Hadamard-Type Inequalities for s-convex Functions

Similar documents
Co-ordinated s-convex Function in the First Sense with Some Hadamard-Type Inequalities

The Hadamard s Inequality for s-convex Function

On the Co-Ordinated Convex Functions

Some integral inequalities of the Hermite Hadamard type for log-convex functions on co-ordinates

ON CO-ORDINATED OSTROWSKI AND HADAMARD S TYPE INEQUALITIES FOR CONVEX FUNCTIONS II

Inequalities for convex and s-convex functions on Δ =[a, b] [c, d]

NEW INEQUALITIES OF SIMPSON S TYPE FOR s CONVEX FUNCTIONS WITH APPLICATIONS. := f (4) (x) <. The following inequality. 2 b a

Hermite-Hadamard type inequalities for harmonically convex functions

f (a) + f (b) f (λx + (1 λ)y) max {f (x),f (y)}, x, y [a, b]. (1.1)

Hermite-Hadamard inequality for geometrically quasiconvex functions on co-ordinates

Research Article On The Hadamard s Inequality for Log-Convex Functions on the Coordinates

ON SOME NEW INEQUALITIES OF HADAMARD TYPE INVOLVING h-convex FUNCTIONS. 1. Introduction. f(a) + f(b) f(x)dx b a. 2 a

SOME NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHOSE HIGHER ORDER PARTIAL DERIVATIVES ARE CO-ORDINATED CONVEX

arxiv: v1 [math.ca] 28 Jan 2013

New Integral Inequalities of the Type of Hermite-Hadamard Through Quasi Convexity

On some refinements of companions of Fejér s inequality via superquadratic functions

Bulletin of the. Iranian Mathematical Society

DIFFERENCE BETWEEN TWO RIEMANN-STIELTJES INTEGRAL MEANS

Hadamard-Type Inequalities for s Convex Functions I

NEW INEQUALITIES OF OSTROWSKI TYPE FOR CO-ORDINATED s-convex FUNCTIONS VIA FRACTIONAL INTEGRALS

MA10207B: ANALYSIS SECOND SEMESTER OUTLINE NOTES

Bounds for the Riemann Stieltjes integral via s-convex integrand or integrator

The Hadamard s inequality for quasi-convex functions via fractional integrals

Integral inequalities for n times differentiable mappings

Research Article On Hermite-Hadamard Type Inequalities for Functions Whose Second Derivatives Absolute Values Are s-convex

SOME NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHOSE HIGHER ORDER PARTIAL DERIVATIVES ARE CO-ORDINATED s-convex

New general integral inequalities for quasiconvex functions

Generalized Hermite-Hadamard Type Inequalities for p -Quasi- Convex Functions

On some inequalities for s-convex functions and applications

The Intouch Triangle and the OI-line

ON THE INEQUALITY OF THE DIFFERENCE OF TWO INTEGRAL MEANS AND APPLICATIONS FOR PDFs

Parametrized inequality of Hermite Hadamard type for functions whose third derivative absolute values are quasi convex

n-points Inequalities of Hermite-Hadamard Type for h-convex Functions on Linear Spaces

The Riemann and the Generalised Riemann Integral

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-1 Yıl:

CERTAIN NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR CONVEX FUNCTIONS VIA FRACTIONAL INTAGRALS

SOME INTEGRAL INEQUALITIES FOR HARMONICALLY CONVEX STOCHASTIC PROCESSES ON THE CO-ORDINATES

Hyers-Ulam stability of Pielou logistic difference equation

6.1 Definition of the Riemann Integral

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions

Lecture 1 - Introduction and Basic Facts about PDEs

INEQUALITIES OF HERMITE-HADAMARD S TYPE FOR FUNCTIONS WHOSE DERIVATIVES ABSOLUTE VALUES ARE QUASI-CONVEX

On New Inequalities of Hermite-Hadamard-Fejer Type for Harmonically Quasi-Convex Functions Via Fractional Integrals

A NEW COMBINED BRACKETING METHOD FOR SOLVING NONLINEAR EQUATIONS

Some Hermite-Hadamard type inequalities for functions whose exponentials are convex

Lyapunov-type inequality for the Hadamard fractional boundary value problem on a general interval [a; b]; (1 6 a < b)

An inequality related to η-convex functions (II)

Keywords : Generalized Ostrowski s inequality, generalized midpoint inequality, Taylor s formula.

