On single nucleon wave func0ons. Igal Talmi The Weizman Ins0tute of Science Rehovot, Israel

Similar documents
14. Structure of Nuclei

Lecture 4: Nuclear Energy Generation

Lesson 5 The Shell Model

Lecture 4. Magic Numbers

RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear Force Nuclear and Radiochemistry:

c E If photon Mass particle 8-1

The Shell Model: An Unified Description of the Structure of th

Nucleon Pair Approximation to the nuclear Shell Model

Nilsson Model. Anisotropic Harmonic Oscillator. Spherical Shell Model Deformed Shell Model. Nilsson Model. o Matrix Elements and Diagonalization

arxiv: v2 [nucl-th] 8 May 2014

Mirror Nuclei: Two nuclei with odd A in which the number of protons in one nucleus is equal to the number of neutrons in the other and vice versa.

Shape Coexistence and Band Termination in Doubly Magic Nucleus 40 Ca

New T=1 effective interactions for the f 5/2 p 3/2 p 1/2 g 9/2 model space: Implications for valence-mirror symmetry and seniority isomers

PHL424: Nuclear Shell Model. Indian Institute of Technology Ropar

Neutron-proton pair correlation from a shell-model perspective$

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1

1 Introduction. 2 The hadronic many body problem

The par/cle-hole picture

The Proper)es of Nuclei. Nucleons

Probing proton-neutron pairing with Gamow-Teller strengths in twonucleon

Nuclear Structure Theory II

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar

Nuclear structure theory

Nuclear Shell Model. Experimental evidences for the existence of magic numbers;

Lecture 13: The Actual Shell Model Recalling schematic SM Single-particle wavefunctions Basis states Truncation Sketch view of a calculation

The nuclear shell-model: from single-particle motion to collective effects

Covariant density functional Theory: a) The impact of pairing correlations on the fission barriers b) The role of pion. Georgios Lalazissis

Direct reactions methodologies for use at fragmentation beam energies

The semi-empirical mass formula, based on the liquid drop model, compared to the data

Pairing and ( 9 2 )n configuration in nuclei in the 208 Pb region

Liquid Drop Model From the definition of Binding Energy we can write the mass of a nucleus X Z

What did you learn in the last lecture?

Quantum Theory of Many-Particle Systems, Phys. 540

Trends in Single-Particle Excitations

Pairing Interaction in N=Z Nuclei with Half-filled High-j Shell

PHY492: Nuclear & Particle Physics. Lecture 6 Models of the Nucleus Liquid Drop, Fermi Gas, Shell

Lecture 6. Fermion Pairing. WS2010/11: Introduction to Nuclear and Particle Physics

Instead, the probability to find an electron is given by a 3D standing wave.

Generalized seniority scheme in light Sn isotopes. Abstract

Nuclear structure Anatoli Afanasjev Mississippi State University

Single Particle and Collective Modes in Nuclei. Lecture Series R. F. Casten WNSL, Yale Sept., 2008

An Introduction to. Nuclear Physics. Yatramohan Jana. Alpha Science International Ltd. Oxford, U.K.

Introduction to Nuclear Science

Introduction to Nuclei I

The Nuclear Many-Body Problem. Lecture 2

INTRODUCTION. The present work is mainly concerned with the comprehensive analysis of nuclear binding energies and the

The Nuclear Many-Body Problem

Introduction to Nuclei I (The discovery)

Introductory Nuclear Physics. Glatzmaier and Krumholz 7 Prialnik 4 Pols 6 Clayton 4.1, 4.4

The IC electrons are mono-energetic. Their kinetic energy is equal to the energy of the transition minus the binding energy of the electron.

An Introduction to Hyperfine Structure and Its G-factor

RFSS: Lecture 2 Nuclear Properties

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach

Describe the structure of the nucleus Calculate nuclear binding energies Identify factors affecting nuclear stability

The Charged Liquid Drop Model Binding Energy and Fission

Introduction to Nuclear Science

Some Beta-Decay Basics. Michael Edmison. Bluffton University

Nucleon Pairing in Atomic Nuclei

arxiv: v2 [nucl-th] 28 Aug 2014

Chapter 44. Nuclear Structure

Part III: The Nuclear Many-Body Problem

The Shell Model: An Unified Description of the Structure of th

Effective Interactions and. in Sn-Isotopes. Progress report and some preliminary results. Eivind Osnes Department of Physics University of Oslo

fiziks Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

Krane Enge Cohen Willaims NUCLEAR PROPERTIES 1 Binding energy and stability Semi-empirical mass formula Ch 4

PHGN 422: Nuclear Physics Lecture 10: The Nuclear Shell Model II - Application

Properties of Nuclei

Nuclear Structure Study of Two-Proton Halo-Nucleus 17 Ne

NUCLEAR FORCES. Historical perspective

The BCS Model. Sara Changizi. This presenta5on closely follows parts of chapter 6 in Ring & Schuck The nuclear many body problem.

