, where we have X4 CYTOSINE :NT{C}=NT{X } = [ ].{4;XXXX} = [10 ].4;TGCA

Similar documents
Student Handout 2. Human Sepiapterin Reductase mrna Gene Map A 3DMD BioInformatics Activity. Genome Sequencing. Sepiapterin Reductase

Proteins: Characteristics and Properties of Amino Acids

Taming the Beast Workshop

SEQUENCE ALIGNMENT BACKGROUND: BIOINFORMATICS. Prokaryotes and Eukaryotes. DNA and RNA

Chemistry Chapter 22

Translation. A ribosome, mrna, and trna.

Amino Acids and Peptides

Ribosomes and Protein Synthesis

Lecture 15: Realities of Genome Assembly Protein Sequencing

Using Higher Calculus to Study Biologically Important Molecules Julie C. Mitchell

Protein structure. Protein structure. Amino acid residue. Cell communication channel. Bioinformatics Methods

Properties of amino acids in proteins

CHEMISTRY ATAR COURSE DATA BOOKLET

Potentiometric Titration of an Amino Acid. Introduction

Viewing and Analyzing Proteins, Ligands and their Complexes 2

BIS Office Hours

Studies Leading to the Development of a Highly Selective. Colorimetric and Fluorescent Chemosensor for Lysine

PROTEIN STRUCTURE AMINO ACIDS H R. Zwitterion (dipolar ion) CO 2 H. PEPTIDES Formal reactions showing formation of peptide bond by dehydration:

Pattern Analysis of the Genetic Code

Exam III. Please read through each question carefully, and make sure you provide all of the requested information.

A Plausible Model Correlates Prebiotic Peptide Synthesis with. Primordial Genetic Code

C CH 3 N C COOH. Write the structural formulas of all of the dipeptides that they could form with each other.

PROTEIN SECONDARY STRUCTURE PREDICTION: AN APPLICATION OF CHOU-FASMAN ALGORITHM IN A HYPOTHETICAL PROTEIN OF SARS VIRUS

Read more about Pauling and more scientists at: Profiles in Science, The National Library of Medicine, profiles.nlm.nih.gov

Molecular Selective Binding of Basic Amino Acids by a Water-soluble Pillar[5]arene

Protein Structure Bioinformatics Introduction

Solutions In each case, the chirality center has the R configuration

RNA and Protein Synthesis

12/6/12. Dr. Sanjeeva Srivastava IIT Bombay. Primary Structure. Secondary Structure. Tertiary Structure. Quaternary Structure.

Collision Cross Section: Ideal elastic hard sphere collision:

Basic Principles of Protein Structures

Biochemistry by Mary K. Campbell & Shawn O. Farrell 8th. Ed. 2016

LS1a Midterm Exam 1 Review Session Problems

The Select Command and Boolean Operators

Part 4 The Select Command and Boolean Operators

Understanding of Genetic Code Degeneracy and New Way of Classifying of Protein Family: A Mathematical Approach

Protein Struktur. Biologen und Chemiker dürfen mit Handys spielen (leise) go home, go to sleep. wake up at slide 39

Range of Certified Values in Reference Materials. Range of Expanded Uncertainties as Disseminated. NMI Service

7.05 Spring 2004 February 27, Recitation #2

Protein Struktur (optional, flexible)

Chemical Properties of Amino Acids

MS/MS of Peptides Manual Sequencing of Protonated Peptides

EXAM 1 Fall 2009 BCHS3304, SECTION # 21734, GENERAL BIOCHEMISTRY I Dr. Glen B Legge

UNIT TWELVE. a, I _,o "' I I I. I I.P. l'o. H-c-c. I ~o I ~ I / H HI oh H...- I II I II 'oh. HO\HO~ I "-oh

The Structure of Enzymes!

The Structure of Enzymes!

Principles of Biochemistry

In eukaryotes the most important regulatory genes contain homeobox sequences and are called homeotic genes.

Using an Artificial Regulatory Network to Investigate Neural Computation

Excursions in Computing Science: Week iii. Bases and Polynomials

Lecture'18:'April'2,'2013

-1- HO H O H. β-d-galactopyranose (A) OMe CH 3 I. MeO. Ag 2 O. O Me HNO 3. OAc (CH 3 CO) 2 O. AcO. pyridine. O Ac. NaBH 4 H 2 O. MeOH. dry HCl.

