Unit 10: Work and Energy. * When the object moves, it must move in the same direction as the force for there to be work.

Similar documents
Broughton High School

Chapter 15 Work, Power & Simple Machines

Work & Simple Machines. Chapter 4

Section 1: Work, Power, and Machines. Preview Key Ideas Bellringer What Is Work? Math Skills Power Machines and Mechanical Advantage

Chapter 12 - Work and Energy. Section 1 - Work, Power, and Machines

Work, Power and Machines

CHAPTER 5. Work, Power and Machines

Chapter: Work and Machines

Section 1 Work, Power, and Machines

Work, Power, & Machines

Check out Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Work, Power, & Machines

Work and Energy Chapter 4 and 5

acceleration weight load

Work & Energy. Chapter 4 pg

Science 9 Physics CHAPTER 13: WORK AND ENERGY MR. MILLER

produce sugar, which contains stored chemical energy. Most of the energy that we use on Earth originally came from the Sun.

W = Fd. KE = 1 2 mv2

CPO Science Foundations of Physics

gear gravity heat inclined plane

Section 1: Work and Power. Section 2: Using Machines. Section 3: Simple Machines

WORK, ENERGY, AND MACHINES

l Every object in a state of uniform motion tends to remain in that state of motion unless an

Unit 2: Energy THERMAL ENERGY HEAT TRANSFER POTENTIAL VS. KINETIC ENERGY WORK POWER SIMPLE MACHINES

Date Period Name. Energy, Work, and Simple Machines Vocabulary Review

Lesson 1: How can you describe motion?

Work, Power and Simple Machines. Chapter 4 Physical Science

UNIT 5: WORK and ENERGY RECORD ALL ANSWERS ON ANSWER SHEET.

Simple Machines. Bởi: OpenStaxCollege

a. Change of object s motion is related to both force and how long the force acts.

How Do Objects Move? Describing Motion. Different Kinds of Motion

Name Date Class. This section describes the six kinds of simple machines. It also explains how to calculate the advantage of using simple machines.

7.P Simple Machines Study Guide Multiple Choice: Identify the letter of the choice that best completes the statement or answers the question.

Chapter 8 Study Questions

2. What would happen to his acceleration if his speed were half? Energy The ability to do work

Physics Unit: Force & Motion

Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1

Physics Unit: Force & Motion

CHAPTER 4 TEST REVIEW

is energy in particles of matter. Chemical energy can be released, for example in or, when these particles react to form new substances.

SPH 4C Unit 2 Mechanical Systems

Lesson 4 Momentum and Energy

Answers. Forces. Year 7 Science Chapter 8

Chapter 6 Energy and Oscillations

Ch 11 ENERGY and its CONSERVATION. work causes a change in the energy of a system KE (an increase or decrease in KE) ket.

Chapter 10-Work, Energy & Power

Name: ANSWER KEY Quarter 3 Benchmark Review. 3. m/s km/hr. 7. (Vf Vi) / t. 8. m/s m/s F = ma

Concepts of Physics. Wednesday, October 14th

Name Date P Lesson 4 Forces and Simple Machines

Mechanical Advantage & Simple Machines. Physics 5 th Six Weeks

FORCES AND MOTION UNIT TEST. Multiple Choice: Draw a Circle Completely around the ONE BEST answer.

Chapter 5 The Force Vector

Work. The quantity of work done is equal to the amount of force the distance moved in the direction in which the force acts.

ΣE before ± W = ΣE after

7.6(B) distinguish between physical and chemical changes in matter in the digestive system; and

Lecture Outline. Chapter 7: Energy Pearson Education, Inc.

AP Physics 1 Work Energy and Power Practice Test Name

2014 Physics Exam Review

3. A bicycle tire of radius 0.33 m and a mass 1.5 kg is rotating at 98.7 rad/s. What torque is necessary to stop the tire in 2.0 s?

