GC/MS Monitoring of Selected PAHs in Soil Samples Using Ultrasound-assisted QuEChERS in Tandem with Dispersive Liquid-Liquid Microextraction

Similar documents
Application Note. Abstract. Introduction. Determination of Polycyclic Aromatic Hydrocarbons in Seafood by an Automated QuEChERS Solution

Validation Report 18

Katherine K. Stenerson, Michael Ye, Michael Halpenny, Olga Shimelis, and Leonard M. Sidisky. Supelco, Div. of Sigma-Aldrich Bellefonte, PA USA

Accelerated Solvent Extraction GC-MS Analysis and Detection of Polycyclic Aromatic Hydrocarbons in Soil

Anaylsis of Pesticide Residues in Rice Using Agilent Bond Elut QuEChERS AOAC Kit by LC-MS/MS Detection

Determination of Pesticide Residues in Oats by Automated. QuEChERS and LC/QQQ. Application Note. Abstract. Introduction

Analysis of Polycyclic Aromatic Hydrocarbons in Soil with Agilent Bond Elut HPLC-FLD

Multi-residue Analysis for PAHs, PCBs and OCPs on Agilent J&W FactorFour VF-Xms

AppNote 2/2000. Stir Bar Sorptive Extraction (SBSE) applied to Environmental Aqueous Samples

Validation Report Determination of isoprothiolane residues in rice by GC-MS/MS (QuEChERS method)

Determination of Volatile Aromatic Compounds in Soil by Manual SPME and Agilent 5975T LTM GC/MSD

APPLICATION OF IONIC LIQUID DISPERSIVE LIQUID- LIQUID MICROEXTRACTION FOR ANALYSIS OF N-NITROSODIPROPYLAMINE IN SALTED FISH

CALIBRATION OF GC/MS METHOD AND VALIDATION OF THE MODIFIED SAMPLE PREPARATION FOR DETERMINATION OF POLYCYCLIC AROMATIC HYDROCARBONS

Application Note. Author. Abstract. Food Safety. Syed Salman Lateef Agilent Technologies, Inc. Bangalore, India

Application Note. Gas Chromatography/Mass Spectrometry/Food Safety. Abstract. Authors

Rapid Screening and Confirmation of Melamine Residues in Milk and Its Products by Liquid Chromatography Tandem Mass Spectrometry

METHOD 8100 POLYNUCLEAR AROMATIC HYDROCARBONS

Application Note. Agilent Application Solution Analysis of PAHs in soil according to EPA 8310 method with UV and fluorescence detection.

Macrolides in Honey Using Agilent Bond Elut Plexa SPE, Poroshell 120, and LC/MS/MS

anthracene Figure 1: Structures of Selected Polyaromatic Hydrocarbons (PAHs)

Analysis of Illegal Dyes in Food Matrices using Automated Online Sample Preparation with LC/MS

Fully automated QuEChERS clean-up and LC/MS-QQQ analysis of pesticides in fruits and vegetables.

ENVIRONMENTAL analysis

Analysis of Biomarkers in Crude Oil Using the Agilent 7200 GC/Q-TOF

Aminoglycosides in Milk Using Agilent Bond Elut Plexa SPE, Agilent Poroshell 120, and LC/Tandem MS

Method of determination of phtalates in spirituous beverages by gaschromatography/mass

Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Seafood Using GC/MS

DEVELOPMENT OF HPLC METHOD FOR ANALYSIS OF NITRITE AND NITRATE IN VEGETABLE

Analysis of Trace (mg/kg) Thiophene in Benzene Using Two-Dimensional Gas Chromatography and Flame Ionization Detection Application

Validation Report 8 Determination of pesticide residues in rice and wheat by GC-MS/MS and LC-MS/MS (QuEChERS method) Appendix 2

Highly Sensitive and Rugged GC/MS/MS Tool

Journal of Chromatography A, 1114 (2006)

Analysis of BTEX in Natural Water with SPME

STANDARD OPERATING PROCEDURES SOP: 1828 PAGE: 1 of 14 REV: 0.0 DATE: 05/12/95 ANALYSIS OF METHYL PARATHION IN CARPET SAMPLES BY GC/MS

