Impedance matching concept given ZL, design a matching network to have in=0 or selected value. matching. Zin (=Z Z o )

Similar documents
Impedance Matching and Tuning

5.7 Chebyshev Multi-section Matching Transformer

ECE 391 supplemental notes - #11. Adding a Lumped Series Element

ECE 2100 Circuit Analysis

Dr. Kasra Etemadi February 27, 2007

Lecture 12 Date:

The Chebyshev Matching Transformer

Simulation of Push-pull Multi-output Quasi-resonant Converter

MICROWAVE COMMUNICATIONS AND RADAR

Revision: August 19, E Main Suite D Pullman, WA (509) Voice and Fax

Fields and Waves I. Lecture 3

2. Find i, v, and the power dissipated in the 6-Ω resistor in the following figure.

ANTENNAS and MICROWAVES ENGINEERING (650427)

CHAPTER 5. Solutions for Exercises

Harmonic Motion (HM) Oscillation with Laminar Damping

Impedance Matching with Transmission Lines

5.2 Single-Stub Tuning

Q1. A string of length L is fixed at both ends. Which one of the following is NOT a possible wavelength for standing waves on this string?

Series and Parallel Resonances

ECE 598 JS Lecture 08 Lossy Transmission Lines

TC 412 Microwave Communications. Lecture 6 Transmission lines problems and microstrip lines

ECE 2100 Circuit Analysis

EEO 401 Digital Signal Processing Prof. Mark Fowler

Copyright Paul Tobin 63

6-1 Chapter 6 Transmission Lines

Transmission Line Theory

Lecture 20a. Circuit Topologies and Techniques: Opamps

Solutions to Problems in Chapter 6

Module 4: General Formulation of Electric Circuit Theory

Pre-Calculus Individual Test 2017 February Regional

192 Chapter 4: Microwave Network Analysis

Physics 2B Chapter 23 Notes - Faraday s Law & Inductors Spring 2018

ENGIN 211, Engineering Math. Complex Numbers

Lecture 14 Date:

Oscillator. Introduction of Oscillator Linear Oscillator. Stability. Wien Bridge Oscillator RC Phase-Shift Oscillator LC Oscillator

STABILITY ANALYSIS TECHNIQUES

Section I5: Feedback in Operational Amplifiers

Cop yri ht 2006, Barr Mabillard.

Introduction to Smith Charts

Review Problems 3. Four FIR Filter Types

Microwave Circuit Design I

Precalculus A. Semester Exam Review

Chapter 10: Sinusoidal Steady-State Analysis

MODULE 1. e x + c. [You can t separate a demominator, but you can divide a single denominator into each numerator term] a + b a(a + b)+1 = a + b

ECE 5318/6352 Antenna Engineering. Spring 2006 Dr. Stuart Long. Chapter 6. Part 7 Schelkunoff s Polynomial

Time varying fields and Maxwell's equations Chapter 9

PHYSICS Unit 3 Trial Examination

A Correlation of. to the. South Carolina Academic Standards for Mathematics Precalculus

LEARNING : At the end of the lesson, students should be able to: OUTCOMES a) state trigonometric ratios of sin,cos, tan, cosec, sec and cot

Trigonometric Ratios Unit 5 Tentative TEST date

Preparation work for A2 Mathematics [2017]

Lecture 13 Date:

TRANSMISSION LINES AND MATCHING

CHAPTER 45 COMPLEX NUMBERS

Synchronous Motor V-Curves

1. Transformer A transformer is used to obtain the approximate output voltage of the power supply. The output of the transformer is still AC.

ZVS Boost Converter. (a) (b) Fig 6.29 (a) Quasi-resonant boost converter with M-type switch. (b) Equivalent circuit.

