The Appification of Energy Simulations Tokyo seminar, June 11, 2015

Similar documents
CFD in COMSOL Multiphysics

Electromagnetics in COMSOL Multiphysics is extended by add-on Modules

HEAT TRANSFER THERMAL MANAGEMENT OF ELECTRONICS YOUNES SHABANY. C\ CRC Press W / Taylor Si Francis Group Boca Raton London New York

Plasma Modeling with COMSOL Multiphysics

Possibilities of Using COMSOL Software in Physics

An Introduction to COMSOL Multiphysics v4.3b & Subsurface Flow Simulation. Ahsan Munir, PhD Tom Spirka, PhD

Thermal Systems. What and How? Physical Mechanisms and Rate Equations Conservation of Energy Requirement Control Volume Surface Energy Balance

If there is convective heat transfer from outer surface to fluid maintained at T W.

Coupling Physics. Tomasz Stelmach Senior Application Engineer

C ONTENTS CHAPTER TWO HEAT CONDUCTION EQUATION 61 CHAPTER ONE BASICS OF HEAT TRANSFER 1 CHAPTER THREE STEADY HEAT CONDUCTION 127

Thermal Analysis. inspiration

9th European LS-DYNA Conference 2013

OOFELIE::Multiphysics 2014

ELEC9712 High Voltage Systems. 1.2 Heat transfer from electrical equipment

Chapter 1 INTRODUCTION AND BASIC CONCEPTS

ANSYS 14.5 Capabilities Brochure. Fluid Dynamics Structural Mechanics Electromagnetics Systems & Multiphysics

PHYSICAL MECHANISM OF NATURAL CONVECTION

Heat Transfer Modeling

Mechanical Engineering. Postal Correspondence Course HEAT TRANSFER. GATE, IES & PSUs

Magnetic Field Analysis

Chapter 9 NATURAL CONVECTION

Numerical Investigation of Convective Heat Transfer in Pin Fin Type Heat Sink used for Led Application by using CFD

What is a short circuit?

The energy performance of an airflow window

The University of the West Indies, St. Augustine, Trinidad and Tobago. The University of the West Indies, St. Augustine, Trinidad and Tobago

Principles of Convection

NUMERICAL INVESTIGATION OF A THREE-DIMENSIONAL DISC-PAD MODEL WITH AND WITHOUT THERMAL EFFECTS

VERSION 4.4. Introduction to AC/DC Module

Analysis of the Cooling Design in Electrical Transformer

Application of COMSOL Multiphysics in Transport Phenomena Educational Processes

CHEMICAL ENGINEERING DEPARTMENT Equipments and List of Experiments in each Laboratory

Thermal Design. Heat Sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchangers, and Solar Cells. HoSung Lee JOHN WILEY & SONS, INC.

STAR-CCM+ and SPEED for electric machine cooling analysis

Chapter 3 NATURAL CONVECTION

HEAT TRANSFER. PHI Learning PfcO too1. Principles and Applications BINAY K. DUTTA. Delhi Kolkata. West Bengal Pollution Control Board

Mass Transfer in a Stirred Batch Reactor

Review: Conduction. Breaking News

Section 7. Temperature Measurement

"C:\Program Files\ANSYS Inc\v190\CFX\bin\perllib\cfx5solve.pl" -batch -ccl runinput.ccl -fullname "Fluid Flow CFX_002"

Investigation of different wall profiles on energy consumption and baking time in domestic ovens

Heat Transfer Modeling using ANSYS FLUENT

Effect of roughness shape on heat transfer and flow friction characteristics of solar air heater with roughened absorber plate

Multiphysics Modeling

An Essential Requirement in CV Based Industrial Appliances.

