Supporting Information

Similar documents
Supporting Information

Supporting Information

Supporting Information

Supporting Information

Electronic Supplementary Information

Synthesis of Vinyl Germylenes

Biasing hydrogen bond donating host systems towards chemical

Reversible dioxygen binding on asymmetric dinuclear rhodium centres

Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex.

Hydrophobic Ionic Liquids with Strongly Coordinating Anions

Scandium and Yttrium Metallocene Borohydride Complexes: Comparisons of (BH 4 ) 1 vs (BPh 4 ) 1 Coordination and Reactivity

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information

Supporting Information. for. Angew. Chem. Int. Ed Wiley-VCH 2004

Supporting Information

A Facile Route to Rare Heterobimetallic Aluminum-Copper. and Aluminum-Zinc Selenide Clusters

Electronic Supplementary Information for: Gram-scale Synthesis of a Bench-Stable 5,5 -Unsubstituted Terpyrrole

Supporting Information for the Article Entitled

Supporting Information

Supporting Information

Supporting Information

Halogen bonded dimers and ribbons from the self-assembly of 3-halobenzophenones Patricia A. A. M. Vaz, João Rocha, Artur M. S. Silva and Samuel Guieu

Halogen halogen interactions in diiodo-xylenes

Supporting Information

Simple Solution-Phase Syntheses of Tetrahalodiboranes(4) and their Labile Dimethylsulfide Adducts

The oxide-route for the preparation of

1,4-Dihydropyridyl Complexes of Magnesium: Synthesis by Pyridine. Insertion into the Magnesium-Silicon Bond of Triphenylsilyls and

Synthetic, Structural, and Mechanistic Aspects of an Amine Activation Process Mediated at a Zwitterionic Pd(II) Center

Supplementary Materials for

Hassan Osseili, Debabrata Mukherjee, Klaus Beckerle, Thomas P. Spaniol, and Jun Okuda*

Transformations: New Approach to Sampagine derivatives. and Polycyclic Aromatic Amides

Remote Asymmetric Induction in an Intramolecular Ionic Diels-Alder Reaction: Application to the Total Synthesis of (+)-Dihydrocompactin

Supplementary Figure S1 a, wireframe view of the crystal structure of compound 11. b, view of the pyridinium sites. c, crystal packing of compound

White Phosphorus is Air-Stable Within a Self-Assembled Tetrahedral Capsule

Stoichiometric Reductions of Alkyl-Substituted Ketones and Aldehydes to Borinic Esters Lauren E. Longobardi, Connie Tang, and Douglas W.

Electronic Supplementary Information. Pd(diimine)Cl 2 Embedded Heterometallic Compounds with Porous Structures as Efficient Heterogeneous Catalysts

Supplementary Information

Electronic Supplementary Information

Supporting Information. for

Supporting Information

Supporting Information

Hafnium(II) Complexes with Cyclic (Alkyl)(amino)carbene Ligation

Discrete Ag 6 L 6 Coordination Nanotubular Structures Based on a. T-shaped Pyridyl Diphosphine. Supporting information:

Supporting Information for. Hydrogen-Bond Symmetry in Difluoromaleate Monoanion

Stereoselective Synthesis of (-) Acanthoic Acid

One-dimensional organization of free radicals via halogen bonding. Supporting information

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY

Catalytic hydrogenation of liquid alkenes with a silica grafted hydride. pincer iridium(iii) complex: Support for a heterogeneous mechanism

Selective Reduction of a Pd Pincer PCP Complex to Well- Defined Pd(0) Species

metal-organic compounds

The CB[n] Family: Prime Components for Self-Sorting Systems Supporting Information

Supporting Information

Cu(I)-MOF: naked-eye colorimetric sensor for humidity and. formaldehyde in single-crystal-to-single-crystal fashion

Phosphirenium-Borate Zwitterion: Formation in the 1,1-Carboboration Reaction of Phosphinylalkynes. Supporting Information

Orthorhombic, Pbca a = (3) Å b = (15) Å c = (4) Å V = (9) Å 3. Data collection. Refinement

Stabilizing vitamin D 3 by conformationally selective co-crystallization

A water-stable zwitterionic dysprosium carboxylate metal organic. framework: a sensing platform for Ebolavirus RNA sequences

Supporting Information

Supporting Information

Eur. J. Inorg. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2013 ISSN SUPPORTING INFORMATION

Selective total encapsulation of the sulfate anion by neutral nano-jars

APPENDIX E. Crystallographic Data for TBA Eu(DO2A)(DPA) Temperature Dependence

A Facile and General Approach to 3-((Trifluoromethyl)thio)- 4H-chromen-4-one

Coordination Behaviour of Calcocene and its Use as a Synthon for Heteroleptic Organocalcium Compounds

Iron Complexes of a Bidentate Picolyl NHC Ligand: Synthesis, Structure and Reactivity

Total Synthesis of Gonytolides C and G, Lachnone C, and. Formal Synthesis of Blennolide C and Diversonol

Supporting Information. Molecular Iodine-Catalyzed Aerobic α,β-diamination of Cyclohexanones with 2- Aminopyrimidine and 2-Aminopyridines

Derivatives. Republic. Supporting Information. Index. General Considerations. Experimental Procedures and Spectroscopic Data

Supplementary Information: Selective Catalytic Oxidation of Sugar Alcohols to Lactic acid

Copyright WILEY-VCH Verlag GmbH, D Weinheim, 2000 Angew. Chem Supporting Information For Binding Cesium Ion with Nucleoside Pentamers.