" W I T H M: A. L I G E T O ' W ^ P L D IST O ISTE -A-IsTD G H! A-I^IT Y IPO PL A.LI-i. :

Microelectronics Circuit Analysis and Design. NMOS Common-Source Circuit. NMOS Common-Source Circuit 10/15/2013. In this chapter, we will:

Applying Kirchoff s law on the primary circuit. V = - e1 V+ e1 = 0 V.D. e.m.f. From the secondary circuit e2 = v2. K e. Equivalent circuit :

Introduction. A microwave circuit is an interconnection of components whose size is comparable with the wavelength at the operation frequency

Lesson #15. Section BME 373 Electronics II J.Schesser

Chapter 8: Frequency Domain Analysis

Chapter 10: Sinusoidal Steady-State Analysis

Dr. Vahid Nayyeri. Microwave Circuits Design

X (z) = n= 1. Ã! X (z) x [n] X (z) = Z fx [n]g x [n] = Z 1 fx (z)g. r n x [n] ª e jnω

Supplementary Course Notes Adding and Subtracting AC Voltages and Currents

ANSWER KEY FOR MATH 10 SAMPLE EXAMINATION. Instructions: If asked to label the axes please use real world (contextual) labels

Introduction to Electronic circuits.

4) What is the magnitude of the net electric field at the center of the square?

Signals and Systems. Lecture 11 Wednesday 22 nd November 2017 DR TANIA STATHAKI

PHYS College Physics II Final Examination Review

SFDMB3638F. Specifications and Applications Information. orce LED Driver. Mass: 7 grams typ. 10/15/08 Preliminary. Package Configuration

STUDENT NAME: STUDENT id #: WORK ONLY 5 QUESTIONS

Chapter 30. Inductance

1.1 The main transmission network of Eskom The classical two generator model 11

2015 Regional Physics Exam Solution Set

Chapter 6. Dielectrics and Capacitance

GENERAL FORMULAS FOR FLAT-TOPPED WAVEFORMS. J.e. Sprott. Plasma Studies. University of Wisconsin

6.1 Introduction

Characteristics of Passive IC Devices

Case Study: Parallel Coupled- Line Combline Filter

1 PreCalculus AP Unit G Rotational Trig (MCR) Name:

Figure 1a. A planar mechanism.

Phys102 Second Major-102 Zero Version Coordinator: Al-Shukri Thursday, May 05, 2011 Page: 1

ECE357H1S ELECTROMAGNETIC FIELDS TERM TEST 1. 8 February 2016, 19:00 20:00. Examiner: Prof. Sean V. Hum

Bicycle Generator Dump Load Control Circuit: An Op Amp Comparator with Hysteresis

International Distinguished Lecturer Program

Pages with the symbol indicate that a student should be prepared to complete items like these with or without a calculator. tan 2.

( ) ( ) Pre-Calculus Team Florida Regional Competition March Pre-Calculus Team Florida Regional Competition March α = for 0 < α <, and

55:041 Electronic Circuits

Berkeley. The Smith Chart. Prof. Ali M. Niknejad. U.C. Berkeley Copyright c 2017 by Ali M. Niknejad. September 14, 2017

ENGI 4430 Parametric Vector Functions Page 2-01

CHAPTER 5: LAPLACE TRANSFORMS

GATE : , Copyright reserved. Web:

Lecture #2 : Impedance matching for narrowband block

Cambridge Assessment International Education Cambridge Ordinary Level. Published

Supplementary Course Notes Adding and Subtracting AC Voltages and Currents

) Rotate L by 120 clockwise to obtain in!! anywhere between load and generator: rotation by 2d in clockwise direction. d=distance from the load to the

Transcription:

Chapter 5 Ipedance atching and tuning 5. Matching with luped eleents -sectin atching netwrks using Sith chart 5. Single-stub tuning shunt stub, series stub 5.3 Duble-stub tuning frbidden regin 5.4 The quarter-wave transfrer frequency respnse 5.5 The thery f sall reflectins single-sectin transfrer, ulti-sectin transfrer 5.6 Binial ultisectin atching transfrers 5.7 Chebyshev ultisectin atching transfrers 5.8 Taper lines expnential taper, triangular taper 5.9 The Bde-Fan criterin -Bandwidth 5-

