Chemistry Ch. 2 Notes MATTER IS MADE UP OF ATOMS NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Similar documents
Ch. 4 Notes THE STRUCTURE OF THE ATOM NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Ch. 5 Notes - ELECTRONS IN ATOMS NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Ch. 4 Notes - ELECTRONS IN ATOMS NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Democritus & Leucippus (~400 BC) Greek philosophers: first to propose that matter is made up of particles called atomos, the Greek word for atoms

Chapter 4: Atomic Structure Section 4.1 Defining the Atom

Nuclear Chemistry. Atomic Structure Notes Start on Slide 20 from the second class lecture

HONORS CHEMISTRY. Chapter 4 Atomic Structure

The History of the Atom. How did we learn about the atom?

What is a theory? An organized system of accepted knowledge that applies in a variety of circumstances to explain a specific set of phenomena

H CHEM - WED, 9/7/16. Do Now Be ready for notes. Sigfig review problem. Agenda Atomic Theory. Homework. Error Analysis

Greek Philosophers (cont.)

The Development of Atomic Theory

ATOM. Rich -Paradis. Early Thoughts Aristotle-- Continuous theory. Matter can be divided indefinitely. Greeks

CHEMISTRY. Matter and Change. Table Of Contents. Section 4.1 Early Ideas About Matter. Unstable Nuclei and Radioactive Decay

History of the Atomic Model

Get out your diagram from your research paper. Get out a sheet of paper to take some notes on.

Ch4 and Ch5. Atomic History and the Atom

Topic III Quest Study Guide

The Atom. protons, neutrons, and electrons oh my!

Chapter 4. The structure of the atom. AL-COS Objectives 1, 2,3,4,7, 10, 15, 20, 21, 22, 27and 28

Atomic Structure Early Theories Democritus: 4 B.C.: atom Dalton: atoms cannot Thomson: Cathode Ray Tubes Rutherford:

Notes:&&Unit&4:&Atomics& & & & & & & & & & & & & & & & &

UNIT 2 - ATOMIC THEORY

UNIT 2 - ATOMIC THEORY

Atomic Theory. Past and Present: pieces of a puzzle

Honors Ch3 and Ch4. Atomic History and the Atom

Early Atomic Models. Atoms: the smallest particle of an element that retains the properties of that element.

Chapter 4. Atomic Structure

CHAPTER 4: Matter is Made up of Atoms

1. Based on Dalton s evidence, circle the drawing that demonstrates Dalton s model.

DEMOCRITUS - A philosopher in the year 400 B.C. - He didn t do experiments and he wondered if atoms kept on being divided, that there would only be

ATOMIC STRUCTURE. Name: Period: Date: 1) = a generalization of scientific observations that what happens (does explain)

Democritus & Leucippus (~400 BC) Greek philosophers: first to propose that matter is made up of particles called atomos, the Greek word for atoms

Physics 30 Modern Physics Unit: Atomic Basics

2 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

Light Study of light by Newton helped lead to the quantum mechanical model. INTRO AND BACKGROUND: Atomic Structure. Electromagne?

Atomic Theory. Developing the Nuclear Model of the Atom. Saturday, January 20, 18

UNIT 2 - ATOMIC THEORY

4-1 Notes. Defining the Atom

4.2 Structure of the Nuclear Atom > Chapter 4 Atomic Structure. 4.2 Structure of the Nuclear Atom. 4.1 Defining the Atom

Unit 3. The Atom & Modern Atomic Theory

Honors Chemistry Unit 2: The Atom & Its Nucleus

Origins of the Atom. Atoms: The Building Blocks of Matter. Let s Get Ready to Rumble. Aristotle s Theory of the Atom CHAPTER 3

What is the current atomic model?

Early Models of the Atom

Glencoe: Chapter 4. The Structure of the Atom

Atomic Structure. ppst.com

Democritus thought atoms were indivisible & indestructible Lacked experimental support 4 th century B.C.