Introduction to Blackbody Sources

Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017

Steven W. Van Sciver. Helium Cryogenics. Second Edition. 4) Springer

Thermal Analysis with SOLIDWORKS Simulation 2015 and Flow Simulation 2015

6.5 Optical-Coating-Deposition Technologies

INTRODUCTION Strained Silicon Monochromator Magnesium Housing Windows for Monochromator Shutter and Collimator Fission Detector HOPG Monochromator

Table of Contents. Preface... xiii

Lecture 9 Thermal Analysis

Turbulent Boundary Layers & Turbulence Models. Lecture 09

Experiment 1. Measurement of Thermal Conductivity of a Metal (Brass) Bar

Micro Cooling of SQUID Sensor

Thermal Analysis. with SolidWorks Simulation 2013 SDC. Paul M. Kurowski. Better Textbooks. Lower Prices.

ANSYS Explicit Dynamics Update. Mai Doan

Aerodynamic Noise Simulation Technology for Developing Low Noise Products

HIMARC Simulations Divergent Thinking, Convergent Engineering

Applied Thermodynamics HEAT TRANSFER. Introduction What and How?

Inventor 2019 lancering

UNIT II CONVECTION HEAT TRANSFER

Open Engineering: Strongly Coupled Multiphysics

Thermal Sensors and Actuators

Numerical Modeling of Anode Baking Process with COMSOL Multiphysics

Optimization of the Gas Flow in a GEM Tracker with COMSOL and TENDIGEM Development. Presented at the 2011 COMSOL Conference

GCSE PHYSICS REVISION LIST

A Plasma Torch Model

CFD and Thermal Stress Analysis of Helium-Cooled Divertor Concepts

midas NFX 2015 R1 Release Note

Heat and Mass Transfer Unit-1 Conduction

Heat Transfer Enhancement Through Perforated Fin

Thermal Field in a NMR Cryostat. Annunziata D Orazio Agostini Chiara Simone Fiacco

Department of Energy Science & Engineering, IIT Bombay, Mumbai, India. *Corresponding author: Tel: ,

Thermal Analysis & Design Improvement of an Internal Air-Cooled Electric Machine Dr. James R. Dorris Application Specialist, CD-adapco

Department of Mechanical Engineering ME 96. Free and Forced Convection Experiment. Revised: 25 April Introduction

arxiv: v1 [physics.app-ph] 25 Mar 2018

ELECTRICAL AND THERMAL DESIGN OF UMBILICAL CABLE

Comparison of Finite Element Analysis to IEC for Predicting Underground Cable Ampacity

ME224 Lab 6 Viscosity Measurement

Natural and Mixed Convection Heat Transfer Cooling of Discrete Heat Sources Placed Near the Bottom on a PCB

HEAT TRANSFER 1 INTRODUCTION AND BASIC CONCEPTS 5 2 CONDUCTION

FINITE ELEMENT ANALYSIS OF MIXED CONVECTION HEAT TRANSFER ENHANCEMENT OF A HEATED SQUARE HOLLOW CYLINDER IN A LID-DRIVEN RECTANGULAR ENCLOSURE

Femtet What s New. Murata Software Co., Ltd. All Rights Reserved, Copyright c Murata Manufacturing Co., Ltd.

Contents. Feature Articles. On the Web. Resources. A Publication for ANSYS Users

Progress Report on Chamber Dynamics and Clearing

A Finite Element Model for Numerical Analysis of Sintering

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May ISSN

FLOW AND HEAT TRANSFER ANALYSIS OF VARIOUS RIBS FOR FORCED CONVECTION HEAT TRANSFER

Lecture 6. Rapid Thermal Processing. Reading: Chapter 6

Applied Fluid Mechanics

Biological Process Engineering An Analogical Approach to Fluid Flow, Heat Transfer, and Mass Transfer Applied to Biological Systems

THERMAL ANALYSIS OF UMBILICAL CABLES

Thermomagnetic Siphoning on a Bundle of Current-Carrying Wires

Applied Fluid Mechanics

Table of Contents. Foreword... Introduction...