A supramoleculear self-assembled flexible open framework based on coordination honeycomb layers possessing octahedral and tetrahedral Co II geometries

Juan Manuel Herrera, Enrique Colacio, Corine Mathonière, Duane Choquesillo-Lazarte, and Michael D. Ward. Supporting information

b = (13) Å c = (13) Å = (2) V = (19) Å 3 Z =2 Data collection Refinement

Supporting Information

Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra*

Supporting Information Borata-alkene Derivatives Conveniently Made by Frustrated Lewis Pair Chemistry

,

Supporting Information

Spain c Departament de Química Orgànica, Universitat de Barcelona, c/ Martí I Franqués 1-11, 08080, Barcelona, Spain.

Electronic Supplementary Information (ESI)

Supporting Information for A Janus-type Bis(maloNHC) and its Zwitterionic Gold and Silver Metal Complexes

Supporting Information

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003

Supporting Information. Carbodiphosphorane Mediated Synthesis of a Triflyloxyphosphonium Dication and its Reactivity towards Nucleophiles

Supporting Information

Spin Transition and Structural Transformation in a

Copper Mediated Fluorination of Aryl Iodides

Cationic 5-Phosphonio Substituted N-heterocyclic Carbenes

Nickel-Mediated Stepwise Transformation of CO to Acetaldehyde and Ethanol

Electronic Supplementary Information

Supporting Information

Supporting information for Eddaoudi et al. (2002) Proc. Natl. Acad. Sci. USA 99 (8), ( /pnas ) Supporting Information

Efficient, scalable and solvent-free mechanochemical synthesis of the OLED material Alq 3 (q = 8-hydroxyquinolinate) Supporting Information

Supporting Information

Supporting Information. Table of Contents

Ethylene Trimerization Catalysts Based on Chromium Complexes with a. Nitrogen-Bridged Diphosphine Ligand Having ortho-methoxyaryl or

An isolated seven-coordinate Ru(IV) dimer complex with [HOHOH] bridging. ligand as an intermediate for catalytic water oxidation

Electronic Supplementary data. Metal exchange in lithiocuprates: implications for our. understanding of structure and reactivity

Supporting Information for

b = (9) Å c = (7) Å = (1) V = (16) Å 3 Z =4 Data collection Refinement

Supporting Information

Transcription:

Supporting Information Wiley-VCH 2006 69451 Weinheim, Germany

A New Melt Approach to the Synthesis of catena- Phosphorus Dications to Access the First Derivatives of 2+ ** [P 6 Ph 4 R 4 ] Jan J. Weigand*, Neil Burford*, Michael D. Lumsden, Andreas Decken This PDF file includes: 1. Experimental 2. NMR Spectroscopical Details Figure S1-S5 3. Crystallographic Details Table S1-S3 4. Newman Projection Figure S6 and S7 5. References 1

1. Experimental General Remarks. Solvents were dried on an MBraun solvent purification system and stored under nitrogen and over molecular sieves prior to use. (PPh) 5 was prepared according to literature methods (1). Gallium trichloride, diphenychlorophosphine and dimethylchlorophosphine were used as received from Aldrich and Strem, respectively. NMR: Bruker AVANCE 500 ( 1 H (500.13 MHz), 13 C (125.76 MHz) chemical shift referenced to δ TMS = 0.00; 31 P (202.46 MHz) to δ H3PO4(85%) = 0.00). Due to the complexity of the 31 P NMR spectra, all reported 31 P NMR parameters were derived by matching the observed experimental spectra with a computer simulation using the software program gnmr, version 4.0, by Cherwell Scientific. In each case, the uniqueness of the solution was verified by using the simulated parameters to simulate the experimental 31 P spectra obtained at a second applied field strength (Bruker AC-250 ( 31 P 101.23 MHz)). Melting points were recorded on an Electrochemical melting point apparatus in a sealed capillaries under dinitrogen and are uncorrected. Infrared spectra were recorded on a Nicolet 510P spectrometer as film or powdered sample between CsJ pellets. Raman spectra were obtained for powdered and crystalline samples on a Bruker RFS 100 instrument equipped with a Nd:YAG laser (1064 nm). Chemical analyses were determined by Canadian Microanalytical Service LTD., Delta, BC, Canada. [Ph 8 P 6 ][GaCl 4 ] 2, (±)[6a][GaCl 4 ] 2 : A mixture of (PhP) 5 (1297 mg, 2.4 mmol), Ph 2 PCl (1077 µl, 6.0 mmol) and GaCl 3 (1057 mg, 6.0 mmol) was stirred and heated under argon to 165 C within 30 min. A yellow melt was obtained between 70 and approx. 125 C and subsequently solidified up to 165 C yielding (±)[6a][GaCl 4 ] 2 as colorless solid. Solutions of (±)[6a][GaCl 4 ] 2 show evidence of decomposition already within ~1 hour at RT; M.p. 195-205 C (dec.); 1 H NMR (d 3 -MeCN, 273 K): δ = 7.02-7.85 (m, Ph) ppm; 13 C NMR (d 3 -MeCN, 273 K): δ = 113.3-135.9 (several s and m, Ph) ppm; 31 P NMR (101.3 MHz, d 3 -MeCN, 273 K): AA A A BB spin system, δ A = δ A = δ A = δ A = - 60.8 ppm, δ B = δ B = +29.8 ppm, 1 J AB = 1 J A B = 1 J A B = 1 J A B = 1 J A B = -310.5 Hz, 1 J AA = 1 J A A = -80.9 Hz, 2 J A B = 2 J A B = 2 J AB = 2 J A B = +89.4 Hz, 2 J AA = 2 J A A = -12.2 2

