x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the

Similar documents
7a3 2. (c) πa 3 (d) πa 3 (e) πa3

MAC2313 Final A. (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative.

MAT 211 Final Exam. Spring Jennings. Show your work!

1. If the line l has symmetric equations. = y 3 = z+2 find a vector equation for the line l that contains the point (2, 1, 3) and is parallel to l.

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours)

Calculus III. Math 233 Spring Final exam May 3rd. Suggested solutions

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r (t) = 3 cos t, 0, 3 sin t, r ( 3π

Solutions to Sample Questions for Final Exam

Sections minutes. 5 to 10 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed.

(a) The points (3, 1, 2) and ( 1, 3, 4) are the endpoints of a diameter of a sphere.

Practice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr.

Math 234 Final Exam (with answers) Spring 2017

MATH H53 : Final exam

1. For each function, find all of its critical points and then classify each point as a local extremum or saddle point.

Page Points Score Total: 210. No more than 200 points may be earned on the exam.

Page Problem Score Max Score a 8 12b a b 10 14c 6 6

MLC Practice Final Exam

MAY THE FORCE BE WITH YOU, YOUNG JEDIS!!!

Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt

Faculty of Engineering, Mathematics and Science School of Mathematics

Review problems for the final exam Calculus III Fall 2003

One side of each sheet is blank and may be used as scratch paper.

f(p i )Area(T i ) F ( r(u, w) ) (r u r w ) da

Review Sheet for the Final

Multiple Choice. Compute the Jacobian, (u, v), of the coordinate transformation x = u2 v 4, y = uv. (a) 2u 2 + 4v 4 (b) xu yv (c) 3u 2 + 7v 6

Math 263 Final. (b) The cross product is. i j k c. =< c 1, 1, 1 >

The Divergence Theorem

DO NOT BEGIN THIS TEST UNTIL INSTRUCTED TO START

(b) Find the range of h(x, y) (5) Use the definition of continuity to explain whether or not the function f(x, y) is continuous at (0, 0)

Math 234 Exam 3 Review Sheet

Final Review Worksheet

SOLUTIONS TO PRACTICE EXAM FOR FINAL: 1/13/2002

No calculators, cell phones or any other electronic devices can be used on this exam. Clear your desk of everything excepts pens, pencils and erasers.

MATH 0350 PRACTICE FINAL FALL 2017 SAMUEL S. WATSON. a c. b c.

MATH 228: Calculus III (FALL 2016) Sample Problems for FINAL EXAM SOLUTIONS

MATH 52 FINAL EXAM SOLUTIONS

Review for the First Midterm Exam

Without fully opening the exam, check that you have pages 1 through 12.

Math Review for Exam Compute the second degree Taylor polynomials about (0, 0) of the following functions: (a) f(x, y) = e 2x 3y.

Vector Calculus handout

Geometry and Motion Selected answers to Sections A and C Dwight Barkley 2016

Math 210, Final Exam, Spring 2012 Problem 1 Solution. (a) Find an equation of the plane passing through the tips of u, v, and w.

Disclaimer: This Final Exam Study Guide is meant to help you start studying. It is not necessarily a complete list of everything you need to know.

e x3 dx dy. 0 y x 2, 0 x 1.

MAT 211 Final Exam. Fall Jennings.

Math 11 Fall 2018 Practice Final Exam

Final exam (practice 1) UCLA: Math 32B, Spring 2018

1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is

MATH 332: Vector Analysis Summer 2005 Homework

Exercises for Multivariable Differential Calculus XM521

WORKSHEET #13 MATH 1260 FALL 2014

1. (30 points) In the x-y plane, find and classify all local maxima, local minima, and saddle points of the function. f(x, y) = 3y 2 2y 3 3x 2 + 6xy.

Name: Date: 12/06/2018. M20550 Calculus III Tutorial Worksheet 11

Math 233. Practice Problems Chapter 15. i j k

Solutions to old Exam 3 problems

Math 222 Spring 2013 Exam 3 Review Problem Answers

Stokes s Theorem 17.2

McGill University April Calculus 3. Tuesday April 29, 2014 Solutions

Practice problems **********************************************************

1. Find and classify the extrema of h(x, y) = sin(x) sin(y) sin(x + y) on the square[0, π] [0, π]. (Keep in mind there is a boundary to check out).