Journal of Inequalities in Pure and Applied Mathematics

Review: The Riemann Integral Review: The definition of R b

On Hermite-Hadamard type integral inequalities for functions whose second derivative are nonconvex

More Properties of the Riemann Integral

Some new integral inequalities for n-times differentiable convex and concave functions

Tutorial 2 Euler Lagrange ( ) ( ) In one sentence: d dx

A NOTE ON THE HERMITE HADAMARD INEQUALITY FOR CONVEX FUNCTIONS ON THE CO ORDINATES FEIXIANG CHEN. 1. Introduction. f (t)dt. b a a

LYAPUNOV-TYPE INEQUALITIES FOR α-th ORDER FRACTIONAL DIFFERENTIAL EQUATIONS WITH 2 < α 3 AND FRACTIONAL BOUNDARY CONDITIONS

ON COMPANION OF OSTROWSKI INEQUALITY FOR MAPPINGS WHOSE FIRST DERIVATIVES ABSOLUTE VALUE ARE CONVEX WITH APPLICATIONS

On new Hermite-Hadamard-Fejer type inequalities for p-convex functions via fractional integrals

On Implicative and Strong Implicative Filters of Lattice Wajsberg Algebras

Research Article Fejér and Hermite-Hadamard Type Inequalities for Harmonically Convex Functions

Double integrals on regions (Sect. 15.2) Review: Fubini s Theorem on rectangular domains

f (x)dx = f(b) f(a). a b f (x)dx is the limit of sums

New Integral Inequalities for n-time Differentiable Functions with Applications for pdfs

Journal of Inequalities in Pure and Applied Mathematics

MATH 409 Advanced Calculus I Lecture 22: Improper Riemann integrals.

ARCHIVUM MATHEMATICUM (BRNO) Tomus 47 (2011), Kristína Rostás

Some New Inequalities of Simpson s Type for s-convex Functions via Fractional Integrals

Improvements of some Integral Inequalities of H. Gauchman involving Taylor s Remainder

AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION

The study of dual integral equations with generalized Legendre functions

Chapter Gauss Quadrature Rule of Integration

Journal of Inequalities in Pure and Applied Mathematics

MonotonicBehaviourofRelativeIncrementsofPearsonDistributions

T b a(f) [f ] +. P b a(f) = Conclude that if f is in AC then it is the difference of two monotone absolutely continuous functions.

GENERALIZATIONS OF WEIGHTED TRAPEZOIDAL INEQUALITY FOR MONOTONIC MAPPINGS AND ITS APPLICATIONS. (b a)3 [f(a) + f(b)] f x (a,b)

Hermite-Hadamard Type Inequalities for the Functions whose Second Derivatives in Absolute Value are Convex and Concave

A Companion of Ostrowski Type Integral Inequality Using a 5-Step Kernel with Some Applications

#A42 INTEGERS 11 (2011) ON THE CONDITIONED BINOMIAL COEFFICIENTS

CSCI565 - Compiler Design

Math Advanced Calculus II

Journal of Inequalities in Pure and Applied Mathematics

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Vector Integration

f (z) dz = 0 f(z) dz = 2πj f(z 0 ) Generalized Cauchy Integral Formula (For pole with any order) (n 1)! f (n 1) (z 0 ) f (n) (z 0 ) M n!

A unified generalization of perturbed mid-point and trapezoid inequalities and asymptotic expressions for its error term

Generalized Hermite-Hadamard-Fejer type inequalities for GA-convex functions via Fractional integral

TRAPEZOIDAL TYPE INEQUALITIES FOR n TIME DIFFERENTIABLE FUNCTIONS

SOME INEQUALITIES FOR THE DISPERSION OF A RANDOM VARIABLE WHOSE PDF IS DEFINED ON A FINITE INTERVAL

Hermite-Hadamard-Fejér type inequalities for harmonically convex functions via fractional integrals

ON A CONVEXITY PROPERTY. 1. Introduction Most general class of convex functions is defined by the inequality

MAT 403 NOTES 4. f + f =

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics

APPENDIX 2 LAPLACE TRANSFORMS

Ostrowski Grüss Čebyšev type inequalities for functions whose modulus of second derivatives are convex 1

NEW HERMITE HADAMARD INEQUALITIES VIA FRACTIONAL INTEGRALS, WHOSE ABSOLUTE VALUES OF SECOND DERIVATIVES IS P CONVEX

Vector Integration. Line integral: Let F ( x y,

Improvement of Ostrowski Integral Type Inequalities with Application

4. UNBALANCED 3 FAULTS

Internal Model Control

Transcription:

Interntionl Mthemtil Forum, 3, 008, no. 40, 965-975 Hdmrd-Type Inequlitie or -Convex Funtion Mohmmd Alomri nd Mlin Dru Shool o Mthemtil Siene Fulty o Siene nd Tehnology Univeriti Kebngn Mlyi Bngi 43600 Selngor, Mlyi Abtrt In thi pper Hdmrd type inequlitie or onvex untion in both ene nd onvex untion on the o ordinte re given. Keyword: Hdmrd inequlity, onvex untion, o ordinted onvex untion Introdution Let : I R R be onvex mpping deined on the intervl I o rel number nd, b I, with <b. The ollowing double inequlity: ) + b b )+ b) x) dx b i known in the literture Hdmrd inequlity or onvex mpping. In [7] Drgomir nd Fitzptrik proved vrint o Hdmrd inequlity whih hold or onvex untion in the irt ene. ) Theorem. Suppoe tht :[0, ) [0, ) i n onvex untion in the irt ene, where 0, ) nd let, b [0, ), <b. I L [0, ], then the ollowing inequlitie hold: ) + b b b x) dx Firt uthor: lomri@mth.om Correponding uthor: mlin@pkri..ukm.my )+ b). ) +

966 M. Alomri nd M. Dru The bove inequlitie re hrp. Alo, In [7], Drgomir nd Fitzptrik proved vrint o Hdmrd inequlity whih hold or onvex untion in the eond ene. Theorem. Suppoe tht :[0, ) [0, ) i n onvex untion in the eond ene, where 0, ) nd let, b [0, ), <b.i L [0, ], then the ollowing inequlitie hold: ) + b b x) dx b )+ b) + the ontnt k = i the bet poible in the eond inequlity in 3). The + bove inequlitie re hrp. Ater tht, in [8], Drgomir etblihed the ollowing imilr inequlity o Hdmrd type or o ordinted onvex mpping on retngle rom the plne R. 3) Theorem.3 Suppoe tht :Δ R i o-ordinted onvex on Δ. Then one h the inequlitie + b, + d ) The bove inequlitie re hrp. b d x, y) dydx b )d ), )+, d)+ b, )+ b, d) 4 In [], M. Alomri nd M. Dru etblihed the ollowing imilr inequlity o Hdmrd type or o ordinted onvex mpping in the eond ene on retngle rom the plne R. 4) Theorem.4 Suppoe tht :Δ=[, b] [, d] [0, ) [0, ) i onvex untion on the o ordinte on Δ. Then one h the inequlitie: + b, + d ) b d x, y) dydx 5) b )d ), )+ b, )+, d)+ b, d) +).

Hdmrd-type inequlitie 967 Alo, In [5], M. Alomri nd M. Dru etblihed the ollowing imilr inequlity o Hdmrd type or o ordinted onvex mpping in the irt ene on retngle rom the plne R. Theorem.5 Suppoe tht :Δ=[, b] [, d] [0, ) [0, ) i onvex untion on the o ordinte in the irt ene on Δ. Then one h the inequlitie: + b, + d ) b d x, y) dydx 6) b )d ), )+ b, )+, d)+ b, d) +). The bove inequlitie re hrp. In thi pper we will point out Hdmrd type inequlitie o onvex untion on the o ordinte in the both ene. For reinement, ounterprt, generliztion nd new Hdmrd type inequlitie ee [ 8]. Remrk On A Previou Reult In thi etion we give ome remrk on previou reult or the uthor. The ollowing lemm oited with onvex untion o eond ene) w onidered by Alomri nd Dru in [3]. Lemm. Let :[, b] R be onvex untion o eond ene). Let y x x y b with x + x = y + y. Then x )+ x ) y )+ y ). 7) Atully, the proo w given in [3] o thi property i orret or onvex untion but not or onvex untion. The orretion o thi proo i given ollow: Proo. Firtly, we how tht x )+ x ) y )+ y ). I y = y then we re done. Suppoe y y nd ine i onvex untion o eond ene, then or α, β 0 with α + β = nd or ll 0 <, we hve x = y x y y ) y + x y y y ) y, x = y x y y ) y + x y y y ) y