Sensitive Detection of 2-MIB and Geosmin in Drinking Water

STANDARD OPERATING PROCEDURES SOP: 1826 PAGE: 1 of 18 REV: 0.0 DATE: 03/30/95 ANALYSIS OF METHYL PARATHION IN WIPE SAMPLES BY GC/MS

Author. Abstract. Introduction

Analysis of USP Method <467> Residual Solvents on the Agilent 8890 GC System

Identification and Quantitation of Pesticides in Chamomile and Ginger Extracts Using an Agilent 6460 Triple Quadrupole LC/MS system with Triggered MRM

Available online Journal of Chemical and Pharmaceutical Research, 2012, 4(6): Research Article

Sulfotepp impurities in Chlorpyrifos EC formulations

LC/MS/MS Analysis of Pesticide Residues in Apples Using Agilent Chem Elut Cartridges

Tyler Trent, Applications Sales Specialist, Teledyne Tekmar P a g e 1

PAH Analyses with High Efficiency GC Columns: Column Selection and Best Practices

AppNote 6/2010. part a. Alternative Procedure for Extraction and Analysis of PAHs in Seafood by QuEChERS-SBSE-GC-MS KEYWORDS ABSTRACT

Determination of Off-Odor Compounds in Drinking Water Using an SPME Device with Gas Chromatography and Mass Spectrometry

Determination of Chlorinated Acid Herbicides in Soil by LC/MS/MS Application Note

STANDARD OPERATING PROCEDURES

Determination of 24 PAHs in Drinking Water

Appendix: Laboratory Testing Methods

High Sensitivity HPLC Analysis of Perchlorate in Tap Water Using an Agilent 6460 Triple Quadrupole LC/MS System

GAFTI Analytical method for ISO/TS 16179:2012 Detection and Determination of Organotin Compounds in Footwear and Apparel Materials by GC-MS

IMPROVING PESTICIDE RESIDUE DETECTION PROTOCOL FOR FRUIT

Yokogawa Analytical Systems Inc., Nakacho, Musashino-shi, Tokyo , Japan.

METHOD 3600B CLEANUP

Determination of 17 Organotin Compounds in Beverages Using Triple Quadrupole GC-MS/MS System

Analytical determination of testosterone in human serum using an Agilent Ultivo Triple Quadrupole LC/MS

Rapid determination of five arsenic species in polished rice using HPLC-ICP-MS

The Quantitation and Identification of Coccidiostats in Food by LC-MS/MS using the AB SCIEX 4000 Q TRAP System

Identification and Quantitation of PCB Aroclor Mixtures in a Single Run Using the Agilent 7000B Triple Quadrupole GC/MS

Polycyclic Aromatic Hydrocarbons in Water by GC/MS PBM

Department of Analytical Chemistry, International Institute of Biotechnology and Toxicology (IIBAT), Padappai, Kancheepuram , India

Thermo Scientific HyperSep Dispersive SPE Products. Efficient sample preparation and clean-up using the QuEChERS Method

Facility: Mansfield Revision 3. Title: PAHs by SPME Page 1 of 11

Determination of underivatized aflatoxins B2, B1, G2, and G1 in ground hazelnuts by immunoaffinity solid-phase extraction with HPLC-FLD detection

Volatile organic compounds (VOCs):

Application Note GCMS-01 Comparison of Ionization Techniques for the Analysis of Trace-Level Pyrethroid Insecticides by GC-MS/MS

PAHs in Parking Lot Sealcoats. Performance Study. Asphalt Based. Coal Tar Sealcoat Sealcoat. Sealcoat. Scrapings. Asphalt Based.