Dalton Thompson Rutherford Bohr Modern Model ("Wave. Models of the Atom

The Story of the Atom. A history of atomic theory over many years

UNDERLYING STRUCTURE OF MATTER

An Introduction to Atomic Theory. VCE Chemistry Unit 1: The Big Ideas of Chemistry Area of Study 1 The Periodic Table

Atomic Theory Timeline

Chapter 3 tphzzyuwy6fyeax9mqq8ogr

CHAPTER 3. Atoms: The Building Blocks of Matter

Chapter 3 Atoms: The Building Blocks of Matter. Honors Chemistry 412

Atomic Structure. For thousands of years, people had many ideas about matter Ancient Greeks believed that everything was made up of the four elements

Atomic Theory. Democritus to the Planetary Model

Chapter 4 Atomic Structure. Chemistry- Lookabaugh Moore High School

Early Atomic Theories and the Origins of Quantum Theory. Chapter 3.1

Unit 1, Lesson 01: Summary of Atomic Structure so far

Democritus 460 BC 370 BC. First scholar to suggest that atoms existed. Believed that atoms were indivisible and indestructible.

Democritus s ideas don t explain chemical behavior & lacked experimental support.

CH4 HOMEWORK : ATOMIC STRUCTURE

CHEMISTRY 11 UNIT REVIEW: ATOMIC THEORY & PERIODIC TRENDS

Rhonda Alexander IC Science Robert E. Lee

8.5 Atomic Structure

Atoms and Their Structures

An atom is the smallest physical particle of an element that still retains the properties of that element.

Development of Atomic Theory Elements of chemistry- Atoms, the building blocks of matter Video

Bellwork: 2/6/2013. atom is the. atom below. in an atom is found in the. mostly. 2. The smallest part of an. 1. Label the parts of the

AP Atomic Structure Models

Chemistry Chapter 3. Atoms: The Building Blocks of Matter

HISTORY OF THE ATOM ATOMA

Teacher: Mr. gerraputa. Name: Base your answer to the question on the information below. Given the electron dot diagram:

Atomic Structure. History of Atomic Theory

Early Atomic Theory. Alchemy. The atom

Where are we? Check-In

Accelerated Chemistry Study Guide Atomic Structure, Chapter 3

Regents Chemistry Unit 1 Atomic Concepts. Textbook Chapters 3 & 4

DescribeDemocritus s Democritus s ideas

History of Atomic Theory

I. History and Development of the Atom

Chapter 4 The Atom. Philosophers and scientists have proposed many ideas on the structure of atoms.

The Beginning of the Atom

Scientist wanted to understand how the atom looked. It was known that matter was neutral. It was known that matter had mass

Atom Practice Test (#1) 1) What is the total number of valence electrons in an atom with the electron configuration 2-8-5? a) 2 b) 5 c) 8 d) 15

Atomic Structure. How do you discover and study something you can t see?

CHAPTER 5 Electrons in Atoms

Atomic Theory. Early models

Particle Theory of Matter. By the late 1700s, scientists had adopted the Particle Theory of Matter. This theory states that:

Atomic Structure. A model uses familiar ideas to explain unfamiliar facts observed in nature.

4/14/2013 ATOMIC STRUCTURE THE ATOMIC MODEL

7.1 Development of a Modern Atomic Theory

CHAPTER -4 STRUCTURE OF ATOM CONCEPT DETAILS

Atomic Class Packet Unit 3

Name Period Date Engage-Atoms 1. What does Bill cut in half?

Atomic Theory Development

What is matter? Matter is anything that has mass and takes up space. Matter is made up of atoms.

Updating the Atomic Theory

Transcription:

Chemistry Ch. 2 Notes MATTER IS MADE UP OF ATOMS NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. ~~~~~~~~~~~~~~~~~~~~ ATOMS AND THEIR STRUCTURE ~~~~~~~~~~~~~~~~~~ I. Early Ideas About Matter A. atom the smallest particle of an element retaining the properties of that element B. early theories and ideas, pro and con 1) Democritus of Abdera (460-370 B.C.): first atomic theory of matter atoma / atomos indivisible, indestructible particles in matter 2) Aristotle (384-322 B.C.): did not believe in atoms a) hyle continuous state of all matter b) His theory was widely accepted until the 17th century! 3) Sir Isaac Newton (1642-1727) worked without proof to support atomic theory (Laws of physics, gravitation...) 4) Robert Boyle (1627-1691) also worked to support atomic theory (gas laws, structured the scientific method, a founder of chem.) 5) Antoine Lavoisier (1743-1794) father of Modern Chemistry 6) atomic theory matter is made up of atoms C. Atomic Model Development 1) John Dalton (1766-1844); his model (pub.1807) stated that atoms are indivisible 2) J.J. Thomson; (1856-1940); work begun in 1897 a) adapted model with subatomic particles: protons and electrons b) plum pudding model electrons stuck in a proton lump 3) E. Rutherford (1871-1937); model in 1911 a) nucleus as the dense center with p + and n 0 ; e - outside it b) the atom is mostly space (gold foil experiment) 4) Niels Bohr (1885-1962); model proposed in 1913 a) nucleus as the center, composed of p + and n 0 b) e- orbit the nucleus; similar to planetary motion c) e - in an orbit have a fixed energy level d) lowest energy levels are closest to the nucleus e) quantum a bundle of energy needed to make an electron jump to a higher level, which is a quantum leap 5) quantum mechanical model a) Erwin Schrödinger (1887-1961); model proposed 1926 b) based on probability of e - location, not exact path c) electron cloud model; boundary surface diagram II. Development of the Modern Atomic Theory A. Joseph Proust s (1754 1826) contribution: 1) Law of Definite Proportions in any compound, the masses of the element are always in the same proportions 2) example: C 12 H 22 O 11 always has 12 C, 22 H, and 11 O B. Dalton s atomic theory Father of Atomic Theory John Dalton (1766-1844) 1

DALTON S ATOMIC THEORY 1) All elements are composed of submicroscopic, indivisible particles called atoms. (He didn t know about subatomic particles and how to split an atom.) 2) Atoms of the same element are identical. (Not really true, as we ll see later.) Atoms of different elements are different. 3) Atoms of elements can physically mix or form compounds by chemically combining in whole-number ratios. (Law of Multiple Proportions) 4) Chemical reactions involve the separation, joining, or rearranging of atoms. Atoms of an element are never changed into atoms of another element in a chemical reaction. (He didn t know about nuclear reactions.) C. Atomic theory, conservation of matter, and recycling 1) natural cycles: nitrogen, carbon, phosphorus, sulfur, water (see http://www.kwanga.net/apesnotes/summary-of-biogeochem-cycles-notes.pdf for more) 2) Laws of Conservation of Mass and Energy apply D. Hypotheses, theories, and laws the scientific method 1) the scientific method a) a systematic plan for testing ideas b) an organized way to solve problems c) Science is a process of learning d) We can never witness all natural events, so we observe what we can. 2) experimental and control setups a) experiment a controlled test of a hypothesis b) experimental setup the variable being tested is present c) control setup: the variable being tested is absent 3) variables a) anything affecting the outcome of the experiment b) examples: temperature, air quality, amount of light, humidity c) only one can be tested at a time for the experiment to be valid d) independent variable changed by the experimenter abscissa: x axis e) dependent variable changes based on what the independent variable does ordinate: y axis 4) hypothesis a) educated guess; testable prediction b) can be accepted or rejected c) many are made initially; most likely ones are chosen d) What if? experiments have no hypothesis 5) observation recording of information a) direct observation made with the senses (sight, sound, smell, touch, hearing) It is hot in here. b) indirect observation made with measuring instruments (thermometers, rulers, scales, clocks, etc.) It is 83 in the room. c) Observations are followed by posing questions. 6) data a) verbal (words) or numerical (numbers) information b) descriptive research contains verbal data 2

