Water and Life 4/10/12. Chapter 3. Overview: The Molecule That Supports All of Life

Similar documents
LECTURE PRESENTATIONS

LECTURE PRESENTATIONS

LECTURE PRESENTATIONS

Water and the Fitness of the Environment

Water and the Fitness of the Environment

Water and Life. Chapter 3. Key Concepts in Chapter 3. The Molecule That Supports All of Life

BIOLOGY. Water and Life CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson. Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick

Overview: The Molecule That Supports All of Life

Chapter 3: Water and Life

Water and the Fitness of the Environment

LECTURE PRESENTATIONS

Ch. 3 Water and Fitness of Environment BIOL 222

Chapter 3. Water and the Fitness of the Environment

Water and the Fitness of the Environment

Chemistry (Refresher)

Ch. 3 Water and Fitness of Environment BIOL 222

BIOLOGY. Water and Life CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson. Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick

2 The Chemical Context of Life

The Chemical Context of Life

Chapter 2. The Chemical Basis of Life. Lecture by Richard L. Myers

polarity of water ionic compound dissolved in water Nonionic polar molecules

Chemistry (Outline) Water (Outline) - Polarity of water- hydrogen bonding - Emergent Physical properties of water - Importance for life on Earth

BIOLOGY 101. CHAPTER 3: Water and Life: The Molecule that supports all Live

Acidic and basic conditions affect living organisms

Water - HW. PSI Chemistry

Chapter 3. Water: Supports All Life. Hydrogen Bonding of water. Slide 1 / 44. Slide 2 / 44. Slide 3 / 44. Slide 4 / 44. Slide 6 / 44.

Chapter 2: Chemical Basis of Life

Properties of Water. Polar molecule Cohesion and adhesion High specific heat Density greatest at 4 o C Universal solvent of life

Outline. Water The Life Giving Molecule. Water s Abundance. Water

Basic Chemistry. Chapter 02

Properties of Water. Water is a Polar Molecule. ! Special properties of water. Why study water?

Essential Knowledge. 2.A.3 Organisms must exchange matter with the environment to grow, reproduce and maintain organization

Chapter 2 The Chemical Basis of Life

Chapter 2 The Chemical Basis of Life

Let s Review Bonding. Chapter 3 Water and Life 7/19/2016 WATER AND SOLUTIONS. Properties of Water

CH 3: Water and Life AP Biology

Why Water Is Your Friend

Chapter 3: Water and the Fitness of the

2.1-2 Chemistry and Water

Why are we studying chemistry?

2-1 Atoms consist of protons, neutrons, and electrons

Biochemistry Water and the Fitness of the Environment

Lecture 3: Water and carbon, the secrets of life

Water and the Fitness of the Environment

The Chemistry of Life

BIOCHEMISTRY The Chemical Context of Life

Life s Chemical Basis

Chemistry of Life 9/11/2015. Bonding properties. Life requires ~25 chemical elements. About 25 elements are essential for life. Effect of electrons

Chapter 3 Water and the Fitness of the Environment

Life s Chemical Basis. Chapter 2

Water and the Fitness of the Environment

Properties of Water. Polar molecule Cohesion and adhesion High specific heat Density greatest at 4 o C Universal solvent of life

The Chemistry of Life 2007-

Today. Turn in your syllabus/get your DE syllabus (if applicable) Get out a sheet of paper for your worm quiz and a sheet of paper to take notes!

CHAPTERS 2 & 3 The Chemical Context of Life. Chapter 2: Atoms and Molecules Chapter 3: Water & ph

Chapter 2 The Chemical Basis of Life

BASIC CHEMISTRY Organisms and all other things in the universe consist of matter Matter: Elements and Compounds Matter is

The Molecules of Cells (Part A: Chemistry)

Chapter 2: The Chemical Context of Life

Ever come to work. And get the feeling it s not going to be such a good day?

Learning Objectives. Learning Objectives (cont.) Chapter 2: Basic Chemistry 1. Lectures by Tariq Alalwan, Ph.D.

WATER, ACIDS, BASES, BUFFERS

Chemistry 6/15/2015. Outline. Why study chemistry? Chemistry is the basis for studying much of biology.

Chapter 3 Water and the Fitness of the Environment Lecture Outline

Chapter 2 The Chemical Basis of Life

Chapter 3. Water and the Fitness of the Environment

WHAT YOU NEED TO KNOW:

Water. Water Is Polar

Definition of Matter. Subatomic particles 8/20/2012

Chapter 2: Atoms and Molecules

General Biology 1004 Chapter 2 Lecture Handout, Summer 2005 Dr. Frisby

Atoms. Smallest particles that retain properties of an element. Made up of subatomic particles: Protons (+) Electrons (-) Neutrons (no charge)

The Chemical Context of Life

The Properties of Water

The Water Molecule. Like all molecules, a water molecule is neutral. Water is polar. Why are water molecules polar?