Hz, 3 J AA = 3 J A A = +98.5 Hz, 4 J BB = +5.1 Hz; Raman (250 mw, 25 C, cm -1 ): 3138 (6), 3055 (74), 1580 (69), 1193 (8), 1161 (10), 1088 (24), 1026 (53), 1001 (81), 693 (10), 617 (15), 492 (13), 438 (14), 343 (31), 324 (28), 272 (17), 201 (27), 159 (8), 104 (81), 86 (100); FT-IR (film, CsI): ν = 3054 (m), 3034 (vw), 2668 (vw), 2573 (vw), 1967 (vw), 1890 (vw), 1810 (vw), 1669 (vw), 1581 (m), 1570 (m), 1479 (m), 1435 (vs), 1387 (w), 1336 (m), 1311 (m), 1265 (m), 1189 (m), 1164 (w), 1095 (vs), 1091 (s), 1089 (s), 1075 (s), 1023 (m), 997 (s), 974 (w), 922 (w), 839 (w), 799 (w), 739 (vs), 684 (vs), 614 (vw), 524 (m), 487 (s), 476 (s), 457 (m), 443 (m), 402 (s), 374 (vs), 344 (m), 328 (m), 296 (m); elemental analysis for C 48 H 40 Cl 8 Ga 2 P 6 (1225.74): calcd. C 47.03, H 3.29; found: C 45.70, H 3.08. 3

[Me 4 Ph 4 P 6 ][GaCl 4 ] 2, [6b][GaCl 4 ] 2 : A solution of (PhP) 5 (432 mg, 0.8 mmol), Me 2 PCl (158 µl, 2.0 mmol) and GaCl 3 (352 mg, 2.0 mmol) in dichloromethane (7 ml) was stirred for 3 days under nitrogen. During this time [6b][GaCl 4 ] 2 precipitated from the reaction mixture and was separated by filtration yielding 440 mg (45 %) of a white amorphous powder; M.p. 163-167 C; 1 H NMR (d 3 -MeCN, 273 K, [(±)[6c][GaCl 4 ] 2 ]): δ = 1.85 [1.88] and 2.26 (s, 1 H{ 31 P}), 7.53-7.92 [7.64-7.81] (m, Ph) ppm; 13 C NMR (d 3 - MeCN, 273 K, [(±)[6c][GaCl 4 ] 2 ]): δ = 8.6 [5.8] (d, 1 J PC = ca. 32.0 [13.4] Hz), 116.8-136.3 (several s and m, Ph) ppm; 31 P NMR (101.3 MHz, d 3 -MeCN, 273 K, [6a]): AA A A BB spin system, δ A = δ A = δ A = δ A = -63.6 [-53.5] ppm, δ B = δ B = +12.4 [+11.2] ppm, 1 J AB = 1 J A B = 1 J A B = 1 J A B = 1 J A B = -306.2 [-295.2] Hz, 1 J AA = 1 J A A = -85.8 [-4.0] Hz, 2 J A B = 2 J A B = 2 J AB = 2 J A B = +79.1 [+54.9] Hz, 2 J AA = 2 J A A = - 11.1 [-71.4] Hz, 3 J AA = 3 J A A = +100.2 [+92.5] Hz, 4 J BB = +10.2 [+7.4] Hz; Raman (250 mw, 25 C, cm -1 ): 3141 (8), 3055 (63), 2984 (35), 2903 (79), 1580 (62), 1436 (9), 1405 (11), 1190 (9), 1164 (14), 1076 (26), 1024 (48), 999 (53), 706 (14), 615 (4), 478 (9), 421 (17), 346 (27), 288 (5), 262 (6), 208 (5), 193 (9), 154 (11), 119 (100), 84 (83); FT- IR (powder, CsI): ν = 3070 (m), 3052 (m), 2998 (s), 2906 (s), 2656 (vw), 2602 (vw), 2575 (vw), 2466 (vw), 2348 (vw), 2323 (vw), 2290 (vw), 2252 (w), 2154 (vw), 1960 (w), 1893 (vw), 1814 (w), 1775 (vw), 1664 (w), 1581 (m), 1569 (m), 1478 (s), 1434 (vs), 1406 (s), 1310 (s), 1285 (s), 1270 (m), 1228 (m), 1186 (s), 1160 (s), 1147 (m), 1133 (m), 1078 (s), 1070 (s), 1023 (s), 998 (vs), 903 (vs), 851 (m), 794 (m), 743 (vs), 693 (vs), 616 (vw), 559 (w), 477 (m), 373 (s), 293 (w), 281 (w), 264 (w); elemental analysis for C 28 H 32 Cl 8 Ga 2 P 6 (977.46): calcd. C 34.41, H 3.30; found: C 34.25, H 3.28. 4