c) data handling must be accurate d) graphs, tables, charts, etc. 7) research a) review the existing literature b) experimental results are shared with other scientists c) repeat experiments to see if results are consistent 8) theory a) repeatedly and thoroughly tested and supported explanation b) long description which tells why c) can never be proven The layman s definition of theory is incorrect! ( I have a theory why he isn t talking to me. ) Theories are not guesses, nor are they wild ideas. Real theories have substantial scientific evidence behind them. 9) scientific law a) concise statement which tells what b) can be proven III. The Discovery of Atomic Structure: subatomic particles A. electrons (e - ) negatively charged subatomic particles 1) characteristics a) fixed charge of -1 b) very light mass (9.11 x 10-28 g) c) orbit the center 2) Sir Joseph John Thomson (1856-1940) discovered e - by CRT experiments a) CRT (cathode ray tube) a closed glass tube with metal electrodes at the ends, containing low-density gases at low pressure, subjected to high voltage. b) cathode ray glowing light beam arising from the cathode (-) and traveling to the anode (+); composed of electrons 3) Robert Millikan (1868-1953) oil drop experiments on e - charge & mass B. protons (p+) positively charged subatomic particles (a hydrogen atom stripped of its electron is a raw proton ) 1) characteristics a) fixed charge of +1 b) same mass as a neutron (1.67 x 10-24 g) 3

c) located in the center of an atom 2) canal rays positive CRT beam attracted to the cathode (found by Eugene Goldstein 1850-1930) D. neutrons (n 0 ) neutral subatomic particles 1) characteristics a) fixed charge of 0 b) same mass as a proton (1.67 x 10-24 g) c) located in the nucleus 2) Sir James Chadwick (1891-1974) discovered the neutron E. other subatomic particles (hundreds) leptons: muon, tau, neutrino & baryons, composed of quark triplets & mesons etc. 1) Rutherford s gold foil experiment a) Ernest Rutherford (1871-1937) b) shot a stream of alpha (α) particles at a sheet of gold foil c) most of the particles went straight through (because the atoms are mostly empty space) d) a few particles were deflected (those that grazed a nucleus) e) even (~1/8000) fewer bounced directly back (those that hit a nucleus head-on) THE ATOM IS MOSTLY EMPTY SPACE! If an atom were the size of an average professional football stadium, the nucleus would be the size of a marble. From www.visionlearning.com: 2) the nuclear model of the atom a) nucleus central core of an atom containing p + and n 0 b) very dense as compared to the rest of the atom c) the nucleus has an overall positive charge IV. Atomic numbers and masses A. atomic number number of protons in the nucleus of an atom 1) characteristics a) the atomic number is the unique I.D. number of an element b) each element only has one atomic number 2) examples E1) What is the atomic number of the following elements? O (8) I (53) Cl (17) Au (79) B. atomic neutrality 1) atoms are electrically neutral number of protons = number of electrons in an atom 4

2) examples E2) How many electrons does Cu have? (29) E3) How many electrons does Rn have? (86) C. mass number MASS NUMBER = PROTONS + NEUTRONS # OF NEUTRONS = MASS NUMBER - ATOMIC NUMBER 1) symbols can be written two ways: mass number 12 SYMBOL C atomic number 6 SYMBOL mass number C-12 2) mass number is the total mass of the nucleus 3) Mass number is not the decimal number on the periodic table! (that s atomic mass) 4) examples E4) How many p +, n 0 and e - are in an atom of S-34? S = sulfur, which is #16. S has 16 p + and because # p + = # e -, S has 16 e -. Mass number = 34. # n 0 = mass # - atomic # = 34-16 = 18 n 0. E5) How many p +, n 0 and e - are in an atom of 41 K? 19 K = potassium, which is #19. K has 19 p + and because # p + = # e -, K has 19 e -. Mass number = 41. # n 0 = mass # - atomic # = 41-19 = 22 n 0. D. Isotopes atoms of the same element that contain different numbers of neutrons 1) same number of p+ 2) different mass numbers 3) different atomic masses 4) in nature, most elements occur as a mix of two or more isotopes 5) examples: ISOTOPE MASS # ATOMIC # p + n 0 e - O-16 16 8 8 8 8 O-17 17 8 8 9 8 O-18 18 8 8 10 8 Remember, # n 0 = mass number - atomic number. E. atomic mass a weighted average based on mass and relative abundance of all naturally occurring isotopes of an element ATOMIC MASS = (MASS x RELATIVE ABUNDANCE) of natural isotope #1 + (MASS x RELATIVE ABUNDANCE) of natural isotope #2 + (MASS x RELATIVE ABUNDANCE) of natural isotope #3 etc. 1) unit is amu = atomic mass unit 2) synthetic isotopes (made in lab, not found in nature) are not considered 3) example Magnesium has three isotopes: Mg-24, Mg-25, and Mg-26: 5