METHOD 8030A ACROLEIN AND ACRYLONITRILE BY GAS CHROMATOGRAPHY

Supporting Information

The Use of Tandem Quadrupole GC/MS/MS for the Determination of Polycyclic Aromatics Hydrocarbons (PAHs) in Food Products

1,2-Dibromoethane (EDB) and 1,2-dibromo-3-chloropropane (DBCP), gas chromatography, microextraction

Supercritical Fluid Extraction Directly Coupled with Reversed Phase Liquid Chromatography for Quantitative Analysis of Analytes in Complex Matrices

VALIDATION OF A UPLC METHOD FOR A BENZOCAINE, BUTAMBEN, AND TETRACAINE HYDROCHLORIDE TOPICAL SOLUTION

Determination of Benzene, Toluene, Ethylbenzene and Xylene in River Water by Solid-Phase Extraction and Gas Chromatography

Screening for Water Pollutants With the Agilent SureTarget GC/MSD Water Pollutants Screener, SureTarget Workflow, and Customized Reporting

Selective Formation of Benzo[c]cinnoline by Photocatalytic Reduction of 2,2 Dinitrobiphenyl with TiO 2 and UV light irradiation

Analysis of pesticide residues using various GC/MS systems. Radim Štěpán Czech Agriculture and Food Inspection Authority Prague, Czech Republic

Screening of Pesticide Residues in Water by Sequential Stir Bar Sorptive Extraction-Thermal Desorption with GC/MS

Selection of a Capillary

DEVELOPMENT AND VALIDATION OF A HPLC METHOD FOR IN-VIVO STUDY OF DICLOFENAC POTASSIUM

Determination of Butyltin Compounds in Environmental Samples by Isotope Dilution GC-MS. Application. Authors. Abstract. Introduction.

SPE AND GC MS INVESTIGATION OF ORGANIC CONTAMINANTS IN ATMOSPHERIC PRECIPITATION

Application Note GCMS-09 Evaluation of Rapid Extraction and Analysis Techniques for Polycyclic Aromatic Hydrocarbons (PAHs) in Seafood by GC/MS/MS

Ultrasonic wave extraction and simultaneous analysis of polycyclic aromatic hydrocarbons (PAHs) and phthalic esters in soil

A biphasic oxidation of alcohols to aldehydes and ketones using a simplified packed-bed microreactor

Application Note # CA

Selection of a Capillary GC Column

British American Tobacco Group Research & Development. Method - Determination of phenols in mainstream cigarette smoke

Sensitive and rapid determination of polycyclic aromatic hydrocarbons in tap water

Method - Determination of aromatic amines in mainstream cigarette smoke

Accurate Mass Analysis of Hydraulic Fracturing Waters: Identification of Polyethylene Glycol Surfactants by LC/Q-TOF-MS

U.S. EPA Method 8270 for multicomponent analyte determination

Received 27 January 2015, revised 28 April 2015, accepted 29 April 2015.

OPEN ACCESS. Eurasian Journal of Analytical Chemistry ISSN: (6): DOI: /ejac a

Toxicity, Teratogenic and Estrogenic Effects of Bisphenol A and its Alternative. Replacements Bisphenol S, Bisphenol F and Bisphenol AF in Zebrafish.

METHOD 3600C CLEANUP

METHYLETHYLKETONE (M.E.K.) IN URINE BY GC/MS in head space Code GC10010

Validation Report 3 Determination of pesticide residues in cereals by GC-MS/MS (QuEChERS method)

Validation Report 5 Determination of pesticide residues in cereals by GC-MS/MS (QuEChERS method)

Transcription:

International Journal of Environmental Monitoring and Analysis 2015; 3(5): 288-292 Published online October 29, 2015 (http://www.sciencepublishinggroup.com/j/ijema) doi: 10.11648/j.ijema.20150305.17 ISSN: 2328-7659 (Print); ISSN: 2328-7667 (Online) GC/MS Monitoring of Selected PAHs in Soil Samples Using Ultrasound-assisted QuEChERS in Tandem with Dispersive Liquid-Liquid Microextraction Hamid Reza Sobhi Department of Chemistry, Payame Noor University, Tehran, Iran Email address: hrsobhi@gmail.com To cite this article: Hamid Reza Sobhi: GC/MS Monitoring of Selected PAHs in Soil Samples Using Ultrasound-assisted QuEChERS in Tandem with Dispersive Liquid-Liquid Microextraction. International Journal of Environmental Monitoring and Analysis. Vol. 3, No. 5, 2015, pp. 288-292. doi: 10.11648/j.ijema.20150305.17 Abstract: Herein, a method consisting of ultrasound-assisted QuEChERS in tandem with dispersive liquid-liquid microextraction (DLLME) was developed for monitoring of selected polycyclic aromatic hydrocarbons (PAHs) in various soil samples using gas chromatography coupled to a single quadrupole mass spectrometry (GC/MS). Ultrasound-assisted QuEChERS was employed to extract the PAHs from 2.0 g of soil using 7 ml of initial extraction solvent (acetonitrile: water (5:2 v/v)) and the salt mixture. The resulting supernatant extract was cleaned through the addition of C 18, PSA and the mix salt followed by centrifugation, decantation and filtration. Of the clean organic phase, 1.0 ml was withdrawn and added with12 µl of C 2 Cl 4 (disperser solvent). The resulting mixture was then injected rapidly into an aqueous sample (5.0 ml) by a syringe for further preconcentration. As a result, the cloudy solution consisting of fine particles of the extraction solvent dispersed into the aqueous phase was formed. After centrifuging, the fine particles were sedimented at the bottom of the conical test tube (5.0 ± 0.5µl). Of which, 1.0 µl was injected to the GC/MS for monitoring of the PAHs. Several influential parameters including ultrasound extraction time, initial extraction and disperser solvent and their respective volumes were all evaluated to achieve the optimal conditions. Under the optimal conditions, limits of quantification (2.5-4.0 ng/g) and linear ranges (r 2 0.98) were obtained for the PAHs. The method was then successfully applied for the extraction and monitoring of the PAHs in the real soil samples. Accuracy of the method was evaluated by the relative recovery experiments on spiked samples with the results ranging from 81 to 92%. In the mean time, the relative standard deviations (RSDs) were found to be in the range of 4.8 15.9%. Keywords: PAHs, Ultrasound-Assisted QuEChERS, Dispersive Liquid-Liquid Microextraction, Soil Samples 1. Introduction Polycyclic aromatic hydrocarbons (PAHs) are found in environmental depositions, asa result of environmental pollution (e.g. oil spills) and can arise due to human activity (e.g. traffic, incineration, etc.) [1]. These pollutants have a high persistence in the environment, low bio-degradability and high lipophilicity and toxicicity [2-4]. Soil is a complex and heterogeneous matrix, containing both inorganic and organic components [5] and is often subject tointense chemical pollution. When chemical compounds reachthe soil, either via direct intentional application or as a result of accidental spillage [6, 7]. The amount of PAHs in soils is of importance because of their toxicity to humans andtheir effects on soil organisms and plants[8].as a result of theirwidespread presence, PAHs are generally introduced in monitoringprograms [9]and are listed by the US Environmental ProtectionAgency (EPA) and the European Community as priority pollutants[10]. Due to the low concentration levels of soil pollutants, sample preparation step is needed to determine the type and quantity of pollutant present [11] and to avoid interferences and improve thesensitivity of the method. To extract contaminants from soil, atechnique strong enough to extract bound residues is necessary [12]. Amongst the methods commonly applied for the extraction of pollutants from soil, QuEChERS is veryflexible, modifiable, and is growing in popularity due to all thebenefits described by its name: Quick, Easy, Cheap, Effective, Rugged and Safe. However, its effectiveness is dependent onthe analyte properties, matrix composition, equipment, andanalytical