2. NMR Spectroscopic Details Figure S1. Experimental (upper) and simulated (lower) 31 P{ 1 H} NMR spectra of 6a (in CH 2 Cl 2, impurities due to decomposition of 6a are marked with an asterisk). 5

Figure S2. Experimental spectra of 6a at two different temperatures in CH 2 Cl 2 ; upper: 185K and lower: 300K (101.26 MHz). 6

Figure S3. 31 P MAS spectrum of 6b (162.02 MHz). 7

Figure S4. 1 H{ 31 P}-NMR spectra of 6b dissolved in d 3 -MeCN at 268 K showing the presence of two symmetric species 6c (singlet, 1.88 ppm TB conformer) and 6b (two singlets, 1.85 and 2.26 ppm, eq./axial position chair conformer) in a ratio of approximately 1 : 3 (impurities due to decomposition of 6b and 6c are marked with and asterisk). 8

Figure S5. 31 P{ 1 H}-NMR spectra of 6c after quickly dissolving in CD 2 Cl 2 /CD 3 CN (4:1) and warming from 200 to 290K. The assignments of the resonances is indicated: 6b and 6c see text; 7b [Me 2 Ph 4 Ph 5 ][GaCl 4 ], complex multiplet ( 31 P A [δ] = +26 ppm, 31 P B [δ] = -29 ppm) (2); 8b [Me 2 PPMe 2 Cl][GaCl 4 ], dd ( 31 P A [δ] = +103 ppm, 31 P B [δ] = -29 ppm, J P,P = 340 Hz); the asterisk indicates Me 2 (Cl)P- GaCl 3 adduct (s, d = 57 ppm) (3). 9

3. Crystallographic Details Table S1. Crystallographic Data of 6a, 6b*2CDCl 3 and 6c*3CH 2 Cl 2. 6a 6b*2CDCl 3 6b*3CH 2 Cl 2 Formula C 48 H 40 P 6 Ga 2 Cl 8 C 30 H 32 P 6 D 2 Ga 2 Cl 14 C 31 H 38 P 6 Ga 2 Cl 14 MG [g mol 1 ] 1125.66 609.07 616.09 Color, habit Colorless, irregular Colorless, irregular Colorless, irregular Crystal System Monoclinic Monoclinic Monoclinic Space group Cc P2 1 /n C2/c a [Å] 11.396(9) 12.914(3) 28.057(7) b [Å] 25.90(2) 11.688(2) 11.493(3) c [Å] 18.727(15) 17.770(4) 18.479(6) α [ ] 90.0 90.0 90.0 β [ ] 104.566(14) 111.189(4) 119.470(7) γ [ ] 90.0 90.0 90.0 V [Å 3 ] 5349(8) 2500.8(9) 5188(2) Z 4 2 4 T [K] 173(1) 173(1) 173(1) Crystal size [mm] 0.45x0.35x0.10 0.40x0.30x0.10 0.40x0.30x0.20 ρ c [mg m 3 ] 1.522 1.618 1.578 F(000) 2464 1208 2456 λ MoKα, Å 0.71073 0.71073 0.71073 θ min [ ] θ max [ ] 1.57 27.50 2.13 27.50 1.67 24.99 Index range 14 h 13 32 k 33 23 l 20 15 h 16 14 k 13 20 l 22 30 h 32 13 k 13 18 l 21 µ [mm 1 ] 1.620 2.041 1.969 Absorption correction SADABS SADABS SADABS Reflections collected 18192 16914 12481 Reflections unique 8670 5629 4341 R int 0.0314 0.0294 0.0261 Reflection obs. [F > 2σ(F)] 7936 4467 3110 Residual density [e Å 3 ] 0.404, 0.265 0.838, 0.611 0.818, 0.389 Parameters 577 303 273 GooF 0.900 1.064 1.116 R 1 [I > 2σ(I)] 0.0251 0.0305 0.0669 wr 2 (all data) 0.0561 0.0830 0.1634 CCDC 607203 607204 607205 In the case of 6b*3CH 2 Cl 2 single crystals were coated with Paratone-N oil, mounted using a 20 micron cryo-loop and frozen in the cold nitrogen stream of the goniometer. A hemisphere of data was collected on a Bruker AXS P4/SMART 1000 diffractometer using ω and θ scans with a scan width of 0.3 and 10 s exposure times. 10