Ipedance atching cncept given, design a atching netwrk t have in=0 r selected value atching in netwrk in (= ) Discussin. Matching netwrk usually uses lssless cpnents:, C, transissin line and transfrer.. There are pssible slutins fr the atching circuit. 3. Prperly use Sith chart t find the ptial design. 4. Factrs fr selecting atching circuit are cplexity, bandwidth, ipleentatin and adjustability. 5-

5. Matching with luped eleents (-eleent -netwrk) Sith chart slutin cnstant G-circle cnstant R-circle C -plane Y-plane CW add series CW add shunt C (reduce series C) (reduce shunt ) CCW add series C CCW add shunt (reduce series ) (reduce shunt C) 5-3

j0.5 -j0.5 (explanatin) A C C C j -j B D -j j cnstant R-circle r C in series.5 () CW A B : j0.5 jx j jx j.5 j : add an in series () CCW B A: j jx j0.5 jx j.5 C jc.5 : add a C in series.5 r CCW B A: j jx j0.5 jx j.5 j.5 : reduce extra jx j.5 (r reduce series by ) (3) CCW C D : j0.5 jx j jx j.5 C jc.5 : add a C in series.5 (4) CW D C : j jx j0.5 jx j.5 j : add an in series r CW D C : j jx j0.5 jx j.5 C jc.5 reduce extra jx j.5 (r reduce series C by C ).5 in -plane CW add a series (r reduce series C) CCW add a series C (r reduce series ) 5-4

cnstant G-circle r C in shunt -j j A C C -j C j -j0.5 B D j0.5.5y () CW A B : j jb j0.5 jb j.5y jc C : add a C in shunt r CW A B : j jb j0.5 jb j.5y j.5y : reduce shunt jb j.5 Y (r reduce shunt by ).5Y () CCW B A : j0.5 jb j jb j.5 j : add an in shunt (3) CCW C D : j jb j0.5 jb j.5 j : add an in shunt.5y r CCW C D : j jb j0.5 jb j.5y jc C.5Y reduce shunt jb j.5 Y (r reduce shunt C by C ) (4) CW D C : j0.5 jb j jb j.5 jc : add a C in shunt in Y-plane CW add a shunt C (r reduce shunt ) CCW add a shunt (r reduce shunt C) 5-5

Discussin. inside +jx circle, tw pssible slutins Sith chart slutin (shunt-series eleents) +jb circle B z +jx circle A: A B: series-shunt eleents? N analytical slutin jx jx jb 5-6 jb R jx B 0 C,B 0 X 0, X 0 C

. utside +jx circle, tw pssible slutins Sith chart slutin (series-shunt eleents) +jb circle B A z +jx circle A B shunt-series eleents? Y analytical slutin jb jx R j( X X B 0 C,B 0 jb X 0, X 0 C ) 5-7

3. Ex. 5. =00-j00, =00, f=500mhz A: B A 3 C z. z=-j, y=0.4+j0. Slutin A. y=0.4+j0.5 jb=j0.3 jb=jc=jb/ C=b/ =0.9pF z=-j. jx=j. jx=j =jx =x / =38.8nH Slutin B 3. y=0.4-j0.5 jb=-j0.7-jb=/j=-jb/ =- /b=46.nh z=+j. jx=-j. jx=/jc=-jx C=-/x =.6pF frequency respnse (p.33, Fig.5.3(c)) B: C 5-8

4. Pssible 3-eleent -netwrk z +jx circle series? Y +jb circle z 5-9

5. Pssible 4-eleent -netwrk shrter paths fr a wider peratinal bandwidth z +jx circle +jb circle z 5-0

6. uped eleents (size</0) capacitr: chip capacitr, MIM capacitr (<5pF), interdigital gap capacitr (<0.5pF), pen stub(<0.pf) inductr: chip inductr, lp inductr, spiral inductr (<0nH) resistr: chip resistr, planar resistr All these luped eleents inherently have parasitic eleents in the icrwave range. (p.33, pint f interest ) B A C D 5- Size (il) 040 0603 0805 06 A 39 6 78 5 B 4 38 39 6 C 8 0 3 D 0 3 49 6 il=0.00in=5u=/40