289 Hamid Reza Sobhi: GC/MS Monitoring of Selected PAHs in Soil Samples Using Ultrasound-assisted QuEChERS in Tandem with Dispersive Liquid-Liquid Microextraction technique available in the laboratory [13-15]. Although it is possible to detect PAHs at low levels by GC/MS analysis which follows QuEChERS method; however, the use of another extraction procedure for better clean-up and further preconcentration is needed to reduce the effects of soil s matrix as much as possible. For that reason, in this study a highly efficient preconcentration procedure known as dispersive liquid-liquid microextraction (DLLME) along with QuEChERS was employed [16-18]. The present study outlines a novel modified method in which the initial extraction of selected PAHs was carried out by ultrasound assisted QuEChERS treatment followed by a further preconcentration by DLLME procedure. Our aim was focused at studying the feasibility of DLLME procedure for further preconcentration along with ultrasound assisted QuEChERS treatment in soil s PAHs analysis. To the best of our knowledge, so far this has been the first report on the extraction and measurement of PAHs in soil samples based on the combination of ultrasound assisted QuEChERS treatment and DLLME procedure. 2. Instruments The gas chromatographic system consisted of an Agilent (Centerville Road, Wilmington, USA) series 7890A GC coupled to an Agilent MSD 5975C quadrupole mass spectrometer. The GC was fitted with HP-5 MS capillary column (30 m 0.25 mm i.d., 0.25-µm film thickness) from Agilent J&W Scientific (Folsom, CA, USA). Helium (99.999%) was used as the carrier gas at the flow rate of 1.0 ml/min. The following temperature program was employed for the separation: 80 C for 1 min, increased to 280 C at 8 C/min, and held for 6 min; finally increased to 300 C at 50 C/min and held for 3 min. The MS quadrupole and the MS source temperatures were set at 150 and 230 C, respectively. Data acquisition was performed in the full scan mode (m/z in the range of 50-400) to confirm the retention times of analytes and in selected ion monitoring (SIM) mode (see Table 1) for quantitative determination of PAHs. A dwell time of 100 ms was used for each mass operated at SIM mode with high resolution. The filament delay time was set at 3 min. A vortexhomogenizer was applied to homogenize both the blank and real dried soil samples prior to each extraction. An ultrasound probe (UP-500 ultrasound homogenizer) from ECHROM Company (Avagene, Taiwan) was used for the extraction of the test PAHs from dried soil matrices. 3. Exprimental 3.1. Samples and Reagents The test PAHs (acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene and chrysene) was purchased from Aldrich (Milwaukee, WI, USA). Analytical grade acetonitril (ACN), tetrachlroethylene (C 2 Cl 4 ), Acetone, anhydride magnesium sulfate (MgSO 4 ) and sodium chloride (NaCl) were supplied by Merck Company (Darmstadt, Germany). Primary secondary amine (PSA) and octadecylsilane (C 18 ) sorbents were obtained from Varian (Varian, Harbor City, CA). Pure water was provided by a home-made deionizer. Stock standard solutions (500 mg/l) of PAHs were prepared in acetonitrile and then they were diluted with acetone (as working solutions) and then all stored at - 20 C. A number of soil samples were collected twice a week for one month in order to obtain the representative samples over this period of time. Upon their arrival at the laboratory, the samples were dried and sieved in order to obtain a fraction of <1 mm and maintained at 4 C until the time of analysis. For constructing the calibration curve, ten standard solutions in the range of 2.0 100 ng/g were prepared by spiking the working solution intothe blank samples- later confirmed to be the PAHs free. The standard solutions were stored at -20 C until final analysis. Meanwhile, the suspected soil samples (hereafter, called real samples) were taken from three different parts of Tehran (Tehran, Iran). 3.2. Sample Preparation 3.2.1. Extraction Procedure 1) 2.0 g of the treated soil sample (already dried, filtered and spiked/non-spiked with the PAHs) was placedin a 50-mL ultrasound probe. 2) 7.0 ml of ACN:Water (5:2, v/v) was added to the probeandit was vibrated using ultrasound energy for 3 min. 3) The mix salt (MgSO 4 :NaCl; 4:1 g) was added to the above solution. 4) The resulting mixture was immediately shaken vigorously for 2 min and centrifuged at 3000 rpm for 5min. 3.2.2. Clean-Up 5) The upper organic phase was removed and transferred to an Eppendorf vial. Then it was added with 50, 50 and 150 mg of C 18, PSA and MgSO 4, respectively. 6) The final extract (the supernatant) was filtered through a 0.22µm PTFE syringe filter to obtain ~ 1ml of ACN. 3.2.3. Preconcentration 7) 12 µl of tetrachloroethylene (C 2 Cl 4 ) was added to the ACN and the resulting mixture was rapidly injected to a 5.0 ml of pure water for further preconcentration. 8) The sedimented organic phase (5 ± 0.5 µl) was immediately formed and withdrawn. Of which, 1.0 µl was injected to a GC/MS for identification and measurement of the PAHs. 4. Evaluation of Analytical Parameters The evaluated analytical parameters include: Selectivity, relative recovery, precision (RSD), linearity and limit of quantification (LOQ). They were all evaluated for each PAH using spiked and non-spiked blank soil samples. 4.1. Selectivity The selectivity of the method was demonstrated by injecting the diluted working solution of the test PAHs. In addition, six blank samples were analyzed to check if there