The detector distance was 6 cm. The data were reduced (SAINT) (4) and corrected for absorption (SADABS) (5). The crystal was a multiple twin, but only data of the major component gave satisfactory solution and refinement. The structure was solved by direct methods and refined by full-matrix least squares on F 2 (SHELXTL) (6). The solvent molecules were disordered, one superimposed on itself. The site occupancy was determined using an isotropic model as 0.7 (Cl(5), Cl(6)) and 0.3 (Cl(5 ), Cl(6 )) and fixed in subsequent refinement cycles. Site occupancies for C(16), Cl(7) and Cl(8) were fixed at 0.5. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in calculated positions and refined using a riding model. Solvent molecule hydrogen atoms were omitted. Table S2. Bond lengths [Å] and angles [ ] for 6a ([Ph 8 P 6 ][GaCl 4 ] 2 ). P(1)-C(1) 1.792(3) C(23)-C(24) 1.384(5) P(1)-C(7) 1.801(3) C(23)-H(23) 0.9500 P(1)-P(6) 2.2331(18) C(24)-H(24) 0.9500 P(1)-P(2) 2.242(2) C(25)-C(26) 1.384(4) P(2)-C(13) 1.835(3) C(25)-C(30) 1.401(4) P(2)-P(3) 2.2305(16) C(26)-C(27) 1.387(4) P(3)-C(19) 1.826(3) C(26)-H(26) 0.9500 P(3)-P(4) 2.2170(18) C(27)-C(28) 1.380(4) P(4)-C(31) 1.788(3) C(27)-H(27) 0.9500 P(4)-C(25) 1.801(3) C(28)-C(29) 1.378(5) P(4)-P(5) 2.2332(19) C(28)-H(28) 0.9500 P(5)-C(37) 1.835(3) C(29)-C(30) 1.390(4) P(5)-P(6) 2.2274(14) C(29)-H(29) 0.9500 P(6)-C(43) 1.827(3) C(30)-H(30) 0.9500 C(1)-C(6) 1.393(4) C(31)-C(32) 1.400(4) C(1)-C(2) 1.399(3) C(31)-C(36) 1.411(3) C(2)-C(3) 1.379(4) C(32)-C(33) 1.371(4) C(2)-H(2) 0.9500 C(32)-H(32) 0.9500 C(3)-C(4) 1.388(5) C(33)-C(34) 1.385(4) C(3)-H(3) 0.9500 C(33)-H(33) 0.9500 C(4)-C(5) 1.352(5) C(34)-C(35) 1.373(5) C(4)-H(4) 0.9500 C(34)-H(34) 0.9500 C(5)-C(6) 1.385(4) C(35)-C(36) 1.384(4) C(5)-H(5) 0.9500 C(35)-H(35) 0.9500 C(6)-H(6) 0.9500 C(36)-H(36) 0.9500 C(7)-C(12) 1.394(4) C(37)-C(42) 1.388(4) C(7)-C(8) 1.395(4) C(37)-C(38) 1.398(4) C(8)-C(9) 1.385(4) C(38)-C(39) 1.390(5) C(8)-H(8) 0.9500 C(38)-H(38) 0.9500 C(9)-C(10) 1.378(5) C(39)-C(40) 1.373(5) C(9)-H(9) 0.9500 C(39)-H(39) 0.9500 11

C(10)-C(11) 1.385(5) C(40)-C(41) 1.387(5) C(10)-H(10) 0.9500 C(40)-H(40) 0.9500 C(11)-C(12) 1.390(4) C(41)-C(42) 1.395(4) C(11)-H(11) 0.9500 C(41)-H(41) 0.9500 C(12)-H(12) 0.9500 C(42)-H(42) 0.9500 C(13)-C(14) 1.394(4) C(43)-C(48) 1.387(4) C(13)-C(18) 1.395(3) C(43)-C(44) 1.399(4) C(14)-C(15) 1.385(4) C(44)-C(45) 1.377(5) C(14)-H(14) 0.9500 C(44)-H(44) 0.9500 C(15)-C(16) 1.386(4) C(45)-C(46) 1.388(5) C(15)-H(15) 0.9500 C(45)-H(45) 0.9500 C(16)-C(17) 1.379(5) C(46)-C(47) 1.374(4) C(16)-H(16) 0.9500 C(46)-H(46) 0.9500 C(17)-C(18) 1.382(4) C(47)-C(48) 1.390(4) C(17)-H(17) 0.9500 C(47)-H(47) 0.9500 C(18)-H(18) 0.9500 C(48)-H(48) 0.9500 C(19)-C(20) 1.392(4) Ga(1)-Cl(3) 2.1674(16) C(19)-C(24) 1.395(4) Ga(1)-Cl(1) 2.1737(14) C(20)-C(21) 1.386(5) Ga(1)-Cl(4) 2.1747(15) C(20)-H(20) 0.9500 Ga(1)-Cl(2) 2.1756(16) C(21)-C(22) 1.375(5) Ga(2)-Cl(6) 2.1589(19) C(21)-H(21) 0.9500 Ga(2)-Cl(7) 2.1618(14) C(22)-C(23) 1.372(4) Ga(2)-Cl(8) 2.1663(18) C(22)-H(22) 0.9500 Ga(2)-Cl(5) 2.1882(18) C(1)-P(1)-C(7) 110.85(14) C(22)-C(23)-C(24) 120.2(3) C(1)-P(1)-P(6) 112.99(10) C(22)-C(23)-H(23) 119.9 C(7)-P(1)-P(6) 106.17(11) C(24)-C(23)-H(23) 119.9 C(1)-P(1)-P(2) 106.64(11) C(23)-C(24)-C(19) 119.9(3) C(7)-P(1)-P(2) 110.30(10) C(23)-C(24)-H(24) 120.0 P(6)-P(1)-P(2) 109.93(4) C(19)-C(24)-H(24) 120.0 C(13)-P(2)-P(3) 99.94(10) C(26)-C(25)-C(30) 120.2(3) C(13)-P(2)-P(1) 96.29(9) C(26)-C(25)-P(4) 119.8(2) P(3)-P(2)-P(1) 92.09(5) C(30)-C(25)-P(4) 119.7(2) C(19)-P(3)-P(4) 101.39(9) C(25)-C(26)-C(27) 120.3(3) C(19)-P(3)-P(2) 102.04(9) C(25)-C(26)-H(26) 119.8 P(4)-P(3)-P(2) 95.64(6) C(27)-C(26)-H(26) 119.8 C(31)-P(4)-C(25) 110.32(14) C(28)-C(27)-C(26) 119.5(3) C(31)-P(4)-P(3) 105.14(10) C(28)-C(27)-H(27) 120.3 C(25)-P(4)-P(3) 114.70(10) C(26)-C(27)-H(27) 120.3 C(31)-P(4)-P(5) 111.35(11) C(29)-C(28)-C(27) 120.7(3) C(25)-P(4)-P(5) 106.15(11) C(29)-C(28)-H(28) 119.7 P(3)-P(4)-P(5) 109.27(4) C(27)-C(28)-H(28) 119.7 C(37)-P(5)-P(6) 100.46(10) C(28)-C(29)-C(30) 120.6(3) C(37)-P(5)-P(4) 94.83(10) C(28)-C(29)-H(29) 119.7 P(6)-P(5)-P(4) 93.16(6) C(30)-C(29)-H(29) 119.7 C(43)-P(6)-P(5) 100.87(9) C(29)-C(30)-C(25) 118.7(3) C(43)-P(6)-P(1) 98.74(10) C(29)-C(30)-H(30) 120.7 P(5)-P(6)-P(1) 95.10(6) C(25)-C(30)-H(30) 120.7 C(6)-C(1)-C(2) 120.0(3) C(32)-C(31)-C(36) 119.6(3) C(6)-C(1)-P(1) 120.31(19) C(32)-C(31)-P(4) 120.40(19) C(2)-C(1)-P(1) 119.6(2) C(36)-C(31)-P(4) 119.5(2) C(3)-C(2)-C(1) 118.6(3) C(33)-C(32)-C(31) 119.8(3) C(3)-C(2)-H(2) 120.7 C(33)-C(32)-H(32) 120.1 12