Name: Monster Synthesis Activity

Protein Secondary Structure Prediction

Sequence comparison: Score matrices. Genome 559: Introduction to Statistical and Computational Genomics Prof. James H. Thomas

North Carolina READY End-of-Course Assessment Biology RELEASED. Student Booklet

CHEM J-9 June 2014

Practice Midterm Exam 200 points total 75 minutes Multiple Choice (3 pts each 30 pts total) Mark your answers in the space to the left:

Amino Acid Features of P1B-ATPase Heavy Metal Transporters Enabling Small Numbers of Organisms to Cope with Heavy Metal Pollution

Towards Understanding the Origin of Genetic Languages

Sequence comparison: Score matrices

Proteins and Amino Acids in Fine Particulate Matter in Rural. Guangzhou, Southern China: Seasonal Cycles, Sources, and. Atmospheric Processes

BENG 183 Trey Ideker. Protein Sequencing

Separation of Large and Small Peptides by Supercritical Fluid Chromatography and Detection by Mass Spectrometry

Introduction to graph theory and molecular networks

I. Read the following passage and answer the subsequent questions using the answer sheet below.

Sequence comparison: Score matrices. Genome 559: Introduction to Statistical and Computational Genomics Prof. James H. Thomas

Chapter 3 - Amino Acids

Lecture 14 - Cells. Astronomy Winter Lecture 14 Cells: The Building Blocks of Life

Part 2: Chemical Evolution

National Nutrient Database for Standard Reference Release 28 slightly revised May, 2016

Supporting information. Contents

Protein Structure Marianne Øksnes Dalheim, PhD candidate Biopolymers, TBT4135, Autumn 2013

A NEW GENETIC CODE TABLE. Miloje M. Rakočević

Introduction to Proteomics: Fragmentation of protonated peptides and manual sequencing

Chemistry 224 Bioorganic Chemistry Friday, Sept. 29, This Exam is closed book and closed notes. Please show all your work!

Genetic code on the dyadic plane

Protein Structure. Role of (bio)informatics in drug discovery. Bioinformatics

On the Structure Differences of Short Fragments and Amino Acids in Proteins with and without Disulfide Bonds

1. Amino Acids and Peptides Structures and Properties

Hypergraphs, Metabolic Networks, Bioreaction Systems. G. Bastin

ADSORPTION OF TWENTY BIO-AMINO ACIDS BY NATURAL ALLOPHANE AND IMOGOLITE

8 Grundlagen der Bioinformatik, SS 09, D. Huson, April 28, 2009

Exam I Answer Key: Summer 2006, Semester C

Structures in equilibrium at point A: Structures in equilibrium at point B: (ii) Structure at the isoelectric point:

M.O. Dayhoff, R.M. Schwartz, and B. C, Orcutt

The Evolution of the Ribosome and the Genetic Code

Resonance assignments in proteins. Christina Redfield

Peptides And Proteins

Rotamers in the CHARMM19 Force Field

Supplementary Figure 3 a. Structural comparison between the two determined structures for the IL 23:MA12 complex. The overall RMSD between the two

A New Model for Asymmetric Amplification in Amino Acid Catalysis - Supporting information

EOC Practice (genetics)

(Lys), resulting in translation of a polypeptide without the Lys amino acid. resulting in translation of a polypeptide without the Lys amino acid.

Section Week 3. Junaid Malek, M.D.

BioMath. Evolution By Substitution: Amino Acid Changes Over Time. Student Edition

8 Grundlagen der Bioinformatik, SoSe 11, D. Huson, April 18, 2011

Problem Set 1

Content : Properties of amino acids.. Separation and Analysis of Amino Acids

Structure and evolution of the spliceosomal peptidyl-prolyl cistrans isomerase Cwc27

Transcription:

15.5 DETERMINTION OF NT OF DN MINO ID In page 70, if we include in the utilized concept of Boolean rithmetical Field (BFi) of the previous item, the nucleotide THYMINE ( T ), instead of URIL { U ) as the Boolean rithmetical Variable (BV), that is, X = T instead the utilized X = U for RN of the TBLE 7, we obtain these numerical expressions, but now relative to the DN. Then, we can apply these Boolean rithmetical oncepts into the symbols or letters used in the enetic ode. But now, we have the bases called nucleotides, {T,,, } respectively, Thymine, uanine, ytosine and denine, are considered as new Boolean rithmetical Variables (VBs) in a Boolean rithmetical Field (BFi) whose cardinality number is K= and ordinality number is ω = { X, X, X, X1}, where we have X = T, X =, X = and X1 =.. Then, the Numerical Transforms (NTs) to the these ordered numerical variables, that is in the enetic ode, the Numerical Transforms (NTs) of the nucleotides bases, {T,,, } are the following: 1 1 1 ( ) { } DENINE : NT{}=NT{X } = [1010 1010 1010 1010].{;XXXX} = [10 ].;T ( ) { } YTOSINE :NT{}=NT{X } = [1100 1100 1100 1100].{;XXXX} = [10 ].;T = ( ) { } UNINE : NT{}=NT{X } [1111 0000 1111 0000].{;XXX X} = [1 0 ].;T 1 = 1 = { } THYMINE : NT{T}=NT{X } [1111 1111 0000 0000].{;XXXX} [1 0 ].;T or, NOTE: The Numerical Transforms of these four organic bases of the DN can be presented together as a the following system simultaneous: 1111 1111 0000 0000 1111 0000 1111 0000 NT = = { ;T} 1100 1100 1100 1100 1010 1010 1010 1010 or, in vertical hexadecimal presentation of these four organic bases of DN: () NT = [ FED B98 765 10 ].;T { } It is possible to obtain afterwards all the numerical expressions of a System of three Boolean rithmetical Functions (BFs), which corresponds to each one of 89

the 6 possible codons (or triplets of nucleotides). For example, the codon T, which corresponds exceptionally, to the amino acid called TRIPTOPHN, has the following Numerical Transform, as a system of three BFs: E T Trp (Y 8 ) (TRYPTOPHN) T X X X X 1 T t 0 0 0 0 0 0 0 0 0 t 1 0 0 0 1 0 0 0 0 t 0 0 1 0 0 0 0 0 t 0 0 1 1 0 0 0 0 t 0 1 0 0 0 1 1 t 5 0 1 0 1 0 1 1 t 6 0 1 1 0 0 1 1 t 7 0 1 1 1 0 1 1 t 8 1 0 0 0 1 0 0 t 9 1 0 0 1 1 0 0 t 10 1 0 1 0 1 0 0 t 11 1 0 1 1 1 0 0 t 1 1 1 0 0 1 1 1 7 t 1 1 1 0 1 1 1 1 7 t 1 1 1 1 0 1 1 1 7 t 15 1 1 1 1 1 1 1 7 TBLE 8 Then, we have the following numerical representation to the amino acid TRYPTOPHN of DN: 1111 1111 0000 0000 NT { Trp} = 1111 0000 1111 0000 =.{ ;T }, 1111 0000 1111 0000' or, in vertical presentation: (7) NT { Trp} = = 7 0.;T { } To obtain the Numerical Transforms of the correspondent twenty different amino acids of the DN, which have six four three one codon (that is, the triplets of nucleotides), including the three triplets that do not stands as amino acid, called punctuation (or, terminator), it is convenient to prepare the TBLE 10: In this TBLE the Boolean rithmetic Functions (BFs) of TBLE 6, 90

{ Y 1, Y, Y,..., Y 0}, are replaced by the standard one-letter symbols [18] whose key for DN amino acid sequence is given by the following TBLE 9: MINO ID FOR DN lanine (la) rginine (rg) sparagine (sn) spartic acid (sp) ysteine (ys) lutamine (ln) lutamine acid (lu) lycine ly) Histidine (His) Isoleucine (Isso) Leucine (Leu) Lysine (Lys) Methionine (Met) Phenylalanine (Phe) Proline (Pro) Serine (Ser) Threonine (Thr) Tryptophan (Trp) Tyrosine (Tyr) Valine (Val) ONE LETTER SYMBOLS R N D Q E H I L K M F P S T W Y V TBLE 9 91