ISOTOPE ABUNDANCE ATOMIC MASS Mg-24 78.70% 23.985 Mg-25 10.13% 24.986 Mg-26 11.17% 25.983 The atomic mass of Mg: ATOMIC MASS = (MASS x RELATIVE ABUNDANCE) (23.985)(0.7870) + (24.986)(0.1013) + (25.983)(0.1117) = 24.31 amu ~~~~~~~~~~~~~~~~~~~~~~~ ELECTRONS IN ATOMS ~~~~~~~~~~~~~~~~~~~~~~ V. Electrons in motion A. electron motion and energy: electrons are kept in motion so they don t fall into the positively-charged nucleus B. see Bohr model in section I, #4 VI. The electromagnetic spectrum A. waves transfer energy: wave anatomy 1) origin, zero line, base line flat line running horizontally, cutting the wave in two; line of zero movement 2) crest ( peak ) 3) trough ( valley ) 4) amplitude vertical distance from the origin to the crest, or from the origin to the trough 5) wavelength ( λ) horizontal distance between two equivalent points on a wave, such as between two crests or two troughs 6) wave height vertical distance from crest level to trough level; (2 x amplitude) B. frequency (symbol: ν, lowercase Greek letter nu not a regular v) 1) the number of cycles per unit time 2) measured in Hertz (Hz) cycles per second, cps, 1/sec, or sec -1 Slow wave with low energy, low frequency, small amplitude, and large wavelength Fast wave with high energy, high frequency, large amplitude, and small wavelength C. WAVE-PARTICLE DUALITY OF NATURE: waves can act as particles AND particles can act as waves 6

D. ELECTROMAGNETIC (em) SPECTRUM broad radiation spectrum (low energy) 1) RADIO WAVES 2) MICROWAVES 3) INFRARED (IR) RADIATION 4) VISIBLE LIGHT ROYGBIV : red, orange, yellow, green, blue, indigo, violet 5) ULTRAVIOLET (uv) 6) X-RAYS 7) GAMMA RAYS (high energy) VII. Electrons and Light A. emission spectrum array of colors from a heated element, separated by a prism B. evidence for energy levels: explanation of atomic spectra 1) ground state electron(s) at their lowest possible energy level 2) excited state a) electron(s) at higher energy than normal b) electrons absorb energy and jump to higher levels where there is room C. Bohr model of the atom flat, with electron rings D. spectroscopy the study of substances exposed to continuous energy 1) when exposed to intense energy, atoms absorb energy and become excited 2) when atoms are in their excited state, their electrons jump to higher energy levels 3) when the electrons eventually return to their normal (ground) state, energy is given off (emitted) VIII. The Electron Cloud Model A. see quantum mechanical model in section I, #5 B. the quantum concept: Max Planck (1858-1947) 1) energy is given off in packets or bundles called quanta (singular, quantum) 2) What happens to energy as substances are heated? Planck tried to explain atomic spectra with equations. B. electrons in energy levels 1) valence electrons the electrons in the highest energy level of at atom 2) for Group A elements, valence number = group number 3) Electron dot structures (Lewis dot diagrams) diagrams of valence electrons as dots around the symbol of the element 1) only the valence electrons are shown 2) used to see the numbers of shared and unshared electron pairs around an atom 3) number of unpaired electrons can show how many bonds can form 4) procedure (NOTE: this is a different system from the book) 7

a) write the symbol of the element b) imagine four rectangles framing the symbol c) place dots around the symbol according to the number of valence electrons There are a few different methods of placing the dots, but we will use this way A common way to place the dots follows the saying right, left, up, down, top all the way around. 3 5 2 SYMBOL 1 6 8 4 7 5) exception to the procedure is helium He: 6) examples: Group IIA Group IIIA Group VIA Group VIIIA 8