Chapter 2. The Chemical Basis of Life. Lecture by Richard L. Myers

file:///biology Exploring Life/BiologyExploringLife04/

Atoms, Molecules, and Life

Environmental Engineering-I

1.2. Water: Life s Solvent. Properties of Water

Vocabulary Polar Covalent Bonds Hydrogen Bonds Surface Tension Adhesion Cohesion Specific Heat Heat of Vaporation Hydrophilic Hydrophobic Diffusion Dy

Water. Hydrogen Bonding. Polar and Nonpolar Molecules. Water 8/25/2016 H 2 0 :

CHAPTER 2. Life s Chemical Basis

Cell Biology. Water, Acids, Bases and Buffers. Water makes up 70-99% of the weight of most living organisms Water

Chemistry of Life: Water and Solutions

may contain one or more neutrons

Chapter 3: WATER AND THE FITNESS OF THE ENVIRONMENT

Chemistry. Biology 105 Lecture 2 Reading: Chapter 2 (pages 20-29)

Four elements make up about 90% of the mass of organisms O, C, H, and N

Chapter 3:Water and the Fitness of the Environment Wilkie South Fort Myers High School

BIOLOGICAL SCIENCE. Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge. FIFTH EDITION Freeman Quillin Allison

Chemistry 8/27/2013. Outline. Why study chemistry? Chemistry is the basis for studying much of biology.

Biochemistry Water and the Fitness of the Environment Concept: Acidic and Basic condi9ons affect living organisms

2-1 The Nature of Matter. Atoms

Chapter 2 Essential Chemistry for Biology

EPSS 15 Introduction to Oceanography Spring The Physical and Chemical Properties of Seawater

Chapter Chemical Elements Matter solid, liquid, and gas elements atoms. atomic symbol protons, neutrons, electrons. atomic mass atomic number

Acids & Bases Strong & weak. Thursday, October 20, 2011

Chemistry BUILDING BLOCKS OF MATTER

THE CHEMISTRY OF LIFE

Transcription:

Chapter 3 LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Water and Life Overview: The Molecule That Supports All of Life Water is the biological medium on Earth All living organisms require water more than any other substance Most cells are surrounded by water, and cells themselves are about 70 95% water The abundance of water is the main reason the Earth is habitable Lectures by Erin Barley Kathleen Fitzpatrick Concept 3.1: Polar covalent bonds in water molecules result in hydrogen bonding The water molecule is a polar molecule: the opposite ends have opposite charges Polarity allows water molecules to form hydrogen bonds with each other Animation: Water Structure Rightclick slide/select Play Figure 3.2 Concept 3.2: Four emergent properties of water contribute to Earth s suitability for life δ δ δ δ δ δ δ Hydrogen bond Polar covalent bonds δ Four of water s properties that facilitate an environment for life are Cohesive behavior Ability to moderate temperature Expansion upon freezing Versatility as a solvent 1

Figure 3.3 Cohesion of Water Molecules Collectively, hydrogen bonds hold water molecules together, a phenomenon called cohesion Cohesion helps the transport of water against gravity in plants Adhesion is an attraction between different substances, for example, between water and plant cell walls Direction of water movement Two types of waterconducting cells 300 µm Adhesion Cohesion Figure 3.4 Surface tension is a measure of how hard it is to break the surface of a liquid Surface tension is related to cohesion Moderation of Temperature by Water Water absorbs heat from warmer air and releases stored heat to cooler air Water can absorb or release a large amount of heat with only a slight change in its own temperature Heat and Temperature Kinetic energy is the energy of motion Heat is a measure of the total amount of kinetic energy due to molecular motion Temperature measures the intensity of heat due to the average kinetic energy of molecules 2

Water s High Specific Heat The Celsius scale is a measure of temperature using Celsius degrees ( C) A calorie (cal) is the amount of heat required to raise the temperature of 1 g of water by 1 C The calories on food packages are actually kilocalories (kcal), where 1 kcal = 1,000 cal The joule (J) is another unit of energy where 1 J = 0.239 cal, or 1 cal = 4.184 J The specific heat of a substance is the amount of heat that must be absorbed or lost for 1 g of that substance to change its temperature by 1ºC The specific heat of water is 1 cal/g/ºc Water resists changing its temperature because of its high specific heat Figure 3.5 Water s high specific heat can be traced to hydrogen bonding Heat is absorbed when hydrogen bonds break Heat is released when hydrogen bonds form The high specific heat of water minimizes temperature fluctuations to within limits that permit life Santa Barbara 73 70s ( F) 80s 90s 100s Los Angeles (Airport) 75 Burbank 90 Pacific Ocean 68 San Diego 72 San Bernardino 100 Riverside 96 Santa Ana 84 Palm Springs 106 40 miles Evaporative Cooling Evaporation is transformation of a substance from liquid to gas Heat of vaporization is the heat a liquid must absorb for 1 g to be converted to gas As a liquid evaporates, its remaining surface cools, a process called evaporative cooling Evaporative cooling of water helps stabilize temperatures in organisms and bodies of water Floating of Ice on Liquid Water Ice floats in liquid water because hydrogen bonds in ice are more ordered, making ice less dense Water reaches its greatest density at 4 C If ice sank, all bodies of water would eventually freeze solid, making life impossible on Earth 3