E T F S Y L P E W H R I T Q N K M V D Y 1 Y T Phe Ser Tyr ys Leu Pro lu Trp His rg Ileu Thr ln sn Lys Met Val la sp ly (*) (**) X X X X 1 t 0 0 0 0 0 t 1 0 0 0 1 t 0 0 1 0 t 0 0 1 1 t 0 1 0 0 t 5 0 1 0 1 t 6 0 1 1 0 t 7 0 1 1 1 t 8 1 0 0 0 t 9 1 0 0 1 t 10 1 0 1 0 t 11 1 0 1 1 t 1 1 1 0 0 t 1 1 1 0 1 t 1 1 1 1 0 T 15 1 1 1 1 <TTT;TT> <TT; T; T; T; T; > <TT; T> <TT; T> <TT; T; T; T; TT; TT> <T; ; ; > <; > <T> <T; > <T; ; ; ; ; > <TT; T; T> <T;, ; > <; > <T; > <; > <T> (*) <TT; T; T; T> <T; ; ; > < T; > <T; ; ; > <T; T; T> (*) < T; T; T > (**) NULEOTIDES (for DN) (T): THYMINE (): UNINE (): YTOSINE (): DENINE (Phe): Phenylalanine (Ser): Serine (Tyr): Tyrosine (ys): ysteíne (Leu): Leucine (Pro): Proline (lu): lutamine acid (Trp): Triptophan (His): Histidine (rg): rginine (Iso): Isoleucine (Thr): Threonine (ln): lutamine (sn): sparagine (Lys): Lysine (Met): Methionine (*) (Val): Valine (la): lanine (sp): spartic acid (ly): lycine (Initiators) (*) Punctuations (terminators) (**) M I N O I D S TBLE 10 From this TBLE 10, we have the following Numerical Transforms of the twenty different amino acids and punctuation (or, terminators), as a System of Systems of Boolean rithmetical Functions of nucleotides (for DN), except the correspondent to the TRYPTOPHN given by the numerical expression (7), because of its correspondence with the unique codon, T. Then, we have: 9

1) Determination of the Numerical Transform of the amino acid Phenylalanine for DN: 1111 1111 0000 0000 1111 1111 0000 0000 T T 1111 1111 0000 0000 (7) ( F) = NT { Phe} = NT 6x =.;T, { } or 1111 1111 0000 0000 T 1111 1111 0000 0000 1100 1100 1100 1100 8 8 70 (7) NT{} F = NT { Phe } =.{ ;T } ( 76) ( 10) ( ) (75) NT{} F = NT { Phe } = ( ( F) ( E) ) ( 1 0 ).{ ;T} 16 ) Determination of the Numerical Transform of the amino acid Serine (for DN) 1111 1111 0000 0000 1100 1100 1100 1100 T 1111 1111 0000 0000 1111 1111 0000 0000 1100 1100 1100 1100 1100 1100 1100 1100 1111 1111 0000 0000 1100 1100 1100 1100 1010 1010 1010 1010 (76) () S { } 18 x = NT Ser = NT =.{ ; T} 1111 1111 0000 0000 1100 1100 1100 1100 1111 0000 1111 0000 1010 1010 1010 1010 1111 0000 1111 0000 T 1111 1111 0000 0000 1010 1010 1010 1010 1111 0000 1111 0000 1100 1100 1100 1100 9

( 75) ( 0) ( 7) ( 0) ( 7 6 5 ) ( 1 0) (77) NT{} S = NT { Ser} =.{ ;T } 756 10 ( 7 ) ( 5 1) ( 6 ) ( 0) ( 7 6 5 1 0) 6 ( ) { } = NT { Ser} = ( FFFF ) ( FDDB) ( B E) ( ) ( FFD) ( FD89 ) ( B ) ( 908) ( 16F7 ) ( 1D ) ( 76 ) ( 5) ( 165 ) ( 181 ) ( ) ( 0 ) ].{ ;T} (78) NT S [ 7 95 16 ) Determination of the Numerical Transform of the amino acid Tyrosine (for DN) 1111 1111 0000 0000 1010 1010 1010 1010 T 1111 1111 0000 0000 (79) ( Y) = NT { Tyr} = NT 6x =.;T, { } or 1111 1111 0000 0000 1010 1010 1010 1010 1100 1100 1100 1100 (( 7 5) ) (( 0 ) ) (80) NT { Y } = NT { Tyr} =.{ ; T } ( 7 5 6 ) ( 1 0) ( ) (81) NT{ Y} = NT { Tyr} = ( F D E ) ( 1 1 1 0 ).{ ; T 16 } 9