C(1)-C(2)-H(2) 120.7 C(31)-C(32)-H(32) 120.1 C(2)-C(3)-C(4) 120.8(3) C(32)-C(33)-C(34) 120.2(3) C(2)-C(3)-H(3) 119.6 C(32)-C(33)-H(33) 119.9 C(4)-C(3)-H(3) 119.6 C(34)-C(33)-H(33) 119.9 C(5)-C(4)-C(3) 120.5(3) C(35)-C(34)-C(33) 121.0(3) C(5)-C(4)-H(4) 119.8 C(35)-C(34)-H(34) 119.5 C(3)-C(4)-H(4) 119.8 C(33)-C(34)-H(34) 119.5 C(4)-C(5)-C(6) 120.4(3) C(34)-C(35)-C(36) 120.0(3) C(4)-C(5)-H(5) 119.8 C(34)-C(35)-H(35) 120.0 C(6)-C(5)-H(5) 119.8 C(36)-C(35)-H(35) 120.0 C(5)-C(6)-C(1) 119.7(3) C(35)-C(36)-C(31) 119.4(3) C(5)-C(6)-H(6) 120.1 C(35)-C(36)-H(36) 120.3 C(1)-C(6)-H(6) 120.1 C(31)-C(36)-H(36) 120.3 C(12)-C(7)-C(8) 120.9(2) C(42)-C(37)-C(38) 119.4(3) C(12)-C(7)-P(1) 118.6(2) C(42)-C(37)-P(5) 124.4(2) C(8)-C(7)-P(1) 120.0(2) C(38)-C(37)-P(5) 116.0(2) C(9)-C(8)-C(7) 118.7(3) C(39)-C(38)-C(37) 119.4(3) C(9)-C(8)-H(8) 120.7 C(39)-C(38)-H(38) 120.3 C(7)-C(8)-H(8) 120.7 C(37)-C(38)-H(38) 120.3 C(10)-C(9)-C(8) 120.8(3) C(40)-C(39)-C(38) 121.1(3) C(10)-C(9)-H(9) 119.6 C(40)-C(39)-H(39) 119.4 C(8)-C(9)-H(9) 119.6 C(38)-C(39)-H(39) 119.4 C(9)-C(10)-C(11) 120.6(3) C(39)-C(40)-C(41) 119.8(3) C(9)-C(10)-H(10) 119.7 C(39)-C(40)-H(40) 120.1 C(11)-C(10)-H(10) 119.7 C(41)-C(40)-H(40) 120.1 C(10)-C(11)-C(12) 119.7(3) C(40)-C(41)-C(42) 119.9(3) C(10)-C(11)-H(11) 120.1 C(40)-C(41)-H(41) 120.1 C(12)-C(11)-H(11) 120.1 C(42)-C(41)-H(41) 120.1 C(11)-C(12)-C(7) 119.3(3) C(37)-C(42)-C(41) 120.3(3) C(11)-C(12)-H(12) 120.3 C(37)-C(42)-H(42) 119.8 C(7)-C(12)-H(12) 120.3 C(41)-C(42)-H(42) 119.8 C(14)-C(13)-C(18) 119.0(3) C(48)-C(43)-C(44) 119.3(3) C(14)-C(13)-P(2) 116.4(2) C(48)-C(43)-P(6) 115.0(2) C(18)-C(13)-P(2) 124.6(2) C(44)-C(43)-P(6) 125.7(2) C(15)-C(14)-C(13) 120.5(3) C(45)-C(44)-C(43) 120.0(3) C(15)-C(14)-H(14) 119.8 C(45)-C(44)-H(44) 120.0 C(13)-C(14)-H(14) 119.8 C(43)-C(44)-H(44) 120.0 C(14)-C(15)-C(16) 119.6(3) C(44)-C(45)-C(46) 120.0(3) C(14)-C(15)-H(15) 120.2 C(44)-C(45)-H(45) 120.0 C(16)-C(15)-H(15) 120.2 C(46)-C(45)-H(45) 120.0 C(17)-C(16)-C(15) 120.5(3) C(47)-C(46)-C(45) 120.5(3) C(17)-C(16)-H(16) 119.8 C(47)-C(46)-H(46) 119.7 C(15)-C(16)-H(16) 119.8 C(45)-C(46)-H(46) 119.7 C(16)-C(17)-C(18) 120.0(3) C(46)-C(47)-C(48) 119.7(3) C(16)-C(17)-H(17) 120.0 C(46)-C(47)-H(47) 120.2 C(18)-C(17)-H(17) 120.0 C(48)-C(47)-H(47) 120.2 C(17)-C(18)-C(13) 120.4(3) C(43)-C(48)-C(47) 120.4(3) C(17)-C(18)-H(18) 119.8 C(43)-C(48)-H(48) 119.8 C(13)-C(18)-H(18) 119.8 C(47)-C(48)-H(48) 119.8 C(20)-C(19)-C(24) 119.2(3) Cl(3)-Ga(1)-Cl(1) 111.21(6) C(20)-C(19)-P(3) 114.9(2) Cl(3)-Ga(1)-Cl(4) 109.25(6) C(24)-C(19)-P(3) 125.9(2) Cl(1)-Ga(1)-Cl(4) 108.10(7) C(21)-C(20)-C(19) 120.2(3) Cl(3)-Ga(1)-Cl(2) 108.95(7) C(21)-C(20)-H(20) 119.9 Cl(1)-Ga(1)-Cl(2) 110.23(6) 13