5. Single-stub tuning equivalent icrstrip eleents a series C --- a series in series with a high ipedance icrstrip line a shunt C in shunt with an pen icrstrip line, r in series with a lw ipedance icrstrip line a shunt in shunt with a shrt icrstrip line an pen-circuited icrstrip line a shrt-circuited icrstrip line in in j tan l jc j tan l j, l a high/lw ipedance icrstrip line l j tan Y3 l j tan sin l j 5- high lw j l βl j

(derivatin f high/lw ipedance line), l l j tan Y3 high,y3 0 l j tan sin l j j βl l βl l j βl jω ω c 3 jsin l 3 j csc l Y3 j sin l j (ct l csc l) j l cs l sin l l sin lsin cs 5-3 l j sin cs lw,, 0 slide (4 ) j (ct l csc l) j cscl 3 cs l sin l sin j tan l l l βl βl l j jωc C ω c l βl j

Discussin. Shunt stub Sith chart slutin y in jb jc d G y l y in jb cnstant -circle y in jb j d G y l y in jb 5-4

. Series stub Sith chart slutin z in jx d G z l z in jx jc z in jx d G z l z in jx j 5-5

3. Ex. 5. =60-j80, =50, f=ghz, using a shunt shrt stub G S.C. l 3 4. z=.-j.6, y=0.3+j0.4 Slutin A B. y=+j.47 d=0. 3. y=-j.47 l=0.095, shrt stub 5 l A z Slutin B 4. y=-j.47 d=0.6 5. y=j.47 l=0.405, shrt stub d frequency respnse (p.37, Fig.5.5(c)) Slutin A has a wider bandwidth. l 5-6

4. Ex. 5.3 =00+j80, =50, f=ghz, using series pen stub G l B 4 A 3 5 z O.C. l. z=+j.6 Slutin A. z=-j.33 d=0. 3. z=j.33 l=0.397, pen stub Slutin B 4. z=+j.33 d=0.463 5. z=-j.33 l=0.03, pen stub frequency respnse (p.40, Fig.5.6(c)) It can nt be ipleented in icrstrip lines. 5-7

5. Analytical slutin fr shunt stub Y in jb d l Y in Y jb j tan d Y Re d j tan d pen stub j tan d tan l B I l j tan d shrt stub tan l 5-8

6. Analytical slutin fr series stub in jx d l in jx j tan d Re d j tan d j tan d - pen stub X I tan l l j tan d tan l shrt stub 5-9

5.3 Duble-stub tuning 4, 5 ±jb, 3 /8 G 5 z l l frbidden regin 3 4 Discussin. There exists a frbidden regin fr. It can be tuned ut by adding a certain length f line. 5-0

G l. Ex. 5.4 =60-j80, =50, f=ghz, using duble-shuntpen-stubs. z=.-j.6, y=0.3+j0.4 l 7 Slutin A 6. y=0.3+j 0.86 6. b = - 0.4 l 5 = 0.48 4. y=+j.38 7. b = -.38 l =0.35 O.C. B A 4 Slutin B 3. y=0.3+j.74 8. b =.34 3 z l =0.46 9 l 5. y=-j3.38 9. b = 3.38 l 8 l =0.04 /8 l l 5- frequency respnse (p.45, Fig.5.9(c))

3. Analytical slutin Y = Y - jb Y d l jb l jb Y Re Y Y Y Y I jb, Y Y B Y B l l jb j j tan d tan d 5-

5.4 The quarter-wave transfrer frequency respnse l / 0=0 / 0= (real) Γ( θ ) cs, fr near, l - : ax. tlerated Γver the bandwidth f 4 Γ f π cs ( ),, increases f Γ 5-3