) Determination of the Numerical Transform of the amino acid ysteine (for DN) 1111 1111 0000 0000 1111 0000 1111 0000 T 1111 1111 0000 0000 (8) ( ) = NT { ys} = NT 6x =.;T, { } or 1111 1111 0000 0000 1111 0000 1111 0000 1100 1100 1100 1100 750 (8) NT{} = NT { ys} =.{ ; T } 765 10 ( ) (8) NT{} = NT{ ys} = ( F)( E)( D)( ) ( D)( 1)()() 1 0.{ ; T 16 } 5) Determination of the Numerical Transform of the amino acid Leucine (for DN) 1100 1100 1100 1100 T 1111 1111 0000 0000 T 1111 1111 0000 0000 1100 1100 1100 1100 T 1111 1111 0000 0000 1100 1100 1100 1100 1100 1100 1100 1100 T 1111 1111 0000 0000 1010 1010 1010 1010 (85) L ( ) { } 18 x = NT Leu = NT =.{ ; T} 1100 1100 1100 1100 T 1111 1111 0000 00 00 1111 0000 1111 0000 1111 1111 0000 0000 T 1111 1111 0000 0000 1010 1010 1010 1010 1111 1111 0000 0000 T 1111 1111 0000 0000 1111 0000 1111 0000 95

( 7) ( 0) ( 7) ( 50) ( 7 6 ) ( 5 1 0) (86) NT{} L = NT { Leu} =.{ ;T } 76 510 ( 7 6) ( 1 0) 7610 6 ( ) (87) NT{} L = NT { Leu} = [ ( FFFF ) ( FDF7 ) ( 1 FF ) ( 1F7) ( FFBE) ( FDB6 ) ( 16 BE) ( 1B6) ( 5B9 ) ( 589 ) ( 9 ) ( 1) 5B08 5900 08 0 ]. ;T ( ) ( ) ( ) ( ) { } 6) Determination of the Numerical Transform of the amino acid Proline (for DN) 1100 1100 1100 1100 1100 1100 1100 1100 T 1111 1111 0000 0000 1100 1100 1100 110 0 1100 1100 1100 1100 1100 1100 1100 1100 (88) P ( ) { Pr o} 1 x = NT = NT = 1100 1100 1100 1100.{ ; T} 1100 1100 1100 1100 1010 1010 1010 1010 1100 1100 1100 1100 1100 1100 1100 1100 1111 0000 1111 0000 16 96

(71)(60) (70) (89) NT{} P = NT { Pr o } =.{ ;T } (7 6 1 0) (7 1 6 0 ) ( ) {} = NT { } = ( )( )( )( ) ( FFE ) ( FF6 ) ( 08 ) ( 1) ( DFF ) ( DF7 ) ( 9 ) ( 1) ( DFE ) ( DF6 ) ( 8 ) ( 0 ) ].{ ;T} (90) NT P Pr o [ FFF FF7 09 01 16 7) Determination of the Numerical Transform of the amino acid lutamine acid (for DN) 1111 0000 1111 0000 1010 1010 1010 1010 1010 1010 1010 1010 (91) E ( ) { } 6 x = NT lu = NT =.{ ; T} 1111 0000 1111 0000 1010 1010 1010 1010 1111 0000 1111 0000 (9) ( ) (7 ) ( 0) NT{} E = NT { lu} =.{ ;T } ( (7 5) ( 0) ) ( ) ( ) { } (9) NT{} E = NT { lu} = ( F 5)( 1 0 ). ; T 16 8) Determination of the Numerical Transform of the amino acid Triptophan (for DN) 97