International Journal of Environmental Monitoring and Analysis 2015; 3(5): 288-292 290 were any interfering peaks in the chromatogram that could potentially complicate the analysis. 4.2. Relative Recovery and Precision Relative recovery was determined using the following equation: was found out to be 12 µl of C 2 Cl 4 as reported elsewhere [16] (see Figure 1,2). It is noted that the PAHs recovery from the spiked soil samples at 10 ng/g level was taken as the response of the optimization experiments. % Relative recovery = 100 (C found C real ) / C added Where, C found and C added are the concentration of the concerning PAH in the real/blank sample after and before the addition of known amounts of the working solution, respectively. Meanwhile, precision (RSD%) of the method was investigated on three replicate experiments without any internal standard. 4.3. Linearity and Evaluation of LOQ Linearity of the method was tested by spiking the blank samples at ten concentration levels over the range of 2.0-100.0 ng/g for the test PAHs. Calibration curves were constructed by plotting the PAH signal obtained, which was the average of three measurements against the respective concentration of the test PAH. The LOQs were determined based on the following definition: The lowest concentration at which the error falls between -20% and +20% with the maximum RSD of 20% obtained under three measurements. Figure 1. The effect of type of extraction solvent used in DLLME procedure. 5. Results and Discussion 5.1. Optimization of Ultrasound Assisted QuEChERS To find the optimum conditions for the test PAHs extraction in the soil samples, initially sonication time was tested in the range of 1 5 min. The result revealed that the recovery of the PAHs slightly enhanced, whilst the ultrasonic treatment was increased from 1 to 4 min. However, the recovery remained almost unchanged beyond 4 min (date not shown). Therefore, 4 min was taken as the optimum sonication time. Further on, the variation in the volume ratio of ACN:Water was made in such a way that the extracted upper layer after the ultrasound assisted QuEChERS treatment was 2 ml right before the cleanup process. Accordingly, the ratio of ACN:Water 5:2 ml was applied for the initial extraction of the PAHs from the soils. Other factors such as the amount of sample (2.0 g), the sonication parameters (50 KHz, 110 W), and the mix salt amounts (MgSO 4 :NaCl; 4:1 g) and the clean-up materials (50, 50 and 150 mg of C 18, PSA and anh. MgSO 4 ) were maintained invariable due to being reported in the literature [7, 19]. 5.2. Optimization of the Influential Parameters in DLLME To the clear supernatant (~1 ml of ACN) obtained from the clean-up process, different amounts of C 2 Cl 4, CCl 4, CHCl 3 were added in order to find out the optimum conditions. It should be noted that the sedimented phase, resulting from the three above-mentioned solvents later must fall in the range of 5 ± 0.5 µl. Accordingly, the optimal conditions of DLLME Figure 2. The effect of volume of C 2Cl 4 (µl) on the extraction efficiency of the method. 5.3. Results Regarding the Analytical Parameters According to the results obtained, there were no interfering peaks, originating from the blank sample matrix or the chemicals and reagents used, at the same retention time of the test PAHs in any of the six blank samples studied in the selectivity experiments (Figure 3B). The results also demonstrated a fair linearity for the test PAHs within the mentioned-above test range with the minimum correlation coefficient of 0.98. The LOQs were found to be in the range of 2.5-4.0 ng/g based on the following definition: The lowest concentration at which the error falls between -20% and +20% with the maximum RSD of 20% obtained under three measurements (see Table 1). Table 1. Analytical data of the method. PAHs SIM LOQ (ng/g) Acenaphthylene 152 4.0 Acenaphthene 153 3.5 Fluorene 166 2.5 phenantherene 178 2.0 Anthracene 178 2.0 Fluoranthene 202 2.0 Pyrene 202 2.5 Chrysene 228 3.0