(derivatin f (θ) cs ) j tan ( ) j tan j tan ( θ) ( ) j tan j tan in j tan j tan in j tan ( ) ( ) j tan j tan j tan sec cs Δf 4 (derivatin f cs ( )) f π Γ / 5-4 Γ j ( θ) ( ) 4 4 / [( ) ( tan ) ] [ tan ] ( ) ( ) 4 [ sec ] ( ) tan /

Γθ ( ) 4 [ sec ] ( ) / ( ) cs ( ) cs cs f f vp( f) f f f TEM line: l v ( f ) 4 v ( f ) 4 f f f f f f p p ( f f) f 4 4 cs f f 5-5

partial reflectin cefficients 5.5 The thery f sall reflectins single-sectin transfrer, 3 T T 3 (real) in in T e 3 T e j j e j 3 e j, T, T Γ in 5-6 jθ 3 jθ ΓΓ3e Γ Γ Γ e ( )( ) Γ e Γ Γ jθ jθ 3 3 jθ ΓΓ3e Γ e Γ Γ e 3 3 TT Γe jθ jθ Γ Γ e if jθ 3

ultisectin transfrer N N (real) Γ( ) Γ Γ e Γ e... Γ e, if Γ Γ, Γ Γ... jθ j4θ j Nθ N N N e [ Γ ( e e ) Γ ( e e )... Γ ( e e )] N dd e Γ e e Γ e e Γ N even jnθ jnθ jnθ j( N ) θ j( N ) θ jθ jθ ( N)/ jnθ jnθ jnθ j( N ) θ j( N ) θ [ ( ) ( )... N/ ] jnθ e [ Γ cs N Γ cs( N )... Γn cs( N n)... Γ( N )/ cs ] N dd jnθ e [ Γ cs N Γ cs( N )... Γn cs( N n)... Γ N / ] N even given Γ( ), design,,... n 5-7

5.6 Binial ultisectin atching transfrer axial flatness respnse fr () jθ N N N jnθ jθ j4θ n N jnθ n0 Γ( ) A( e ) A C e Γ Γ e Γ e... Γ e Γ n AC N n Discussin. Maxial flatness respnse,. 3. (p.54, Table 5. fr n values) 5-8 d N d Γ( ) N N N Γ(0) A A Γ x ln (ln ) x n n n n x n n n rl 4 0 n N N N N N ln Γn ACn Cn Cn ln n

4. Δf 4 Γ N N N cs [ ( ) ], N, Δ f, Γ A cn θ f π A jθ N N N Γ( ) A( e ) Γ( ) A cs f 4 4 f cs [ ( N ) ] 5. Ex.5.6 =50, =00, N=3, =0.05 Δf N 3, A ln 0.0433, 70% N N f ln C ln ln C ln 9.7 n N N 3 3 n 0 n ln C ln 70.7, ln C ln 54.5 3 3 3 3 3 3 (p.56, Fig.5.5 fr frequency respnse f Γ ) 5-9 Γ A

5.7 Chebyshev ultisectin atching transfrers Equal ripple respnse fr (): ptial design jnθ Γ( ) e [ Γ cs N Γ cs( N )... Γ cs( N n)...] jnθ Ae T (sec cs ) Γ (p.60, Table 5.) N n T ( x) x, T ( x) x, T ( x) 4x 3 x, T ( x) 8x 8x, 3 4 3 4 cs Tn ( x) xtn- ( x) Tn- ( x), x, x cs Discussin.. (0) AT N (sec θ) A T (sec θ ) AT () A T N 3. Optial design: given, axial f given f, inial. N f 4 (sec ) (5.63) Γ f N 5-30 n - x π-θ θ