968 M. Alomri nd M. Dru without lo o generlity, et k = y x y y ), k = x y y y ), k3 = y x y y ), k4 = x y y y ) uh tht, γ = k + k + k 3 + k 4 > 0;α = k +k 3 nd β = k +k 4. Thereore, γ γ α + β = nd by onvexity, we hve x )+ x ) = y x y y whih omplete the proo. + y x y y ) y + ) y + x y y y x y y y ) y ) y y x y )+ x y y ) 8) y y y y + y x y )+ x y y ) y y y y = y x + x ) y )+ x + x ) y y ) y y y y = y )+ y ). Alo, by looking deeply on Theorem.4, we ind the let ide o inequlity 5) i inorret. The orretion o Theorem.4. pointed out ollow : Theorem. Suppoe tht :Δ=[, b] [, d] [0, ) [0, ) i onvex untion on the o ordinte on Δ. Then one h the inequlitie: 4 + b, + d ) b d x, y) dydx 9) b )d ), )+ b, )+, d)+ b, d) +). Indeed, the dierene between 5) nd 9) i the let hnd ide, thereore we will give the proo o the let hnd ide only, to ee the proo o the right hnd ide ee []. Proo. Sine :Δ R i o ordinted onvex on Δ it ollow tht the mpping g x : [, d] [0, ), g x y) = x, y) i onvex on [, d] or ll

Hdmrd-type inequlitie 969 x [, b]. Then, by 3) one h: ) + d g x d d Tht i, x, + d ) d x, y) dy d Integrting thi inequlity on [, b], we hve b x, + d ) dx b b )d ) + b g x y) dy g x )+g x d), x [, b]. + x, )+ x, d), x [, b]. + b b d x, y) dydx 0) x, ) dx + b b x, d) dx. A imilr rgument pplied or the mpping g y :[, b] [0, ), g y x) = x, y), we get d ) d b + b d,y dy x, y) dxdy ) d )b ) + d d, y) dy + d d b, y) dy. Summing the inequlitie 0) nd ), we get the eond nd the third inequlitie in 9). Thereore, by 3), we hve 4 + b, + d ) d ) + b d,y dy ) nd + b 4, + d ) b x, + d ) dx 3) b whih give, by ddition the irt inequlity in 9). The deinition o onvex untion in both ene ) in retngle rom the plne, w deined by Alomri nd Dru in [4]. In the next etion ome Hdmrd type inequlitie re onidered.

970 M. Alomri nd M. Dru 3 Some Hdmrd Type Inequlitie Conider the bidimenionl intervl Δ := [, b] [, d] in[0, ) with <b nd <d. A mpping :Δ R i lled onvex o irt ene on Δ i there exit, 0, ] with = +, uh tht αx + βz,αy + βw) α x, y)+β z, w) 4) hold or ll x, y), z, w) Δ, α, β 0 with α + β = nd or ll ixed, 0, ]. We denote thi l o untion by MWO,. Let :Δ R be onvex on Δ, then i lled o ordinted onvex o irt ene on Δ i the prtil mpping y :[, b] R, y u) = u, y) nd x : [, d] R, x v) = x, v), re, onvex untion in the irt ene or ll, 0, ], y [, d] nd x [, b]; repetively, with = + 0, ]. Alo, mpping :Δ Ri lled onvex o eond ene on Δ i there exit, 0, ] with = +, uh tht 4) hold or ll x, y), z, w) Δ, α, β 0 with α + β = nd or ll ixed, 0, ]. We denote thi l o untion by MWO,. Similrly, we deine the onvex untion o eond ene on the o ordinte, i.e., untion i lled o ordinted onvex o eond ene on Δ i the prtil mpping y :[, b] R, y u) = u, y) nd x :[, d] R, x v) = x, v), re, onvex untion in the eond ene or ll, 0, ], y [, d] nd x [, b]; repetively, with = + 0, ]. The ollowing inequlitie i onidered Hdmrd type inequlitie onneted with inequlity 4) or onvex untion in the eond ene on the o ordinte. Theorem 3. Suppoe tht :Δ=[, b] [, d] [0, ) [0, ) i onvex untion o eond ene on the o ordinte on Δ. Then one h the inequlitie: 4 +4 ) b x, + d b + b, + d ) ) dx + d d ) + b,y dy b d x, y) dydx 5) b )d )

Hdmrd-type inequlitie 97 b [ x, )+ x, d)] dx +)b ) d + [, y)+ b, y)] dy +)d ) ) +) + +) [, )+, d)+ b, )+ b, d)] The bove inequlitie re hrp. Proo. Sine :Δ R i o ordinted onvex on Δ it ollow tht the mpping g x :[, d] [0, ), g x y) = x, y) i onvex on [, d] or ll x [, b] with 0, ]. Then by Hdmrd inequlity 3) one h: ) + d g x d d Tht i, x, + d ) d x, y) dy d Integrting thi inequlity on [, b], we hve b x, + d ) dx b b )d ) + b g x y) dy g x )+g x d), x [, b]. + x, )+ x, d), x [, b]. + b d b x, y) dydx 6) x, ) dx + b b x, d) dx. A imilr rgument pplied or the mpping g y :[, b] [0, ), g y x) = x, y), where, g y i onvex on [, b] or ll y [, d] with 0, ] d ) + b d,y d b dy x, y) dxdy 7) d )b ) + d d, y) dy + d d b, y) dy. Summing the inequlitie 6) nd 7), we get the eond nd the third inequlitie in 5).