291 Hamid Reza Sobhi: GC/MS Monitoring of Selected PAHs in Soil Samples Using Ultrasound-assisted QuEChERS in Tandem with Dispersive Liquid-Liquid Microextraction 5.4. Analysis of Real Samples Application of ultra-assisted QuEChERS along with DLLME to the soil samples from three different soil samples was assessed. Of the three suspected samples analyzed, none were found to be contaminated with the test PAHs. The method was successfully applied to the analysis of the test PAHs in the above-mentioned samples spiked at 5.0 ng/g level to investigate the extraction efficiency of the method. The RSD% results based on three similar measurements were within the range of 4.8 15.9%, as presented in Table 2. The Table s data also demonstrated good relative recoveries in the range of 81 92%, indicating that the applied ultrasound QuEChERS combined with DLLME is highly efficient for the measurement of the test PAHs in various soil samples. The GC/MS chromatograms relating to A) the standard solution sample and B) the blank sample are shown in Figure3. As can be seen and deducted, the chromatograms are almost free of matrix effects. Figure 3. The GC/MS chromatograms relating to A) the standard solution and B) the blank sample. Table 2. Analysis of real samples. PAHs 1 2 3 RC Found b RR (%) RC Found RR (%) RC Found RR (%) Acenaphthylene c ND 4.0 ± 0.6 81 ND 4.3 ± 0.6 86 ND 4.3 ± 0.4 85 Acenaphthene ND 4.2 ± 0.5 84 ND 4.0 ± 0.4 81 ND 4.2 ± 0.6 84 Fluorene ND 4.6 ± 0.4 92 ND 4.0 ± 0.3 81 ND 4.1 ± 0.5 82 Phenenthrene ND 4.4 ± 0.7 85 ND 4.2 ± 0.5 83 ND 4.6 ± 0.6 91 Anthracene ND 4.6 ± 0.5 91 ND 4.1 ± 0.6 82 ND 4.6 ± 0.5 92 Fluoranthene ND 4.1 ± 0.2 82 ND 4.2 ± 0.6 84 ND 4.5 ± 0.5 90 Pyrene ND 4.2 ± 0.6 83 ND 4.6 ± 0.5 91 ND 4.3± 0.6 86 Chrysene ND 4.4 ± 0.5 88 ND 4.5 ± 0.4 89 ND 4.6 ± 0.4 92 a: real concentration; b: mean ± sd (n=3) ; c: non-detected 6. Conclusion The present study centers on a novel modified method in which the initial extraction of selected PAHs is carried out by ultrasound assisted QuEChERS treatment followed by a further preconcentration by DLLME procedure. Several influential parameters including ultrasound extraction time, initial extraction and disperser solvent and their respective volumes were all evaluated to achieve the optimal conditions. Afterwards, the method was successfully applied to the analysis of the test PAHs in real soil samples. Finally, the method seems to be simple, low cost and highly efficient for the analysis of PAHs in soil samples. References [1] L. Duedahl-Olesen, Polycyclic aromatic hydrocarbons (PAHs) in foods, National Food Institute Technical University of Denmark, Denmark, Woodhead Publishing Limited: 2013. [2] R. Dabestani and I. N. Ivanov A Compilation of Physical, Spectroscopic and Photophysical Properties of Polycyclic Aromatic Hydrocarbons Photochemistry and Photobiology, vol. 70, pp. 10-34, 1999. [3] T. Vo-Dinh, J. Fetzer and A. D. Campiglia Monitoring and characterization of polyaromatic compounds in the environment Talanta, vol. 47, pp. 943-969, 1998. [4] P. Villar, M. Callejón, E.Alonso, J. C. Jiménez and A. Guiraúm Optimization and validation of a new method of analysis for polycyclic aromatic hydrocarbons in sewage sludge by liquid chromatography after microwave assisted extraction Analytica Chimica Acta, vol. 524, pp. 295 304, 2004. [5] L. Correia-Sá, V. C. Fernandes, M. Carvalho, C. Calhau, V. F. Domingues and C. Delerue-Matos Optimization of QuEChERS method for the analysis of organochlorine pesticides in soils with diverse organic matter Journal of Separation Science, vol. 35, pp. 1521-1530, 2012. [6] C. G. Pinto, S. H. Martín, J. L. P. Pavón and B. M. Cordero (2011) A simplified Quick, Easy, Cheap, Effective, Rugged and Safe approach for the determination of trihalomethanes and benzene, toluene, ethylbenzene and xylenes in soil matrices by fast gas chromatography with mass spectrometry detection Analytica Chimica Acta, vol. 689, pp. 129-136, 2011.

