by the followg steps. (1) Approxmate the fucto u(t) usg the formula (14) ad ts Caputo fractoal dervatve D ] u(t) usg the preseted formula (16) wthm=, the FLDE (1) s trasformed to the followg approxmated form: =1 c w (]) k=1,k tk ] ρ( =0 (1 =0 c L (α) (t)) c L (α) (t)) =0, (33) where w (]), k s defed (17). We ow collocate (33)at(m+1 ] ) pots t p, p= 0,1,...,m ] as =1 k=1 c w (]),k tk ] p (1 ρ( =0 =0 c L (α) (t p )) c L (α) (t p )) = 0. (34) (2) From the tal codto (2) we obta the followg equato: =0 c L (α) (0) =u 0. (3)

Mathematcal Problems Egeerg u(t) 0.36 0.34 0.32 0.3 0.28 0.26 u(t) 0.38 0.36 0.34 0.32 0.3 0.28 0.26 0.24 0 0.1 0.2 0.3 0.4 0. 0.6 0.7 0.8 0.9 1 t Exact soluto Approxmate soluto (a) 0.24 0 0.1 0.2 0.3 0.4 0. 0.6 0.7 0.8 0.9 1 t (b) Fgure 1: A comparso betwee the approxmate soluto ad the exact soluto at ] =1(a). The behavor of the approxmate soluto usg the proposed method at ] = 0.8 (b). u(t) 0.38 0.36 0.34 0.32 0.3 0.28 0.26 u(t) 0.38 0.36 0.34 0.32 0.3 0.28 0.26 0.24 0 0.1 0.2 0.3 0.4 0. 0.6 0.7 0.8 0.9 1 0.24 0 0.1 0.2 0.3 0.4 0. 0.6 0.7 0.8 0.9 1 (a) t (b) t Fgure 2: The behavor of the approxmate soluto usg the proposed method at ] = 0.6 (a) ad at ] = 0.4 (b). Equatos (34)-(3) represetasystemofolear algebrac equatos whch cotas sx equatos for the ukows c, =0,1,...,. (3) Solve the resultg system usg the Newto terato method to obta the ukows c, = 0,1,...,. Therefore, the approxmate soluto wll take the form u (t) =c 0 L (α) 0 (t) +c 1 L (α) 1 (t) +c 2 L (α) 2 (t) +c 3 L (α) 3 (t) +c 4 L (α) 4 (t) +c L (α) (t). (36) The umercal results of the proposed problem (1) aregve Fgures 1 ad 2 wth dfferet values of ] the terval [0, 1] wth ρ = 0. ad u 0 = 0.2. WhereFgure 1, we preseted a comparso betwee the behavor of the exact soluto ad the approxmate soluto usg the troduced techque at ] = 1 (Fgure 1(a)), ad the behavor of the approxmate soluto usg the proposed method at ] =0.8 (Fgure 1(b)). But, Fgure 2, we preseted the behavor of the approxmate soluto wth dfferet values of ] (] =0.6 (Fgure 2(a))ad] = 0.4 (Fgure 2(b))).. Cocluso ad Remarks I ths paper, we troduced a ew spectral collocato methodbasedolaguerrepolyomalsforsolvgflde.