SOME PROBLEMS YOU SHOULD BE ABLE TO DO

Major Ideas in Calc 3 / Exam Review Topics

MATHS 267 Answers to Stokes Practice Dr. Jones

Math 350 Solutions for Final Exam Page 1. Problem 1. (10 points) (a) Compute the line integral. F ds C. z dx + y dy + x dz C

Math 3435 Homework Set 11 Solutions 10 Points. x= 1,, is in the disk of radius 1 centered at origin

Summary for Vector Calculus and Complex Calculus (Math 321) By Lei Li

Note: Each problem is worth 14 points except numbers 5 and 6 which are 15 points. = 3 2

MATHEMATICS 200 April 2010 Final Exam Solutions

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9

Math 11 Fall 2016 Final Practice Problem Solutions

Jim Lambers MAT 280 Fall Semester Practice Final Exam Solution

Math 20C Homework 2 Partial Solutions

Practice problems. m zδdv. In our case, we can cancel δ and have z =

Math 210, Final Exam, Fall 2010 Problem 1 Solution. v cosθ = u. v Since the magnitudes of the vectors are positive, the sign of the dot product will

APPM 2350 FINAL EXAM FALL 2017

Bi. lkent Calculus II Exams

Practice Problems for the Final Exam

12/19/2009, FINAL PRACTICE VII Math 21a, Fall Name:

Tangent Plane. Linear Approximation. The Gradient

APPM 2350 Final Exam points Monday December 17, 7:30am 10am, 2018

Multiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015

Answer sheet: Final exam for Math 2339, Dec 10, 2010

MATH 261 FINAL EXAM PRACTICE PROBLEMS

(You may need to make a sin / cos-type trigonometric substitution.) Solution.

M273Q Multivariable Calculus Spring 2017 Review Problems for Exam 3

234 Review Sheet 2 Solutions

In general, the formula is S f ds = D f(φ(u, v)) Φ u Φ v da. To compute surface area, we choose f = 1. We compute

Math 23b Practice Final Summer 2011

Summary of various integrals

Math 10C - Fall Final Exam

G G. G. x = u cos v, y = f(u), z = u sin v. H. x = u + v, y = v, z = u v. 1 + g 2 x + g 2 y du dv

Print Your Name: Your Section:

MULTIVARIABLE CALCULUS

Divergence Theorem December 2013

4 Partial Differentiation

Direction of maximum decrease = P

Divergence Theorem Fundamental Theorem, Four Ways. 3D Fundamental Theorem. Divergence Theorem

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS. MATH 233 SOME SOLUTIONS TO EXAM 2 Fall 2018

1 Functions of Several Variables Some Examples Level Curves / Contours Functions of More Variables... 6

Problem Points S C O R E

Transcription:

1.(8pts) Find F ds where F = x + ye z + ze y, y + xe z + ze x, z and where T is the T surface in the pictures. (The two pictures are two views of the same surface.) The boundary of T is the unit circle in the xy plane. Let D be the unit disk in the xy plane. Then T D is the boundary of a solid E whose volume is π. The orientation on T is outward with respect to E. You are looking at the picture from underneath. This problem will require some thought since all you know about T and E are what you see in the picture plus the volume of E. (a) 6π (b) π (c) 6π (d) π(e e) (e) π

.(8pts) Let T be the surface r(u, θ) = u, u cos(θ), u sin(θ) for u 1, θ π. This is the surface you get by rotating y = x, x 1, around the y axis. If the density at a point on this surface is given by 4x 5 + 4x 3, find the mass. Remark: The density has been chosen so that a simple substitution can be used to evaluate the integral you should get. (a) 4π 3 5 3 (b) π(4) 3 (c) π (d) π 8 (e) π ( 4 )

3.(8pts) Let C be the curve parametrized by r(t) = cos t, sin t, 1. Stokes theorem tells us that for a differentiable vector field F F dr = (curl F) ds C for any oriented smooth surface S. The surfaces below are possible choices for S where the vectors indicate the direction of the normal field. Which of the following is an appropriate choice for S? The curve C is drawn in bold in each picture and the positive directions on the axes are labeled. Hint: Be mindful of the orientation of C! S (a) (b) (c) (d) (e)