International Journal of Environmental Monitoring and Analysis 2015; 3(5): 288-292 292 [7] V. Jose, L. Correia-Sá, P. Paíga, I. Bragança, V. C. Fernandes, V. F. Domingues and C. Delerue-Matos QuEChERS and soil analysis An Overview. Sample preparation, pp. 54-77, 2013. [8] S. Kahn, L. Aijun, S. Zhang, Q. Hu and Y. G.Zhu, Accumulation of polycyclic aromatic hydrocarbons and heavy metals in lettuce grown in the soils contaminated with long-term wastewater irrigation Journal of Hazardous Materials, vol.152, pp. 506-515, 2008. [9] M. Nording, K. Frech, Y. Persson, M. Forsman and P. Haglund, Accumulation of polycyclic aromatic hydrocarbons and heavy metals in lettuce grown in the soils contaminated with long-term wastewater irrigation Analytica Chimica Acta, vol. 555, pp. 107-113, 2006. [10] T. Wenzl, R. Simon, J. Kleiner and E. Anklam, Analytical methods for polycyclic aromatic hydrocarbons (PAHs) in food and the environment needed for new food legislation in the European Union, Trends in Analytical Chemistry, vol. 25, pp. 716-725, 2006. [11] S. S. Caldas, C. M. Bolzan, M. B. Cerqueira, D. Tomasini, E. B. Furlong, C. Fagundes and E. G. Primel, Evaluation of a Modified QuEChERS Extraction of Multiple Classes of Pesticides from a Rice Paddy Soil by LC-APCI-MS/MS Journal of Agricultural Food Chemistry, vol. 59, pp. 11918-11926, 2011. [12] A. Rashid, S. Nawaz, H. Barker, I. Ahmad and M. Ashraf, Development of a simple extraction and clean-up procedure for determination of organochlorine pesticides in soil using gas chromatography-tandem mass spectrometry Journal of Chromatography A, vol. 1217, pp. 2933-2939, 2010. [13] Y. H. Wang, L. W. Du, X.M. Zhou, H.H. Tan, L.Y. Bai, D.Q. Zeng and H. Tian, QuEChERS extraction for high performance liquid chromatographic determination of pyrazosulfuron-ethyl in soils Journal of Chemical Society of Pakistan, vol. 34, pp.28-32, 2012. [14] C. G. Pinto, M. E. F. Laespada, S. H. Martín, A. M. C. Ferreira, J. L. P. Pavón and B. M. Cordero Simplified QuEChERS approach for the extraction of chlorinated compounds from soil samples Talanta, vol. 81, pp. 385-391, 2010. [15] M. Asensio-Ramos, J. Hernandez-Borges, L. M. Ravelo-Perez and M. A. Rodriguez-Delgado Evaluation of a modified QuEChERS method for the extraction of pesticides from agricultural, ornamental and forestal soils Analytical and Bioanalytical Chemistry, vol. 396, pp. 2307-2319, 2010. [16] M. Rezaee, Y. Assadi, M. R. Milani-Hosseini, E. Aghaee, F. Ahmadi and S. Berijani Determination of organic compounds in water using dispersive liquid liquid microextraction Journal of Chromatography A, vol. 1116, pp. 1 9, 2006. [17] M. Rezaee, Y. Yamini, M. Moradi, A. Saleh, M. Faraji and M. H. Naeen Supercritical fluid extraction combined with dispersive liquid liquid microextraction as a sensitive and efficient sample preparation method for determination of organic compounds in solid samples Journal of Supercritical Fluids, vol. 55, pp.161-168, 2010. [18] M. Rezaee, Y. Yamini and M. Faraji, Evolution of dispersive liquid liquid microextraction method Journal of Chromatography A, vol. 1217, pp. 2342-2357, 2010. [19] J. Kowalski, R. A. Amanda and J. Cochran (2013) QuEChERS: The Concept www.sepscience.com; Europe, 5.