(9) 1111 1111 0000 0000 ( W) = NT { Trp} = NT 1111 0000 1111 0000.{ ;T } x = 1111 0000 1111 0000 ' (95) NT{ W} = NT { Trp} = = 7 0. { ;T }, as we have seen in the expression (7). 9) Determination of the Numerical Transform of the amino acid Histidine (for DN) (96) ( ) { } H x 6 1100 1100 1100 1100 1010 1010 1010 1010 T 1111 1111 0000 0000 = NT His = NT = 1100 1100 1100 1100 1010 1010 1010 1010 1100 1100 1100 1100 { T}. ; (97) { } NT { His} NT H (7 5 1) (6 0) = =.{ ;T } ( 7 5 0) ( ) { } NT { His} ( ) ( ) { } (98) NT H = = F D 1 8 7 5 1 0. ; T 16 10) Determination of the Numerical Transform of the amino acid rginine (for DN) 98

( ) { } (99) R x 18 1100 1100 1100 1100 1111 0000 1111 0000 T 1111 1111 0000 0000 1100 1100 1100 1100 1111 0000 1111 0000 1100 1100 1100 1100 1100 1100 1100 1100 1111 0000 1111 0000 1010 1010 1010 1010 = NT rg = NT =.{ ; T} 1100 1100 1100 1100 1111 0000 1111 00 00 1111 0000 1111 0000 1010 1010 1010 1010 1111 0000 1111 0000 1010 1010 1010 1010 1010 1010 1010 1010 1111 0000 1111 0000 1111 0000 1111 0000 751 60 ( 750) ( 7 6 5 1 0) (100) NT{ R } = NT { rg} =. ( ) { ;T } 70 ( ( 7 ) ( 5 0 ) ) ( ( 7 ) ( 0 ) ) 6 ( ) (101) NT{ R } = NT { rg} = [ ( FFFF ) ( FDD7 ) ( 1FF ) ( 1DE) ( DB ) ( D900 ) ( 8 ) ( 8000) 7FFF 7DD 16FF 1D ( ) ( ) ( ) ( ) ( 5B ) ( 5900 ) ( ) ( 0 ) ].{ ;T} 16 99

11) Determination of the Numerical Transform of the amino acid Isoleucine (for DN) 1010 1010 1010 1010 T 1111 1111 0000 0000 T 1111 1111 0000 0000 1010 1010 1010 1010 (10) I () = NT { Iso} = NT T = 1111 1111 0000 0000 9x 1100 1100 1100 1100 1010 1010 1010 1010 T 1111 1111 0000 0000 1010 1010 1010 1010 { T}. ; (7 ) ( 0) (10) NT{} I = NT { Iso} = (7 6 ) (5 1 0). { ;T } (7 ) (5 0) ( ) {} = NT { Iso} = (( ) ( ) ( ) ( )) (( ) ( ) ( ) ( )) 16 { } (10) NT I [ 1FF D 1F7 D 1D 8 15 0 ]. ;T 1) Determination of the Numerical Transform of the amino acid Threonine (for DN) 1010 1010 1010 1010 1100 1100 1100 1100 T 1111 1111 0000 0000 1010 1010 1010 10 10 1100 1100 1100 1100 1100 1100 1100 1100 (105) T ( ) { Thr} 1 x = NT = NT = 1010 1010 1010 1010.{ ; T} 1100 1100 1100 1100 1010 1010 1010 1010 1010 1010 1010 1010 1100 1100 1100 1100 1111 0000 1111 0000 500

(7 5 1) (6 0) (7 0) (106) NT{} T = NT { Thr } =.{ ;T } (7 5 0) (7 5 1 6 0) ( ) {} = NT { Thr} = ( )( )( )( ) ( FFE ) ( 6D ) ( B ) ( 00) ( DFF ) ( D ) ( 9D ) ( 1) ( DFE ) ( D ) ( 9 ) ( 0 ) ].{ ;T} (107) NT T [ FFF 6D BD 01 16 1) Determination of the Numerical Transform of the amino acid lutamine (for DN) 1100 1100 1100 1100 1010 1010 1010 1010 1010 1010 1010 1010 (108) Q ( ) { ln} 6 x = NT = NT =.{ ; T} 1100 1100 1100 1100 1010 1010 1010 1010 1111 0000 1111 0000 (7 0) (109) NT{ Q } = NT { ln} =. { ;T } ( 7 5 1 6 0) { } NT { } ( ) { } (110) NT Q = ln = F 5 1B 1 E 1 0. ;T 16 ( ) 501