Figure 3.6 Hydrogen bond Liquid water: Hydrogen bonds break and reform Water: The Solvent of Life A solution is a liquid that is a homogeneous mixture of substances A solvent is the dissolving agent of a solution The solute is the substance that is dissolved An aqueous solution is one in which water is the solvent Ice: Hydrogen bonds are stable Figure 3.7 Water is a versatile solvent due to its polarity, which allows it to form hydrogen bonds easily When an ionic compound is dissolved in water, each ion is surrounded by a sphere of water molecules called a hydration shell Cl Na Na Cl Figure 3.8 Water can also dissolve compounds made of nonionic polar molecules Even large polar molecules such as proteins can dissolve in water if they have ionic and polar regions δ δ δ δ 4

Hydrophilic and Hydrophobic Substances A hydrophilic substance is one that has an affinity for water A hydrophobic substance is one that does not have an affinity for water Oil molecules are hydrophobic because they have relatively nonpolar bonds A colloid is a stable suspension of fine particles in a liquid Solute Concentration in Aqueous Solutions Most biochemical reactions occur in water Chemical reactions depend on collisions of molecules and therefore on the concentration of solutes in an aqueous solution Molecular mass is the sum of all masses of all atoms in a molecule Numbers of molecules are usually measured in moles, where 1 mole (mol) = 6.02 x 10 23 molecules Avogadro s number and the unit dalton were defined such that 6.02 x 10 23 daltons = 1 g Molarity (M) is the number of moles of solute per liter of solution Concept 3.3: Acidic and basic conditions affect living organisms A hydrogen atom in a hydrogen bond between two water molecules can shift from one to the other The hydrogen atom leaves its electron behind and is transferred as a proton, or hydrogen ion (H ) The molecule with the extra proton is now a hydronium ion (H 3 O ), though it is often represented as H The molecule that lost the proton is now a hydroxide ion (OH ) Figure 3.UN02 Water is in a state of dynamic equilibrium in which water molecules dissociate at the same rate at which they are being reformed 2 H 2 O Hydronium Hydroxide ion (H 3 O ) ion (OH ) 5

Though statistically rare, the dissociation of water molecules has a great effect on organisms Changes in concentrations of H and OH can drastically affect the chemistry of a cell Concentrations of H and OH are equal in pure water Adding certain solutes, called acids and bases, modifies the concentrations of H and OH Biologists use something called the ph scale to describe whether a solution is acidic or basic (the opposite of acidic) Acids and Bases An acid is any substance that increases the H concentration of a solution A base is any substance that reduces the H concentration of a solution The ph Scale In any aqueous solution at 25 C the product of H and OH is constant and can be written as [H ][OH ] = 10 14 The ph of a solution is defined by the negative logarithm of H concentration, written as ph = log [H ] For a neutral aqueous solution, [H ] is 10 7, so ph = ( 7) = 7 Figure 3.UN05 Acidic solutions have ph values less than 7 Basic solutions have ph values greater than 7 Most biological fluids have ph values in the range of 6 to 8 Acidic [H ] > [OH ] Neutral [H ] = [OH ] Basic [H ] < [OH ] 0 Acids donate H in aqueous solutions. 7 Bases donate OH or accept H in aqueous solutions 14 6

Figure 3.10 H H H OH OH H H H H H Acidic solution OH OH H H OH OH OH H H H Neutral solution OH OH OH H OH OH OH H OH Basic solution Increasingly Acidic [H ] > [OH ] Neutral [H ] = [OH ] Increasingly Basic [H ] < [OH ] ph Scale 0 1 Battery acid 2 Gastric juice, lemon juice Vinegar, wine, 3 cola 4 Tomato juice Beer Black coffee 5 Rainwater 6 Urine Saliva 7 Pure water Human blood, tears 8 Seawater Inside of small intestine 9 10 Milk of magnesia 11 Household ammonia 12 Household 13 bleach Oven cleaner 14 Buffers The internal ph of most living cells must remain close to ph 7 Buffers are substances that minimize changes in concentrations of H and OH in a solution Most buffers consist of an acidbase pair that reversibly combines with H Figure 3.UN08 7