Biotransport: Principles

Compressible Flow Modeling Occurring in a Depressurization Process

Key-Holes Magnetron Design and Multiphysics Simulation

COMPUTATIONAL ANALYSIS OF LAMINAR FORCED CONVECTION IN RECTANGULAR ENCLOSURES OF DIFFERENT ASPECT RATIOS

Transcription:

The Appification of Energy Simulations Tokyo seminar, June 11, 2015 Niklas Rom VP of Engineering COMSOL, Inc. Copyright 2015 COMSOL. COMSOL, COMSOL Multiphysics, Capture the Concept, COMSOL Desktop, LiveLink, and COMSOL Server are either registered trademarks or trademarks of COMSOL AB. All other trademarks are the property of their respective owners, and COMSOL AB and its subsidiaries and products are not affiliated with, endorsed by, sponsored by, or supported by those trademark owners. For a list of such trademark owners, see www.comsol.com/trademarks. Dielectric Probe for Skin Cancer Diagnosis Application Gallery 18693

Agenda 1.30-2.30 COMSOL simulations and energy 2.30-2.50 Coffee Break 2.50-4.00 The appification of simulations 4.00-4.30 Free Q+A session

COMSOL Company Facts: 1986: Founded 1999: Multiphysics product 2014: COMSOL Server product 400+ people 21 offices 100,000 users

What is energy? Everything Energy Simulations

Live Demo 1 MEMS Actuator

Thermal Actuator Electric Currents, Heat Transfer and Structural analysis (thermal expansion) Ground Polysilicon 2.5 V Temperature Displacement

Electro-Thermo-Mechanical Resistive heating u, v and w V T Thermal expansion Temperature dependent materials

A Thermo-Electro-Mechanical Actuator Thermal MEMS actuator MEMS=Micro Electromechanical System Material: Polysilicon Size: ~200 microns Time to steady-state: ~ micro s Analysis: steady-state or transient optimization

Electric Currents A static voltage difference is applied to the actuator The beam is surrounded by air 2.5 V Grounded (0 V) All other surfaces are adjacent to dry air and are electrically insulated

Heat Transfer All other boundaries: Convection h=5 W/m 2 K T ext =293 K Internal Joule heating automatically calculated from the electric currents 293 K

Thermal Expansion All other boundaries: free to move Roller (cannot move up or down but sideways) Internal thermal expansion automatically calculated from the temperature field Fixed Constraint

Bidirectional Coupling and Nonlinear Materials Temperature coupling back to Electric Currents via the electric conductivity s=s 0 *(1-0.001*T)=f(T) a=g(t) k=h(t) electric conductivity thermal expansion thermal conductivity Bidirectional coupling

Vary Voltage to Attain 4 mm Deflection Set voltage to attain 4 mm deflection in y- direction (field variable v) y coordinate direction Voltage = DV (parameter) Optimization problem: Minimize (abs(v)-1[um]) by varying DV syntax: abs(comp1.intop1(v))-1[um]

Multiphysics and Single-Physics Simulation Platform Mechanical, Fluid, Electrical, and Chemical Simulations Multiphysics - Coupled phenomena See heat sink Single physics One integrated environment different physics and applications One day you work on Heat Transfer, next day Structural Analysis, then Fluid Flow, and so on Same workflow for any type of modeling Enables cross-disciplinary product development and a unified simulation platform

Customizable and Adaptable Create your own multiphysics couplings Customize material properties and boundary conditions Type in mathematical expressions, combine with look-up tables and function calls User-interfaces for differential and algebraic equations Parameterize on material properties, boundary conditions, geometric dimensions, and more High-Performance Computing (HPC) Multicore & Multiprocessor: Included with any license type Clusters & Cloud: With floating network licenses

Heat transfer in solids Isotropic or anisotropic, linear or nonlinear materials Heat transfer by translation of solids Heat source, user defined or from other physics Thermoelastic damping Heat transfer in thin layers Highly conductive Resistive General Conductive Resistive General Thin Layer types No extra DOF Slit for T on the boundary Full discretization of the layer Temperature of a disc brake of a car in brake-and-release sequence Thin Layer Heat Flux

Laminar and turbulent flows k-e model k-w model* SST model* Low Reynolds, k-e model Spalart-Allmaras model* Algebraic yplus L-VEL Viscous dissipation Pressure work Fluid / solid interface with temperature continuity with boundary layer approximation Dedicated boundary conditions Inflow heat flux, Outflow Open boundary Screen, fan Heat transfer in fluids * Requires the CFD module Part of the Heat Transfer interfaces list in COMSOL Multiphysics

Heat transfer in fluids Conjugate heat transfer Natural convection (free convection) Forced convection Laminar and turbulent flow regimes Temperature boundary layer for turbulence models Predefined library of heat transfer coefficients and of equivalent thermal conductivity based on Nusselt correlations Fan and screen boundary condition Marangoni effect with a predefined library of surface tension coefficient Temperature profile in a power supply unit. An extracting fan and a perforated grille cause an air flow in the enclosure to cool internal devices.