1) Determination of the Numerical Transform of the amino acid sparagine (for DN) 1010 1010 1010 1010 1010 1010 1010 1010 T 1111 1111 0000 0000 (111) ( N) { sn} 6 x = NT = NT = 1010 1010 1010 1010 1010 1010 1010 1010 1100 1100 1100 1100 (7 1) (6 0) (11) NT{ N } = NT { sn} =.{ ;T } ( 7 1 6 0) ( ) { T}. ; { } NT { } ( ) ( ) { } (11) NT N = N = F 9 E 1 7 1 6 0. ; T 16 15) Determination of the Numerical Transform of the amino acid Lysine (for DN) 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 (11) K ( ) { Lys} 6 x = NT = NT =.{ ; T} 1010 1010 1010 1010 1010 1010 1010 1010 1111 0000 1111 0000 8 (7 0) (115) NT{ K } = NT { Lys} =. { ;T } ( 7 1) ( 6 0) ( ) ( ) { } (116) NT{ K} = NT { Lys} = ( F 1) ( E 0 ). ; T 16 50

16) Determination of the Numerical Transform of the amino acid Methionine (It is also a Initiator) (for DN) (117) 1010 1010 1010 1010 ( M) = NT { Met} = 1111 1111 0000 0000 NT T.{ ;T } x = 1111 0000 1111 0000 (118) NT M Met 7 6 5 1 0. ; T { } = NT { } = T = ( ) ( ) ( ) ( ) { } ' 17) Determination of the Numerical Transform of the amino acid Valine (for DN) 1111 0000 1111 0000 1111 1111 0000 0000 T T 1111 1111 0000 0000 1111 0000 1111 00 00 T 1111 1111 0000 0000 1100 1100 1100 1100 (119) V ( ) { Val} 1 x = NT = NT = 1111 0000 1111 0000.{ ; T} T 1111 1111 0000 0000 1010 1010 1010 1010 1111 0000 1111 0000 T 1111 1111 0000 0000 1111 0000 1111 0000 7 0 76 5 10 (10) NT{ V} = NT { Val } =.{ ;T } (7 6) ( ) (5 ) (1 0) 7 5 0 ( ) 50

{ } = NT { } = ( ) ( ) ( ) ( ) ( 6D ) ( 6D ) ( 69 ) ( 69) ( B6D ) ( 965 ) ( 9D ) ( 95) ( 8 ) ( 0 ) ( 8 ) ( 0 ) ] 16. { ;T} (11) NT V Val [ FFF FF7 FBF FB7 18) Determination of the Numerical Transform of the amino acid lanine (for DN) 1111 0000 1111 0000 1100 1100 1100 1100 T 1111 1111 0000 0000 1111 0000 1111 00 00 1100 1100 1100 1100 1100 1100 1100 1100 (1) ( ) { la} 1 x = NT = NT = 1111 0000 1111 0000.{ ; T} 1100 1100 1100 1100 1010 1010 1010 1010 1111 0000 1111 0000 1100 1100 1100 1100 1111 0000 1111 0000 7 5 1 6 0 ( 7 0) (1) NT{ } = NT { la } =.{ ;T } (7 6 5 6 1 0) ( 7 5 0) ( ) { } = NT { } = ( ) ( ) ( ) ( ) ( 6D ) ( 6D ) ( 08 ) ( 00) ( DFF ) ( DF7 ) ( 9D ) ( 95) ( D ) ( D ) ( 8 ) ( 0 ) ] 16. { ;T} (1) NT la [ FFF FF7 BD B5 50