Nuclear Shell Model. 1d 3/2 2s 1/2 1d 5/2. 1p 1/2 1p 3/2. 1s 1/2. configuration 1 configuration 2

Medium polarization effects and pairing interaction in finite nuclei

QRPA Calculations of Charge Exchange Reactions and Weak Interaction Rates. N. Paar

New Trends in the Nuclear Shell Structure O. Sorlin GANIL Caen

Shell evolution and nuclear forces

Probing shell evolution with large scale shell model calculations

Chapter 5. Par+cle Physics

Nuclear vibrations and rotations

R Process Nucleosynthesis And Its Site. Mario A. Riquelme Theore<cal Seminar Fall 2009

Charge density distributions and charge form factors of some even-a p-shell nuclei

PHYS3031 -Advanced Optics and Nuclear Physics, Paper 2. Session 2, 2014

Band Structure of nuclei in Deformed HartreeFock and Angular Momentum Projection theory. C. R. Praharaj Institute of Physics Bhubaneswar.

arxiv: v1 [nucl-ex] 15 Sep 2012

Structure of Sn isotopes beyond N =82

Physics 492 Lecture 19

arxiv: v1 [nucl-th] 24 May 2011

DIFFUSENESS OF WOODS SAXON POTENTIAL AND SUB-BARRIER FUSION

Physics 228 Today: April 22, 2012 Ch. 43 Nuclear Physics. Website: Sakai 01:750:228 or

Nucleon Pair Approximation to the nuclear Shell Model

Chapter 11. The Force Between Nucleons

Nuclear structure and stellar weak interaction rates of nuclei below the 132 Sn core

ISSN : Asian Journal of Engineering and Technology Innovation 02 (03) 2014 (08-13) QR Code for Mobile users

Quantum Theory of Many-Particle Systems, Phys. 540

U N I T T E S T P R A C T I C E

3. Introductory Nuclear Physics 1; The Liquid Drop Model

Realistic Shell-Model Calculations for 208 Pb Neighbors

Chapter 6 Electronic Structure of Atoms

Physics Letters B 695 (2011) Contents lists available at ScienceDirect. Physics Letters B.

Physics 1C. Lecture 29A. "Nuclear powered vacuum cleaners will probably be a reality within 10 years. " --Alex Lewyt, 1955

Introduction to NUSHELLX and transitions

Transcription:

On single nucleon wave func0ons Igal Talmi The Weizman Ins0tute of Science Rehovot, Israel

The main success of the nuclear shell model Nuclei with magic numbers of protons and neutrons exhibit extra stability. In the shell model these are interpreted as the numbers of protons and neutrons in closed shells, where nucleons are moving independently in closely lying orbits in a common central potential well. In 1949, Maria G.Mayer and independently Haxel, Jensen and Suess introduced a strong spin-orbit interaction. This gave rise to the observed magic numbers 28, 50, 82 and 126 as well as to 8 and 20 which were well understood.

The need of an effective interaction in the shell model In the Mayer-Jensen shell model, wave functions of magic nuclei are well determined. So are states with one valence nucleon or hole. States with several valence nucleons are degenerate in the single nucleon Hamiltonian. Mutual interactions remove degeneracies and determine wave functions and energies of states. In the early days, the rather mild potentials used for the interaction between free nucleons, were used in shell model calculations. The results were only qualitative at best.

Theoretical derivation of the effective interaction A litle later, the bare interaction turned out to be too singular for use with shell model wave functions. It should be renormalized to obtain the effective interaction. More than 50 years ago, Brueckner introduced the G-matrix and was followed by many authors who refined the nuclear many-body theory for application to finite nuclei. Starting from the shell model the aim is to calculate from the bare interaction the effective interaction between valence nucleons. Also other operators like electromagnetic moments should be renormalized (e.g. to obtain the neutron effective charge!) Only recently this effort seems to yield some reliable results like those obtained by Aldo Covello et al. This does not solve the major problem - how independent nucleon motion can be reconciled with the strong and short ranged bare interaction.

The simple shell model In the absence of reliable theoretical calculations, matrix elements of the effective interaction were determined from experimental data in a consistent way. Restriction to two-body interactions leads to matrix elements between n-nucleon states which are linear combinations of two-nucleon matrix elements. Nuclear energies may be calculated by using a smaller set of two-nucleon matrix elements determined consistently from experimental data.

The first successful calculation low lying levels of 40 K and 38 Cl In the simplest shell model configurations of these nuclei, the 12 neutrons outside the 16 O core, completely fill the 1d 5/2, 2s 1/2, 1d 3/2 orbits while the proton 1d 5/2 and 2s 1/2 orbits are also closed. The valence nucleons are in 38 Cl: one 1d 3/2 proton and a 1f 7/2 neutron in 40 K: (1d 3/2 ) 3 J p =3/2 proton configuration and a 1f 7/2 neutron. In each nucleus there are states with J=2, 3, 4, 5 Using levels of 38 Cl, the 40 K levels may be calculated and vice versa.