C(19)-C(20)-H(20) 119.9 Cl(4)-Ga(1)-Cl(2) 109.07(5) C(22)-C(21)-C(20) 119.8(3) Cl(6)-Ga(2)-Cl(7) 111.16(6) C(22)-C(21)-H(21) 120.1 Cl(6)-Ga(2)-Cl(8) 109.38(9) C(20)-C(21)-H(21) 120.1 Cl(7)-Ga(2)-Cl(8) 108.90(6) C(23)-C(22)-C(21) 120.6(3) Cl(6)-Ga(2)-Cl(5) 109.66(6) C(23)-C(22)-H(22) 119.7 Cl(7)-Ga(2)-Cl(5) 107.21(7) C(21)-C(22)-H(22) 119.7 Cl(8)-Ga(2)-Cl(5) 110.52(6) Table S3. Bond lengths [Å] and angles [ ] for 6b (1/2[Me 4 Ph 4 P 6 ][GaCl 4 ]*CDCl 3 ). P(1)-C(2) 1.795(2) C(7)-H(7) 0.95(3) P(1)-C(1) 1.802(3) C(7)-C(8) 1.383(4) P(1)-P(2) 2.2014(9) C(8)-H(8) 1.01(3) P(1)-P(3) i 2.2081(9) C(9)-C(10) 1.394(3) P(2)-C(3) 1.839(2) C(9)-C(14) 1.399(3) P(2)-P(3) 2.2308(9) C(10)-H(10) 0.90(3) P(3)-C(9) 1.837(2) C(10)-C(11) 1.389(4) P(3)-P(1) i 2.2081(9) C(11)-H(11) 0.94(3) C(1)-H(1C) 0.94(3) C(11)-C(12) 1.381(4) C(1)-H(1B) 0.95(3) C(12)-H(12) 0.94(3) C(1)-H(1A) 0.96(4) C(12)-C(13) 1.378(4) C(2)-H(2C) 0.96(3) C(13)-H(13) 0.91(3) C(2)-H(2B) 0.97(3) C(13)-C(14) 1.378(4) C(2)-H(2A) 0.98(3) C(14)-H(14) 0.95(3) C(3)-C(8) 1.391(3) Ga-Cl(3) 2.1674(8) C(3)-C(4) 1.393(3) Ga-Cl(2) 2.1723(7) C(4)-H(4) 0.91(2) Ga-Cl(1) 2.1779(8) C(4)-C(5) 1.380(4) Ga-Cl(4) 2.1831(8) C(5)-H(5) 0.96(3) C(15)-Cl(5) 1.753(3) C(5)-C(6) 1.377(4) C(15)-Cl(7) 1.758(3) C(6)-H(6) 0.99(3) C(15)-Cl(6) 1.759(3) C(6)-C(7) 1.375(4) C(15)-D 0.93(3) C(2)-P(1)-C(1) 108.89(14) H(7)-C(7)-C(6) 124(2) C(2)-P(1)-P(2) 115.80(10) H(7)-C(7)-C(8) 115(2) C(1)-P(1)-P(2) 104.87(10) C(6)-C(7)-C(8) 120.6(3) C(2)-P(1)-P(3) i 116.65(10) H(8)-C(8)-C(7) 120.7(15) C(1)-P(1)-P(3) i 104.35(10) H(8)-C(8)-C(3) 119.4(15) P(2)-P(1)-P(3) i 105.10(3) C(7)-C(8)-C(3) 119.8(3) C(3)-P(2)-P(1) 99.30(8) C(10)-C(9)-C(14) 119.5(2) C(3)-P(2)-P(3) 100.02(8) C(10)-C(9)-P(3) 116.34(17) P(1)-P(2)-P(3) 98.22(3) C(14)-C(9)-P(3) 124.14(17) C(9)-P(3)-P(1) i 99.59(8) H(10)-C(10)-C(11) 120.3(17) C(9)-P(3)-P(2) 97.65(8) H(10)-C(10)-C(9) 120.0(17) P(1)#1-P(3)-P(2) 97.31(3) C(11)-C(10)-C(9) 119.7(2) H(1C)-C(1)-H(1B) 110(3) H(11)-C(11)-C(12) 119.9(17) H(1C)-C(1)-H(1A) 109(3) H(11)-C(11)-C(10) 119.8(17) H(1B)-C(1)-H(1A) 113(3) C(12)-C(11)-C(10) 120.2(2) H(1C)-C(1)-P(1) 108.2(18) H(12)-C(12)-C(13) 119.2(18) H(1B)-C(1)-P(1) 108.8(19) H(12)-C(12)-C(11) 120.5(18) H(1A)-C(1)-P(1) 107(2) C(13)-C(12)-C(11) 120.2(3) H(2C)-C(2)-H(2B) 108(2) H(13)-C(13)-C(12) 120.6(19) 14