19) Determination of the Numerical Transform of the amino acid spartic acid (for DN) 1111 0000 1111 0000 1010 1010 1010 1010 T 1111 1111 0000 0000 (15) D ( ) { sp} 6 x = NT = NT =.{ ; T} 1111 0000 1111 0000 1010 1010 1010 1010 1100 1100 1100 1100 (7 5) ( 1) (6 ) ( 0) (16) NT{ D } = NT { sp} =.{ ;T } (7 5 6 1 0 ) ( ) (17) NT{ D} = NT { sp } = [( F )( D)( E)( ) ( 1B)( 9)( 1 )( 8) F 5 6 1 1 1 0 ]. ; T ( )( )( )( ) ( )( )( )( ) { } 0) Determination of the Numerical Transform of the amino acid lycine (for DN) 1111 0000 1111 0000 1111 0000 1111 0000 T 1111 1111 0000 0000 1111 0000 1111 00 00 1111 0000 1111 0000 1100 1100 1100 1100 (18) ( ) { ly} 1 x = NT = NT = 1111 0000 1111 0000.{ ; T} 1111 0000 1111 0000 1010 1010 1010 1010 1111 0000 1111 0000 1111 0000 1111 0000 1111 0000 1111 0000 16 505

7 1 6 0 ( 7 6 1 0) (19) NT{ } = NT { ly } =.{ ;T } ( (7 6) (1 0) ) ( 7 0) ( ) (10) NT{ } = NT { ly } = [ ( FFF ) ( FF7 ) ( FBF ) ( FB7) ( 8 ) ( 0 ) ( 08 ) ( 00) DF DF7 DBF DB7 1) The INITITOR ROUPS (for DN) ( ) ( ) ( ) ( ) ( 8 ) ( 0 ) ( 8 ) ( 0 ) ] 16. { ;T} There are three Initiator odons: Y 1,1, Y 1, and Y 1, : b) The first, Y 1,1, is the codon T, which have its Numerical Transform of Methionine amino acid, given by the numerical expressions, (11) or (1), as we have seen: 1010 1010 1010 1010 (11) ( Y1,1 ) = NT {( T(*) )} = NT T 1111 1111 0000 0000.{ ;T } x = 1111 0000 1111 0000 ' (1) NT {( T(*) )} = T = ( 7 ) ( 6 ) ( 5 1) ( 0 ).{ ;T } (b) The second, Y 1,, is the codon T, which it is a Valine codon when present at internal position. It have the following Numerical Transform: 1111 0000 1111 0000 (1) ( Y1, ) = NT {( T(*) )} = NT T 1111 1111 0000 0000.{ ;T } x = 1010 1010 1010 1010' (1) NT {( T(*) )} = T = ( 7 6) ( 6 ) ( 5 ) ( 1 0 ).{ ;T } 506

(c) The third, Y 1,, is the codon T, which it is also a Valine codon when present at internal position. It have the following Numerical Transform: 1111 0000 1111 0000 (15) ( Y1, ) = NT {( T(*) )} = 1111 1111 0000 0000 NT T =.{ ;T } x 1111 0000 1111 0000' (16) NT {( T(*) )} = T = 7 5 0. { ; T} ) The PUNTUTIONS (or, TERMINTOR ROUPS) (for DN) There are three Terminator odons: Y,1, Y, and Y, : (a) The first, Y 1,1, is the codon T ( ocre ), which it is not an amino acid and have the following Numerical Transform given by the numerical expressions, (17) or (18): 1111 1111 0000 0000 (17) ( Y,1 ) = NT {( T(**) )} = 1010 1010 1010 1010 NT =.{ ;T } x 1010 1010 1010 1010' (18) NT {( T(**) )} = =( 7 ) ( 0 ).{ ;T } (b) The second, Y,, is the codon T ( ambar ), which it is not an amino acid and have the following Numerical Transform given by the numerical expressions, (19) or (10): 1111 1111 0000 0000 (19) ( Y, ) = NT {( T(**) )} = NT 1010 1010 1010 1010 =.{ ;T } x 1111 0000 1111 0000 ' (10) NT {( T(**) )} = = ( 7 5) ( 6 ) ( 1) ( 0 ).{ ;T } (c) The third, Y,, is the codon T ( opal ), which it is not an amino acid and have the following Numerical Transform given by the numerical expressions, (11) or (1): 507

(11) 1111 1111 0000 0000 ( Y, ) = NT {( T (**))} = 1111 0000 1111 0000 NT =.{ ;T } x 1010 1010 1010 1010 (1) NT T (**) 7 6 5 1 0. ; T {( )} = = ( ) ( ) ( ) ( ) { } ' 508