4. Ex.5.7 =00, =50, N=3, =0.05 N 3, Γ( ) e ( Γ cs 3 Γ cs ) Ae T (sec cs ) Ae j3θ 3 3 j3θ j3θ 3 (4sec cs 3sec cs ) j3θ 3 Ae [sec (cs 3 3cs ) 3sec cs ] f A Γ sec =.408 44.7 0% T f 3(sec ) 3 Γ Asec Γ 0.0698 Γ3 Γ A(3sec 3sec ) Γ 0.037 Γ Γ Γ 3 57.5 70.7 Γ Γ 87 3 3 3 3 frequency respnse (p.6, Fig.5.7) 5-3

5.8 Tapered lines Frequency respnse (z) + 0 z z+z z d d ln d dz dz d dz jz ( ) e (ln ) 0 dz 5-3

Discussin. Expnential taper az ( z) e 0 z a ( ) e a ln d sin Γ e e dz e jz az j ( ) (ln ) ln 0 dz, Γ( ) (p. 63, Fig.5.9). Triangular taper (z/) ln e 0 z (z) ( 4z/z / ) ln e z j sin( ) Γ( ) ln e [ ] first null at (p. 64, Fig.5.0) 5-33

3. Klpfenstein taper z ( ) (5.74), (5.75), Γ( ) (5.76), ptial taper 4. Ex.5.8 =00, =50, =0.0 az expnential taper: ( z) e, a ln 0.693 sin Γ( ) ln sin triangular taper: Γ( ) ln [ ] cs ( ) A Klpfenstein taper: Γ( ) Γ, A 3.543, Γ 0.346 csh A frequency respnse (p. 66, Fig.5.) 5-34

5.9 The Bde-Fan criterin lssless () atching C R 0 netwrk ln d ( ) RC Discussin. ln/ ln/ 5-35

0 ln ln d ln ( ) RC d : cnstant () given RC () 0, unless =0 i.e., =0 nly at a finite nuber f frequencies (3) R and/r C and/r high Q lad is harder t atch lssless () atching C R netwrk 5-36 parallel resnatr Q= RC

Slved prbles: Prb.5.7 find and l.95+j0.98 z 4+j =40Ω, l 00+j00 zin r in 0.8 r ax 5.5 40 00 j00 j tan l j (00 j 00) tan l 40 j8000 tan l 4000 tan l 00 j00 j tanl 40 4000 tan l 00 j8000 tan l j00 j tanl 5tan l j j j l l 0.5 l 0.88 03.68 8000 500 65 tan tan 4. 5-37 kr k, 50 kr R ' in in ' in 0.8 50 50 R' ax ax ' ax 5.5 50 50 r' in r' ax in ax R ' R' k r ' r ' k 4. k.05 () (50) 50.05 0.5

Prb.5.4 find the best R ver perating range f 3.~0.6GHz () UWB netwrk 0.6pF 75Ω 0 ln d Γ( ) ln (0.6 3.) 0 750.60 9 ln.48 0.8, R 6.4dB RC 5-38

Prb. Fr a lssless and reciprcal tw-prt atching netwrk, * * if then. s in ut ssless and reciprcal atching circuit S in ut () if S in S S in in in S in in in in in S in in S in in in in in in in S ( ) in in in in in if ut ut ut ut ut ut ut ut ut ut ut ut ut ut ut ut ut ut ( ) ut ut ut ut ut 5-39

S S S S 0...( i) lssless S S S S S S 0...( ii) () S S S S...( iii) in ADS exaples: Ch5_prj 5-40 ssless and reciprcal atching circuit S S...( iv) S in () i SS SS S S S S S S S S SS S SS S SS S S S S S S S S S S S S S S S S ( iii) in if ut S in...( v) ( ) () i SSS SS S S S S SS S S S SS SS S SSS S SSS S S S S S S S S ( ) S ( ) ( ),( ) ( ) S iv i ii v SS SS SS SS S( in S) S SS S SSS S SSS S( Sin ) SS S S( S S SS S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S ( ) ) S ut