Comparison with 1954 data only the spin 2 - agreed with our prediction

We were disappointed but not surprized. Why? The assumption that the states belong to rather pure jj-coupling configurations may have been far fetched. Also the restriction to two-body interactions could not be justified a priori. There was no evidence that values of matrix elements do not appreciably change when going from one nucleus to the next. Naturally, we did not publish our results but then

Comparison of our predictions with experiment in 1955

Conclusions from the relation between the 38 Cl and 40 K levels The restriction to two-body effective interaction is in good agreement with some experimental data. Matrix elements (or differences) do not change appreciably when going from one nucleus to its neighbors (Nature has been kind to us). Some shell model configurations in nuclei are very simple. It may be stated that Z=16 is a proton magic number (as long as the neutron number is N=21).

Effective interactions, no longer restricted by the bare interactions, have been adopted This was the first successful calculation and it was followed by more complicated ones carried out in the same way. The complete p-shell, p 3/2 and p 1/2 orbits (Cohen and Kurath), Zr isotopes (mostly the Argonne group), the complete d 5/2,d 3/2,s 1/2 shell (Wildenthal, Alex Brown et al) and others. This series culminated in more detailed calculations including millions of shell model states, with only two-body forces (Strasbourg and Tokyo). Not all matrix elements determined.

General features of the effective interaction extracted even from simple cases The T=1 interaction is strong and attractive in J=0 states. The T=1 interactions in other states are weak and their average is repulsive. It leads to a seniority type spectrum. The average T=0 interaction, between protons and neutrons, is strong and attractive. It breaks seniority in a major way.

Consequences of these features The potential well of the shell model is created by the attractive proton-neutron interaction which determines its depth and its shape. Hence, energies of proton orbits are determined by the occupation numbers of neutrons and vice versa. These conclusions were published in 1960 addressing 11 Be, and in more detail in a review article in 1962.

Neutron separation energies from calcium isotopes

A direct result of this behavior is that magic nuclei are not more tightly bound than their preceding even-even neighbors. Their magic properties (stability etc.) are due to the fact that nuclei beyond them are less tightly bound.

In semi-magic nuclei, with only valence protons or neutrons experiment shows features of generalized seniority Constant 0-2 spacings in Sn isotopes

The monopole part of the T=0 interaction affects positions of single nucleon energies. The quadrupole-quadrupole part in the T=0 interaction breaks seniority in a major way. In nuclei with valence protons and valence neutrons it leads to strong reduction of the 0-2 spacings a clear signature of the transition to rotational spectra and nuclear deformation.

Levels of Sm (Z=56) isotopes Drastic reduction of 0-2 spacings

In this picture, the real wave func0ons may be very different from shell model ones. They must have strong admixture of the lacer. S0ll, there are experimental data indica0ng the reality of shell model wave func0ons. They are s0ll used in the calcula0on of various observables. It seems as if the "wounds" inflicted on shell model wave func0ons by the strong two body correla0ons occupy only a rather small volume.

Some exaples of using single nucleon wave func0ons In the theory of direct reac0ons they are assumed to take place near the boundary of the nucleus. The value of the wave func0on of the single nucleon which is removed or added in that region, is important. Electromagne0c moments and transi0ons are calculated by using single nucleon wave func0ons. In some of them, the actual shape of the radial part plays an important role. How real are single nucleon wave func0ons?

Coulomb energy differences between mirror nuclei are usually calculated by using single nucleon wave func0ons. Their values depend on the nature of the single nucleon wave func0on.

Coulomb energy differences of 1d 5/2 and 2s 1/2 orbits

Origin of the difference Consider various single par0cle wave func0ons in a given poten0al well. If the bocom of the well is raised, single par0cle energies are moved upwards. Due to the centrifugal poten0al, the following rule applies. The loss of binding energy is higher for states with higher orbital angular momenta. In the case of the Coulomb poten0al, this effect can be directly calculated. There are other ways to raise the bocom of the poten0al well.

The average effec0ve interac0on between protons and neutrons is acrac0ve. It creates the poten0al well of the shell model. Removing proton pairs coupled to J=0 makes the poten0al energy of valence neutrons less acrac0ve.

The graphs shown before are not merely extrapola0ons. They are graphic solu0ons of exact, even though simple, shell model problems. The matrix elements were taken from energies of nearby nuclei. The simple argument is qualita0ve and yet seems to agree with the more detailed calcula0on.

A common prescrip0on to determine the wave func0on of a valence nucleon A poten0al well, like a Wood Saxon one, is chosen. Its radius is determined by measurements of the charge distribu0on of the nucleus considered. The depth of the well is chosen so that the single nucleon energy is equal to its measured separa0on energy E A+1 E A. What is the reason for this choice?

This prescrip0on will be examined by looking at Hartree Fock theory in which the poten0al well is determined by the mutual (effec0ve) interac0on of the nucleons. The results will be applicable to the way single nucleon wave func0ons are constructed.

Koopmans Theorem It follows that if and only if, the core is not polarized by the valence nucleon, the following equality is obtained ε = E A+1 E A = ε 0 Koopmans was well aware of this condi0on unlike some authors of recent papers and books.

Which wave functions gives a better description? The one with the correct asymptotic tail The one whose main bulk is determined by the interaction with the core nucleons or I hope that I convinced you that it is the second choice.

After all, it stands to reason that it is the dog who should wag his tail rather than the tail wagging the whole body of the dog.