Sometimes (like on AP test) you will see the equation like this:

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved

PHY 126 Lecture Notes Chapter 10

Physics Midterm Review KEY

Work Forms of Energy Power Conservation of Energy Kepler s Laws of Motion Simple Machines Mechanical Advantage

Chapter 09 Multiple Choice Test

Lecture Outline. Chapter 7: Energy Pearson Education, Inc.

What is Energy? Which has more energy? Who has more energy? 1/24/2017

The student will learn about the main purposes and the basic components of all machines. SIMPLE MACHINES. SPH4C Findlay

Physical Science midterm study guide. Chapter 1 and 2

The Story of Energy. Forms and Functions

Today. Finish Ch. 6 on Momentum Start Ch. 7 on Energy

1. List the six simple machines and give three examples (8:3)

Name. Honors Physics AND POTENTIAL KINETIC

Chapter 9 Conceptual Physics Study Guide

Exercises. 9.1 Work (pages ) 9.2 Power (pages ) 9.3 Mechanical Energy (page 147)

The content contained in all sections of chapter 6 of the textbook is included on the AP Physics B exam.

Conceptual Understanding

2 possibilities. 2.) Work is done and... 1.) Work is done and... *** The function of work is to change energy ***

WORK, POWER, & ENERGY

Essentially, the amount of work accomplished can be determined two ways:

= 1 2 kx2 dw =! F! d! r = Fdr cosθ. T.E. initial. = T.E. Final. = P.E. final. + K.E. initial. + P.E. initial. K.E. initial =

Momentum & Energy Review Checklist

4 Conservation of Energy

Work, Power and Energy Worksheet. 2. Calculate the work done by a 47 N force pushing a kg pencil 0.25 m against a force of 23 N.

Momentum, Impulse, Work, Energy, Power, and Conservation Laws

Work and Simple Machines

Energy and Mechanical Energy

Motion. Definition a change of position

Efficiency = power out x 100% power in

Chapter Work, Energy and Power. Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Ans: (a)

Study Guide For Midterm - 25 weeks Physics Exam. d. the force exerted by a towing cable on the car. c. the upward force the road exerts on the car.

9 Energy. Energy can change from one form to another without a net loss or gain.

RELEASED. Go to next page. 2. The graph shows the acceleration of a car over time.

GRADE:-6 PHYSICS Chapter-5 PRESSURE Answer the following in a word or two or in a sentence. 1. What is the SI unit of pressure? Ans: Pascal 2.

Question 8.1 Sign of the Energy II

Chapter 4 Conservation Laws

transfer of heat energy by conduction, convection, and radiation Doppler effect static electricity

15.1 Energy and Its Forms. Energy and Work. How are energy and work related? Energy is the ability to do work. Work is a transfer of energy.

Recall: Gravitational Potential Energy

Chapter 7 Energy and Machines Unit Test - Ms. Nechita

Transcription:

Work: Occurs as a force is applied over a distance. Ex: *It is a vector. (Has a number and direction) Unit 10: Work and Energy *If there is no movement, there is no work on that object. * When the object moves, it must move in the same direction as the force for there to be work. Work = Force (Distance) W = F(d) Units: Joule (J) = 1 kg(m/s 2 ) 1.) Carly pushes a cart with a force of 2N for a distance of 5m. What work is done on the cart W=? F=2N D=5m 2.) Jake pushes a car with a force of 125N. The car moves and 25J of work is done. How far did the car move? W=25J F=125N d=?

Power: the rate at which work is done. Power = Work/Time P = W/t Units: Watts (w) = J/s *Doing work in a faster time requires more power. *Doing more work in the same amount of time will increase the power. Ex: 1.) Travis does 500J of work when he lifts a box. If it takes him 20s to lift the box, how much power did he use? P=? W=500J t=20s. 2.) Tim uses a power of 400W when he pushes a stool for 2s. How much work did he do? P=400W W=? t=2s 3.) Kaley lifts a box with 80J. If her power was 40w, how much time did it take her? P=40w W=80N t=? 1.) Describe/define work in your own words. 2.) Describe/define power in your own words. 3.) Give one way that you can increase the amount of power being used (hint: think about the equation P = W/t)