H(2C)-C(2)-H(2A) 111(2) H(13)-C(13)-C(14) 118.7(19) H(2B)-C(2)-H(2A) 110(2) C(12)-C(13)-C(14) 120.5(2) H(2C)-C(2)-P(1) 109.5(17) H(14)-C(14)-C(13) 119.2(16) H(2B)-C(2)-P(1) 110.9(16) H(14)-C(14)-C(9) 120.8(16) H(2A)-C(2)-P(1) 107.3(16) C(13)-C(14)-C(9) 119.9(2) C(8)-C(3)-C(4) 119.2(2) Cl(3)-Ga-Cl(2) 110.72(3) C(8)-C(3)-P(2) 125.50(19) Cl(3)-Ga-Cl(1) 109.26(3) C(4)-C(3)-P(2) 115.28(18) Cl(2)-Ga-Cl(1) 108.66(3) H(4)-C(4)-C(5) 120.1(16) Cl(3)-Ga-Cl(4) 108.26(3) H(4)-C(4)-C(3) 119.8(16) Cl(2)-Ga-Cl(4) 110.00(3) C(5)-C(4)-C(3) 120.2(2) Cl(1)-Ga-Cl(4) 109.94(3) H(5)-C(5)-C(6) 122.3(19) Cl(5)-C(15)-Cl(7) 111.20(18) H(5)-C(5)-C(4) 117.4(19) Cl(5)-C(15)-Cl(6) 111.05(17) C(6)-C(5)-C(4) 120.3(3) Cl(7)-C(15)-Cl(6) 110.06(16) H(6)-C(6)-C(7) 122.4(17) Cl(5)-C(15)-D 108.4(19) H(6)-C(6)-C(5) 117.7(17) Cl(7)-C(15)-D 108.5(19) C(7)-C(6)-C(5) 119.9(3) Cl(6)-C(15)-D 107.5(18) 15

4. Newman Projection Figure S6. Newman projection of 6a down P1- P2, P1- P6, P2- P3, P3- P4, P4- P5 and P5- P6. 16

Figure S7. Newman projection of 6b down P1- P2, P2- P3, P1- P3 i [Symmetry code: (i) -x, -y, -2+z]. 17

5. References 1. W. A. Henderson, M. Epstein, F. S. Seichter, J. Am. Chem. Soc. 1963, 85, 2462. 2. N. Burford, C. A. Dyker, M. D. Lumsden, A. Decken, Angew. Chem. 2005, 117, 6355; Angew. Chem. Int. Ed. 2005, 44, 6196. 3. N. Burford, T. S. Cameron, D. J. LeBlanc, P. Losier, S. Sereda, G. Wu, Organometallics 1997, 16, 4712. 4. SAINT 6.02, 1997-1999, Bruker AXS, Inc., Madison, Wisconsin, USA. 5. SADABS George Sheldrick, 1999, Bruker AXS, Inc., Madison, Wisconsin, USA. 6. SHELXTL 6.14, 2000-2003, Bruker AXS, Inc., Madison, Wisconsin, USA. 18