4.(7pts) We are asked to find absolute maximum and minimum values of f(x, y, z) with respect to the constraints g(x, y, z) = 1 and h(x, y, z) = e. We are given that the five points (1, 1, 1), (, 1, 1), (, 1, 1), (1, 1, 1) and ( 1, 1, 1) satisfy both constraint equations. Each of the five points satisfies an additional condition: f(1, 1, 1) = g(1, 1, 1) + 3 h(1, 1, 1) f(, 1, 1) = 6 g(, 1, 1) f(, 1, 1) ( ( g(, 1, 1) h(, 1, 1) ) = f( 1, 1, 1) ( ( g( 1, 1, 1) h( 1, 1, 1) ) f(1, 1, 1) = Which point can not be an absolute extremum? (a) (1, 1, 1). (b) (1, 1, 1). (c) ( 1, 1, 1). (d) (, 1, 1). (e) (, 1, 1). 5.(7pts) Compute the angle between the vectors 1, 1, and, 1, 3. (a) π/4 (b) π (c) π/ (d) arccos ( ) 1 (e) arccos 8 ( ) 1 8

6.(7pts) Compute the flux F ds, where F = 4y, xy, xz and S is the surface z = ye x, x 1, y 1, with the upward orientation. S (a) e (b) 1 e (c) e 1 (d) e (e) 1 + e 7.(7pts) Find F dr where F = x, z, y and C is parametrized by C r(t) = cos t, t, sin t, t π. (a) π + (b) π 1 (c) π (d) 1 (e) π

8.(7pts) Compute x(t) dt where x(t) = sin(t)i + e t k. (a) cos t + e t + C (c) ( cos t + C 1 )i + (e t + C )k (b) ( cos t)i + e t k (d) ( cos t + C)i + Cj + (e t + C)k (e) ( cos t + C 1 )i + C j + (e t + C 3 )k 9.(7pts) If f(x, y) = sin(xy) find the directional derivative D u f at the point (x, y), where 1 1 u =,. (a) (d) x + y cos(xy) x + y sin(xy) (b) x + y sin(xy) (c) x y cos(xy) (e) x + y cos(xy)

1.(7pts) Determine the surface area of the part of z = xy that lies inside the cylinder x +y = 1. (a) π 3 ( 3 + 1) (b) π 3 ( 3 1) (c) π (d) π 3 ( 3 + 1) (e) π 3 ( 3 1) 11.(7pts) Find F ds where F = x, yz, z and D is the surface of the cube E with D vertices: (,, ), (,, ), (, 3, ), (,, 4), (, 3, ), (, 3, 4), (,, 4), and (, 3, 4), so x, y 3 and z 4. (a) (b) 4 (c) 48 (d) 36 (e) 4

1.(7pts) Which of the following is perpendicular to both a and b if a b = 1 and a b,,. (a) (a b) b (b) (a b) a (c) (a + b) (a b) (d) (a b)(a b) (e) a + b 13.(7pts) Compute the curl of the vector field F(x, y, z) = e x sin(y), e y cos(z), e x. (a) e y sin(z), e x, e x cos(y) (c) e y sin(z), e x, e y cos(y) (b) e x sin(z), e x, e x cos(y) (d) e y sin(z), e x, e x cos(y) (e) e y sin(z), e x, e x cos(y)

14.(7pts) Find the center of mass of the thin plate D which has the shape of a half-disk consisting of the region below the semicircle bounded by x + y = 9 and above the x-axis. Assume that D has density ρ(x, y) = x + y and mass 9π. ( ) ( (a), (b), π ) ( ) ( ) ( ) 9 3 (c), (d), (e), 9π 3 π 3π π 15.(7pts) Let f(x, y) = x + 6xy 3y. Find and classify all critical points. (a) (, ), saddle point. (c) (, ) and (1, 1), both saddle points. (b) ( 1, 1), local minima, (, ), local maximum. (d) (, ), local maximum. (e) (, ), local maximum.

16.(7pts) Find the curvature when t = of r(t) = cos t, sin t, e t. (a) 3 (b) 1 (c) 3 (d) 1 (e) 3 17.(7pts) Which of the following is a minimum of f(x, y) = x + y subject to the constraint x + y = 1? ( ) ( ) 1 3 (a) ( 1, ) (b), (c), (d) (, 1) (e) None of these points is a minimum.