6 Mathematcal Problems Egeerg We have troduced a approxmate formula for the Caputo fractoal dervatve of the geeralzed Laguerre polyomals terms of geeralzed Laguerre polyomals themselves. I the proposed method we used the propertes of the Laguerre polyomals to reduce FLDE to solve a system of algebrac equatos. The error upper boud of the proposed approxmate formula s stated ad proved. The obtaed umercal resultsshowthattheproposedalgorthmcovergesasthe umber of m termsscreased.thesolutosexpressedas a trucated Laguerre seres ad so t ca be easly evaluated for arbtrary values of tme usg ay computer program wthout ay computatoal effort. From llustratve examples, we ca coclude that ths approach ca obta very accurate adsatsfactoryresults.comparsosaremadebetweethe approxmate soluto ad the exact soluto to llustrate the valdty ad the great potetal of the techque. All computatosaredoeusgmatlab. Refereces [1] I. Podluby, Fractoal Dfferetal Equatos, vol. 198, Academc Press, New York, NY, USA, 1999. [2] O. P. Agrawal, Formulato of Euler-Lagrage equatos for fractoal varatoal problems, Joural of Mathematcal Aalyss ad Applcatos,vol.272,o.1,pp.368 379,2002. [3]R.AlmedaadD.F.M.Torres, Necessaryadsuffcet codtos for the fractoal calculus of varatos wth Caputo dervatves, Commucatos Nolear Scece ad Numercal Smulato,vol.16,o.3,pp.1490 100,2011. [4] M. M. Khader ad A. S. Hedy, The approxmate ad exact solutos of the fractoal-order delay dfferetal equatos usg Legedre pseudospectral method, Iteratoal Joural of Pure ad Appled Mathematcs, vol.74,o.3,pp.287 297, 2012. [] M.M.Khader,T.S.ELDaaf,adA.S.Hedy, Acomputatoal matrx method for solvg systems of hgh order fractoal dfferetal equatos, Appled Mathematcal Modellg, vol. 37, pp. 403 400, 2013. [6] F. Maard, The fudametal solutos for the fractoal dffuso-wave equato, Appled Mathematcs Letters, vol.9, o. 6, pp. 23 28, 1996. [7] F. Maard, Y. Luchko, ad G. Pag, The fudametal soluto of the space-tme fractoal dffuso equato, Fractoal Calculus ad Appled Aalyss,vol.4,o.2,pp.13 192,2001. [8] N.H.Swelam,M.M.Khader,adA.M.S.Mahdy, Numercal studes for fractoal-order logstc dfferetal equato wth two dfferet delays, Joural of Appled Mathematcs,vol.2012, Artcle ID 764894, 14 pages, 2012. [9] J. H. He, Approxmate aalytcal soluto for seepage flow wth fractoal dervatves porous meda, Computer Methods Appled Mechacs ad Egeerg, vol.167,o.1-2,pp.7 68, 1998. [10] T. Odzewcz, A. B. Malowska, ad D. F. M. Torres, Fractoal varatoal calculus wth classcal ad combed Caputo dervatves, Nolear Aalyss. Theory, Methods ad Applcatos,vol.7,o.3,pp.107 11,2012. [11] G. C. Wu ad D. Baleau, Varatoal terato method for fractoal calculus-a uversal approach by Laplace trasform, Advaces Dfferece Equatos,vol.2013,artcle18,2013. [12] G.-C. Wu ad E. W. M. Lee, Fractoal varatoal terato method ad ts applcato, Physcs Letters A, vol. 374, o. 2, pp. 206 209, 2010. [13] Q. Wag, Homotopy perturbato method for fractoal KdV equato, Appled Mathematcs ad Computato, vol.190,o. 2, pp. 179 1802, 2007. [14] V. Daftardar-Ge ad H. Jafar, Adoma decomposto: a tool for solvg a system of fractoal dfferetal equatos, Joural of Mathematcal Aalyss ad Applcatos,vol.301,o. 2,pp.08 18,200. [1] J.S.Dua,R.Rach,D.Buleau,adA.M.Wazwaz, Arevew of the Adoma decomposto method ad ts applcatos to fractoal dfferetal equatos, Commucatos Fractoal Calculus,vol.3,pp.73 99,2012. [16] M. M. Khader, O the umercal solutos for the fractoal dffuso equato, Commucatos Nolear Scece ad Numercal Smulato,vol.16,o.6,pp.23 242,2011. [17] N. H. Swelam ad M. M. Khader, A Chebyshev pseudospectral method for solvg fractoal-order tegro-dfferetal equatos, The ANZIAM Joural,vol.1,o.4,pp.464 47, 2010. [18] J. M. Cushg, A Itroducto to Structured Populato Dyamcs,vol.71,SIAM,Phladelpha,Pa,USA,1998. [19] H. Past, Chaotc growth wth the logstc model of P.