Simple Machines Machines: A device that changes a force. *They make work easier to do. *They can change the size of the force needed, the direction of a force, or the distance over which a force acts Force Ex.: Changing a tire Increase Distance Ex.: Using oars to row a boat Change direction Ex.: Flagpole; pull down on the rope and the flag goes up. - The work done by a machine is ALWAYS less than the work done on a machine by a person. - Why? Friction, lost as heat, air resistance. Input Force (2N): the force that a person does on a machine. Input Distance (25m): the distance that a person exerts the force. Work Input (50J): the work the person does on the object. Output Force (1N): the force that the machine does. Output distance (10m): the distance that the machine exerts that force. Work Output (10J): the work that the machine does. 6 Kinds of Simple Machines 1.) Levers: a rigid arm that rotates around a fixed point (called a fulcrum). o 1 st Class Lever: See Fig. 1 on board. Ex: seesaw, crowbar, claw hammer o 2 nd Class Lever: See Fig. 2 on board. Ex: hinged door, wheel barrow. o 3 rd Class Lever: See Fig. 3 on board. Ex: baseball bat, golf club. 2.) Wheel and Axle: Has two different cylinders with different radii. Ex: Steering wheel, wheel barrow, screwdriver. 3.) Inclined Plane: A slanted surface along which a force moves an object to a different elevation. Ex: Wheel chair ramp. 4.) Wedge: a V-shaped object whose sides are two identical planes sloped towards each other. *You direct a force downward, but the wedge directs that force outward. - Ex: axe, nail, knife.

5.) Screw: an inclined plane wrapped around a cylinder. Ex: screw, jar, spiral staircase 6.) Pulley: has a rope that fits into a groove on a wheel. Ex: flag pole, clothes line. *If you are using only one pulley, the mechanical advantage is 1. This only changes the direction that the force is moving. *So you want to use more than one pulley! - Fixed pulley: the wheel is attached to a fixed location. *Only changes direction, but not the size of the force. -Movable pulley: the wheel is attached to the object being moved. *Reduce input force. -Pulley system: combination of fixed and moveable pulleys. *Reduce input force. -Compound Machine: A machine that combines more than one simple machine. Ex: car, bicycle, wheel barrow

Mechanical Advantage Mechanical advantage: the number of times that a machine increases an input force. Equations: *If this number is over 1, the force gets multiplied. *If this number is less than 1, the distance is increased. Mechanical Advantage = Output Force/Input Force Mechanical Advantage =Input Distance/Output Distance Ex: *Distance formula is not perfect because it does not include things like friction. 1.) Sarah was running up an inclined plane that is 6.0m long. At the end of the ramp, she was 1.5m higher. What is the mechanical advantage of the ramp? MA =? ID=6.0m OD=1.5m 2.) Megan pulls on the handle of a claw hammer with a force of 15N. If the hammer has a mechanical advantage of 5.2, how much force is exerted by the claw? MA=5.2 OF=? IF=15N 3.) Matthew uses a ramp to push a wheelchair to the door. If the mechanical advantage of the ramp is 1.1 and the output force was 90N, what force did Matthew use? MA=1.1 OF=90N IF=?