18.(7pts) Find the direction of fastest increase of the function f(x, y) = x y 3 at the point (, 1). (a) 4, 1 (b) 3 1,, (c) 3,, 1 14 14 14 (d) 4 5, 3 5 (e) 4 5, 1 5 19.(7pts) Find the equation of the tangent plane to the surface z = x + ln(x + y) at the point ( 1, 3, 1). (a) 3x + y z = 1 (b) x + y 3z = 1 (c) 1 + 3t, 3 + t, 1 t (d) x + 3y z = 11 (e) 3x y + z = 7

.(7pts) Define a transformation x(u, w) = u w, y(u, w) = w u for < u <, < w <. (x, y) Compute the Jacobian of this transformation. (u, w) Recall: d ax dx = ax ln(a). (a) u w ln(u) + w u ln(w) (b) u w w u( 1 ln(u) ln(w) ) (c) (u + w )u w 1 w u 1 (d) (u + w)u w 1 w u 1 (e) 1.(7pts) Find the volume that lies inside the sphere x + y + z = and outside the cone z = x + y. (a) 3 8 π (b) π (c) π (d) 8 π (e) π 3

1. Solution. div F = 3 so div F dv = 6π. Hence E F ds = F ds = F ds + F ds = 6π E T D T T is oriented the way we want and D is oriented so that the normal vector points down: the unit normal is,, 1 and the field restricted to D is x + y, y + x, since this is what we get when z =. Then x + y, y + x,,, 1 ds = ds = D Hence T D F ds = 6π. x +y 1

. Solution. Hence To do 1 r u = 1, u cos(θ), u sin(θ) r θ =, u sin(θ), u cos(θ) i j k r u r θ = det 1 u cos(θ) u sin(θ) u sin(θ) u cos(θ) = u 3, u cos(θ), u sin(θ) r u r θ = 4u 6 + u 4 Mass = (4x 5 + 4x 3 ) ds = (4u 5 + 4u 3 ) 4u 6 + u 4 da = T π dθ 1 u 1 θ π (4u 5 + 4u 3 ) 4u 6 + u 4 du (4u 5 +4u 3 ) 4u 6 + u 4 du use the substitution v = 4u 6 +u 4, dv = (4u 5 +4u 3 ) du. Now isn t that handy. 1 (4u 5 + 4u 3 ) 4u 6 + u 4 du = Hence the mass is π 3 5 3 = 4 3 π5 3. 5 3 v dv = v 3 5 = 3 5 3 3. Solution. This question boils down to figuring out whether the given surface has C as its boundary and has orientation consistent with the orientation on C. Since the annulus has both C and the inner circle as its boundary, it is immediately out. The sphere has no boundary, so that is out. Now, for a surface to have orientation consistent with the orientation of its boundary, if you walk around the boundary in the direction of its orientation with your head pointing in the direction of the normal vector field, then the surface will be on your left. This leaves the disk with upward normals as the correct answer.

4. Solution. The points where a possible absolute maximum and minimum can occur are points on the two constraints such that f is in the plane formed by g and h. So f is a linear combination of g and h f ( g h ) =, scalar triple product of f, g, h is zero, or the hessian of f, g, h is zero. All those occur expect for the point ( 1, 1, 1). 5. Solution. The desired angle is given by θ = arccos where stands for the dot product. 1, 1,, 1, 3 14 ( ) 1 = arccos 8 6. Solution. The parametrization is r(x, y) = x, y, ye x, x 1, y 1. The normal vector has positive z-coordinate so the orientation is up. Hence F ( r(x, y) ) = 4y, xy, xye x i j k and ds = r x r y da = det 1 ye x 1 e x da = yex, e x, 1 da. Hence Flux = 4y, xy, xye x ye x, e x, 1 da = ( 4y 3 e x xye x + xye x ) da = x 1 y 1 1 4 1 1 y 3 e x dy dx = 4 y 4 4 1 x 1 y 1 1 e x dx = e x dx = e + 1

7. Solution. F(r(t)) = cos t, t, sin t r (t) = sin t, cos t, 1 F(r(t)) r (t) = sin t cos t + t cos t + sin t C π π F dr = π F(r(t)) r (t) dt = 1 π sin t cos t dt = u du = 1 (where u = sin t) π t cos t + sin t dt = t sin t = π Thus F dr = 1 + π. ( sin t cos t + t cos t + sin t) dt 8. Solution. x(t) dt = (sin t)i + e t k ) dt sin = t,, e t dt = sin t dt, dt, e t dt = cos t + C 1, C, e t + C 3 = ( cos t + C1 )i + C j + (e t + C 3 )k 9. Solution. The gradient is given by f = y cos(xy), x cos(xy) so D u f = f u = x + y cos(xy).