-F. Verhulst, uderstadg complex systems, The Logstc Map ad the Route to Chaos, pp.3 11,Sprger,Berl,Germay, 2006. [20] K.T.Allgood,T.D.Sauer,adJ.A.Yorke,A Itroducto to Dyamcal Systems, Sprger, New York, NY, USA, 1996. [21] M. Ausloos, The Logstc Map ad the Route to Chaos: From the Beggs to Moder Applcatos, Sprger, Berl, Germay, 2006. [22] Y. Suasook ad K. Pathoowattaak, Dyamc of logstc model at fractoal order, Proceedgs of the IEEE Iteratoal Symposum o Idustral Electrocs (IEEE ISIE 09), pp. 718 723, July 2009. [23] A.M.A.El-Sayed,A.E.M.El-Mesry,adH.A.A.El-Saka, O the fractoal-order logstc equato, Appled Mathematcs Letters,vol.20,o.7,pp.817 823,2007. [24] A. M. A. El-Sayed, F. M. Gaafar, ad H. H. G. Hashem, O the maxmal ad mmal solutos of arbtrary-orders olear fuctoal tegral ad dfferetal equatos, Mathematcal Sceces Research Joural,vol.8,o.11,pp.336 348,2004. [2] D.Baleau,K.Dethelm,E.Scalas,adJ.J.Trullo,Fractoal Calculus Models ad Numercal Methods,vol.3,WorldScetfc Publshg, Sgapore, 2012. [26] Y. Che, B. M. Vagre, ad I. Podluby, Cotued fracto expaso approaches to dscretzg fractoal order dervatves-a expostory revew, Nolear Dyamcs,vol.38, o. 1 4, pp. 1 170, 2004. [27] R. A. El-Nabuls, Uversal fractoal Euler-Lagrage equato from a geeralzed fractoal dervate operator, Cetral Europea Joural of Physcs,vol.9,o.1,pp.20 26,2011. [28] R. A. El-Nabuls, A fractoal acto-lke varatoal approach of some classcal, quatum ad geometrcal dyamcs, Iteratoal Joural of Appled Mathematcs,vol.17,o.3,pp.299 317, 200. [29] C.-l. Xu ad B.-Y. Guo, Laguerre pseudospectral method for olear partal dfferetal equatos, Joural of Computatoal Mathematcs, vol. 20, o. 4, pp. 413 428, 2002.

Mathematcal Problems Egeerg 7 [30] R. Askey ad G. Gasper, Covoluto structures for Laguerre polyomals, Joural d Aalyse Mathématque, vol. 31, o. 1, pp. 48 68, 1977. [31] F. Talay Akyldz, Laguerre spectral approxmato of Stokes frst problem for thrd-grade flud, Nolear Aalyss: Real World Applcatos,vol.10,o.2,pp.1029 1041,2009. [32] I. K. Khabbrakhmaov ad D. Summers, The use of geeralzed Laguerre polyomals spectral methods for olear dfferetal equatos, Computers ad Mathematcs wth Applcatos, vol. 36, o. 2, pp. 6 70, 1998. [33] M. Abramowtz ad I. A. Stegu, Hadbook of Mathematcal Fuctos,Dover,NewYork,NY,USA,1964. [34] Z. Lewadowsk ad J. Szyal, A upper boud for the Laguerre polyomals, JouralofComputatoaladAppled Mathematcs,vol.99,o.1-2,pp.29 33,1998. [3] M. Mchalska ad J. Szyal, A ew boud for the Laguerre polyomals, Joural of Computatoal ad Appled Mathematcs,vol.133,o.1-2,pp.489 493,2001.

Advaces Operatos Research Hdaw Publshg Corporato http://www.hdaw.com Advaces Decso Sceces Hdaw Publshg Corporato http://www.hdaw.com Joural of Appled Mathematcs Algebra Hdaw Publshg Corporato http://www.hdaw.com Hdaw Publshg Corporato http://www.hdaw.com Joural of Probablty ad Statstcs The Scetfc World Joural Hdaw Publshg Corporato http://www.hdaw.com Hdaw Publshg Corporato http://www.hdaw.com Iteratoal Joural of Dfferetal Equatos Hdaw Publshg Corporato http://www.hdaw.com Submt your mauscrpts at http://www.hdaw.com Iteratoal Joural of Advaces Combatorcs Hdaw Publshg Corporato http://www.hdaw.com Mathematcal Physcs Hdaw Publshg Corporato http://www.hdaw.com Joural of Complex Aalyss Hdaw Publshg Corporato http://www.hdaw.com Iteratoal Joural of Mathematcs ad Mathematcal Sceces Mathematcal Problems Egeerg Joural of Mathematcs Hdaw Publshg Corporato http://www.hdaw.com Hdaw Publshg Corporato http://www.hdaw.com Hdaw Publshg Corporato http://www.hdaw.com Dscrete Mathematcs Joural of Hdaw Publshg Corporato http://www.hdaw.com Dscrete Dyamcs Nature ad Socety Joural of Fucto Spaces Hdaw Publshg Corporato http://www.hdaw.com Abstract ad Appled Aalyss Hdaw Publshg Corporato http://www.hdaw.com Hdaw Publshg Corporato http://www.hdaw.com Iteratoal Joural of Joural of Stochastc Aalyss Optmzato Hdaw Publshg Corporato http://www.hdaw.com Hdaw Publshg Corporato http://www.hdaw.com