97 M. Alomri nd M. Dru nd Thereore, by 3), we hve 4 + b, + d ) d ) + b d,y dy 8) 4 + b, + d ) b x, + d ) dx 9) b whih give, by ddition the irt inequlity in 5). nd Finlly, by the me inequlity we n lo tte: b, )+ b, ) x, ) dx b + b, d)+ b, d) x, d) dx b + d, )+, d), y) dy d + d b, )+ b, d) b, y) dy d + whih give, by ddition the lt inequlity in 5). Remrk 3. In 5), i = =, then 5) redued to inequlity 4). Alo, in 5), i =, then 5) redued to inequlity 9). The ollowing inequlitie i onidered Hdmrd type inequlitie onneted with inequlity 4) or onvex untion in the irt ene on the o ordinte. Theorem 3.3 Suppoe tht :Δ=[, b] [, d] [0, ) [0, ) i onvex untion on the o ordinte in the irt ene on Δ. Then one h the inequlitie: + b, + d )

Hdmrd-type inequlitie 973 b x, + d b ) dx + d ) + b d,y dy b d x, y) dydx 0) b )d ) +)b ) b + +)d ) d [ x, )+ x, d)] dx [, y)+ b, y)] dy, )+, d)+ b, )+ b, d) +) +, )+, d)+ b, )+ b, d) +) The bove inequlitie re hrp. Proo. Sine :Δ R i o ordinted onvex in irt ene on Δ it ollow tht the mpping g x :[, d] [0, ), g x y) = x, y) i onvex on [, d] or ll x [, b]. Then by Hdmrd inequlity ) one h: ) + d g x d d Tht i, x, + d ) d d Integrting thi inequlity on [, b], we hve b x, + d ) dx b b )d ) + b g x y) dy g x )+ g x d), x [, b]. + x, y) dy x, )+ x, d), x [, b]. + b d b x, y) dydx ) x, ) dx + b b x, d) dx. A imilr rgument pplied or the mpping g y :[, b] [0, ), g y x) = x, y), we get d ) + b d,y dy d b x, y) dxdy ) d )b )

974 M. Alomri nd M. Dru d, y) dy + d + d d b, y) dy. Summing the inequlitie ) nd ), we get the eond nd the third inequlitie in 0). nd Thereore, by Hdmrd inequlity ), we lo hve: + b, + d ) d ) + b d,y dy 3) + b, + d ) b x, + d ) dx 4) b whih give, by ddition the irt inequlity in 0). nd Finlly, by the me inequlity we n lo tte: b x, ) dx, )+ b, ) b + b x, d) dx, d)+ b, d) b + d, y) dy, )+, d) d + d b, y) dy b, )+ b, d) d + whih give, by ddition the lt inequlity in 0). Remrk 3.4 In 0), i = =, then 0) redued to inequlity 4). Alo, in 0), i =, then 0) redued to inequlity 6). ACKNOWLEDGEMENT. The work here i upported by the Grnt: UKM GUP TMK 07 0 07.

Hdmrd-type inequlitie 975 Reerene [] M. Alomri nd M. Dru, A mpping onneted with Hdmrd type inequltie in 4 vrible, Int. Journl o Mth. Anlyi, 3) 008), 60 68. [] M. Alomri nd M. Dru, The Hdmrd inequlity or onvex untion o vrible On The o ordinte, Int. Journl o Mth. Anlyi, 3) 008), 69 638. [3] M. Alomri nd M. Dru, The Hdmrd inequlity or onvex untion, Int. Journl o Mth. Anlyi, 3) 008), 639 646. [4] M. Alomri nd M. Dru, On o ordinted onvex untion, Interntionl Mthemtil Forum, ubmitted. [5] M. Alomri nd M. Dru, Co ordinte onvex untion in the irt ene with ome Hdmrd type inequlitie, Int. J. Contemp. Mth. Si., ubmitted. [6] H. Hudzik, L. Mligrnd, Some remrk on onvex untion, Aequtione Mth., 48 994), 00. [7] S.S. Drgomir, S. Fitzptrik, The Hdmrd inequlity or -onvex untion in the eond ene, Demontrtio Mth., 3 4) 999), 687 696. [8] S. S. Drgomir, On Hdmrd inequlity or onvex untion on the o ordinte in retngle rom the plne, Tiwnee Journl o Mthemti, 5 00), 775 788. Reeived: My, 008