1. Solution. The partial derivatives are given by f x = y and f y = x. The surface area is given by S = x + y + 1 da. After converting to polar coordinates we obtain π 1 D r r + 1 dr dθ = π 1 3 ( 3 π 1) dθ = 3 ( 3 1). 11. Solution. Use the Divergence Theorem to converge this into a triple integral, x dv. This becomes 3 4 x dx dz dy = 48. E

1. Solution. We re looking for a vector which is parallel to a b, and it s obvious that (a b)(a b) is parallel to (a b). (because a b ) However, a+b, (a b) b and (a b) a are perpendicular to a b, and (a+b) (a b) is not a vector. 13. Solution. i j k curl F = det = e y sin(z), e x, e x cos(y) x y z e x sin(y) e y cos(z) e x

14. Solution. The region and the density are symmetric about the y-axis, hence the x- coordinate of the center of mass is. To find the y-coordinate, we compute the moment about the x-axis. In polar coordinates, π ( π ) ( 3 ) M x = x + y y da = r(r sin(θ))r dr dθ = sin(θ) dθ r 3 dr = x +y 9 The mass is Hence, M = x +y 9 ( π) ( ) cos θ r 4 3 4 x + y da = ȳ = π rr dr dθ = M x mass(d) = = 81 4 = 81 π 3 81 9π = 9 π r dr dθ = π r3 3 3 = 9π 15. Solution. We first compute f x = x + 6y, f y = 6x 6y, f xx =, f xy = 6, f yy = 6. The critical points are the solutions to the equations x + 6y = 6x 6y = The only solutions is x = y =. Thus (, ) is the only critical points. The value of the Hessian 48 and we conclude that (, ) is a saddle point

16. Solution. κ(t) = r (t) r (t). r (t) = sin t, cos t, e t and r (t) =, 1, 1. r (t) = r (t) 3 i j k cos t, sin t, e t and r (t) = 1,, 1., 1, 1 1,, 1 = det 1 1 = 1, 1, 1. 1 1 1, 1, 1 = 3 and, 1, 1 = 3. κ() =. 17. Solution. Letting g(x, y) = x + y, the equations to solve are: { f = λ g g(x, y) = 1 which, written out are: x = λx 4y = λy x + y = 1 The first equation says that either x = or λ = 1. If x =, then the third equation gives that y = ±1; so (, 1) and (, 1) are possible extrema. If λ = 1, then the second equation gives that y = which, by the third equation, gives that x = ±1. This gives (1, ) and ( ) ( ) ( 1, ) as two more possible extrema. This eliminates (, ),, 1 3, and, as possible answers. Plugging in the possible extrema, we find that f(1, ) = f( 1, ) = 1 f(, 1) = f(, 1) = and so (1, ) and ( 1, ) are the minima of f subject to x + y = 1. Thus ( 1, ) is the correct answer.

18. Solution. The gradient is f = x, 3y which at (, 1) is 4, 3. The direction is 4 5, 3 5 1 + x + y, 1 19. Solution. Let f(x, y, z) = x + ln x + y z. Then f = x + y, 1 so that f( 1, 3, 1) = 3, 1, 1. Since f( 1, 3, 1) defines a normal vector to the surface, an equation of the tangent plane is given by or 3x + y z = 1. 3, 1, 1 x + 1, y 3, z + 1 =. Solution. x x u w u w (x, y) (u, w) = det u w y y = det u w w u w u = det w u w 1 u w ln(u) w u ln(w) = u w u w u w w u u w w u ln(u) ln(w) = u w w u( 1 ln(u) ln(w) )

1. Solution. In spherical coordinates the sphere becomes ρ =. To convert the cone into spherical coordinates we add z to both sides of the equation defining the cone so that z = x + y + z which becomes ρ cos φ = ρ ( ) 1 Therefore φ = arccos which gives φ = π 4 or φ = 3π 4. To find the volume we compute V = 4 π dθ = 8 3 3 π π 3π 4 π 4 ρ sin φ dρ dφ dθ = 3 π 3π 4 π 4 sin φ dφ dθ =