Efficiency: the percentage of work input that becomes work output. *No machine is 100% efficient! - Why? Heat loss, friction, air resistance. How can you make a machine more efficient? 1.) Add a lubricant (oil) because it reduces friction. 2.) Reduce Air resistance by changing its shape 3.) Change the type of friction (sliding friction to rolling friction). MA Practice Problems: 1.) Sam has a flat tire and is using a jack with a mechanical advantage of 3.4. If she exerts 60N of force on the jack, what force is exerted on the car? 2.) Nick is using a ramp to move a sofa. If the mechanical advantage of the ramp is 0.68 and the height needed to be moved is 2.5m, what is the distance of the ramp? 3.) Steve is moving into a new house. He uses 50N of force to move the box when using a pulley system. The box should have taken 80N of force in order to move it. What is the mechanical advantage of the pulley system? 4.) Chris uses a crowbar to open a locked box. If the MA of the crowbar is 3.9 and Chris s input distance is 0.67m, what is the output distance of the crowbar? 5.) Danny is chopping wood and the axe has a mechanical advantage of 1.5. If the force exerted on the wood is 140N, what force did Danny exert on the axe? 6.) Missy swings a golf club a distance of 1.5m and the end of the golf club moves 4m. What is the MA of the golf club? 7.) The power steering in an automobile has a mechanical advantage of roughly 75. If the input force on the steering wheel is 49 N, what is the output force that turns the car s front wheels? 8.) Suppose you need to remove a nail from a board by using a claw hammer. What is the input distance for a claw hammer if the output distance is 2.0 cm and the mechanical advantage is 5.5? 9.) The mechanical advantage of an automobile s wheel and axle is 0.0893. If the wheel s output force is 2220 N, what is the input force that turns the axle? 10.) A wedge with a mechanical advantage of 0.78 is used to raise a house corner from its foundation. If the output force is 7500 N, what is the input force? 11.) Suppose the screw has a mechanical advantage of 12.5. If the screw is turned several times, so that the input distance is 15.7 m, how much has water been lifted upward by the screw (output distance)? Writing Assignment: Write one paragraph that describes how you use 3 simple machines in your daily/weekly activities. Have two sentences for each simple machine, one identifying the machine and one describing the way in which you use it.

Energy and its Forms Energy: the ability to do work. *Energy is transferred by a force moving an object over a distance. *Work is a transfer of energy. *Units: Joules (J) = kgm 2 /s 2 Kinetic Energy: the energy of motion. Ex: *This depends on the object s mass and speed. *Kinetic energy = ½ (m)(v 2 ) *Changing the velocity impacts the kinetic energy more than just changing the mass 1.) Ted throws a ball with a speed of 12 m/s. If the ball has a kinetic energy of 216 J, what is the mass of the ball? KE=216 m=? v=12 m/s Potential Energy: the energy that is stored as a result of position or shape. There are 2 kinds of potential energy: 1.) Elastic Potential Energy: the potential energy of an object that is stretched or compressed. Ex: slinky, rubber-band, spring 2.) Gravitational Potential Energy: potential energy that depends on the object s height. *PE= (m)(g)(h) Potential energy= (mass)(gravity)(height) *For an object, changing the position will impact the potential energy the most. *The acceleration due to gravity makes a difference in the potential energy too. So, my potential energy would be different on the moon than it is here.

Ex: 1.) Abby is diving at the Olympics. She has a mass of 50 kg and it is 10m high. What is her potential energy? PE=? m=50kg g=9.8m/s 2 h=10m 2.) Emily is climbing a rock wall and has a potential energy of 6953.1J. If her height is 12.9m, what is her mass? PE=6953.1 J m=? g=9.8 m/s 2 h=12.9m 3.) DJ is on a pogo stick that is 1.5m high on Jupiter s surface. If his mass is 64kg and his potential energy is 2491.2J, what is the acceleration due to gravity on Jupiter? PE=2491.2J m=64kg g=? h=1.5 *All forms of energy can be classified as kinetic energy, potential energy, or energy stored in a field. Mechanical Energy: the kinetic energy and the potential energy of an object. *KE + PE (KE & PE) Thermal energy: total potential and kinetic energy of all the particles in an object. (Experienced as heat) *The more the molecules/particles move, the higher the thermal energy. (PE)Chemical Energy: Energy stored in chemical bonds. Ex: Food (Field)Electrical Energy: the energy associated with electric charges. Ex: electricity, lightning, batteries (Field)Electromagnetic Energy: a form of energy that travels through space in the form of waves. Ex: sunlight (PE)Nuclear Energy: the energy stored in the nucleus of an atom.

Energy Conversions Energy can be converted from one form to another. Energy Conversions: the changing of energy from one form to another. Law of Conservation of Energy: Energy cannot be created or destroyed. It can only transfer from one form to another. *Most common one is kinetic energy to potential energy or vice versa.