Pipe flow Heat transfer in pipes Conduction and advection (convection) Non-isothermal flow in pipes Automatic transition between laminar and turbulent flow Bidirectional couplings between pipes and 2D or 3D domains Pipe properties Cross-sections Surface roughness Cooling of a steering wheel plastic mold including pipe flow and heat transfer in cooling channels.

Heat transfer with phase change The Heat Transfer with Phase Change using apparent heat capacity formulation Material properties for each phase Phase change temperature Latent heat Material properties smoothing during phase change Phase change modeling for continuous casting of a metal rod from melted to solid state.

Heat transfer in porous media Coupling between fluid and solid matrix parts Local Thermal Non-Equilibrium (LTNE) option Geothermal heating Immobile fluids Thermal dispersion due to tortuous paths in porous media Volume averaging of material properties Velocity field (left) and temperature (right) profile due to buoyancy in porous media

Heat transfer in biological tissues Heat transfer in living tissue Tissue and blood properties Blood perfusion rate Arterial blood temperature Metabolic heat rate Bioheat source Damage in living tissues Temperature threshold model Energy absorption model Cryogenic damage External heat sources (RF, DC current) Tissue necrosis area during tumor ablation process at 100s (top) and 300s (bottom).

Surface-to-surface radiation Calculation of grey body radiation view factors with shadowing effects Wavelength dependent properties Diffuse reflection Temperature-dependent emissivity External radiation sources User defined From the sun (automatic position computation) Temperature distribution in a light bulb generated by the radiating filament

Radiation in participating media Emission/absorption in participating media Ray scattering Isotropic, Linear anisotropic, Nonlinear Anisotropic Scattering Radiation discretization methods Rosseland approximation P1 approximation Discrete Ordinate Method Radiative heat transfer in a utility boiler with internal obstacles

Thermoelectric effect Multiphysics coupling between Heat transfer interfaces and Electric currents interfaces Combines Joule, Peltier, Seebeck, Thomson effects. Temperature drop demonstrating Peltier effect in a thermoelectric leg.

Thermal contact Predefined models for pressure dependant thermal conductance (constriction conductance) conductance through the fluid (gap conductance) surface-to-surface radiation contribution (radiative conductance) Coupling with structural mechanics contact and electrical contact Friction heat source with partition coefficient definition Temperature in two contacting parts of a switch inducted by Joule heating. Electrical current and the heat flow from one part to the other through the contact surface. Thermal and electrical apparent resistances are coupled to the mechanical contact pressure.

Available in the Model Library or the Model Gallery more on www.comsol.com/showroom/product/ht/ HEAT TRANSFER EXAMPLES

Local Thermal Non-Equilibrium Multiphysics Two-temperature material Heat transfer in porous media with one temperature for the solid and one for the fluid Also know as LTNE Applications for fuel cells, nuclear devices, electronic systems.

Large scales model for porous media Averaged properties determined by the micro structure

Heat Transfer in Porous Media vs LTNE T average T s and T f

Heat Transfer between fluid and solid Q sf (T s -T f ) T s Q sf =a h sf T f

A heat-heat multiphysic coupling!

When LTNE is needed? Different conditions for fluid and solid parts Cold/hot fluid inflow Large heat source in one phase Large thermal resistance at the pore scale, small Sparrow number

Heat exchanger This figure shows the temperature profile and the streamlines in a shell and tube heat exchanger. Two separated fluids at different temperatures flow through the heat exchanger, one through the tubes (tube side, red streamlines) and the other through the shell around the tubes (shell side, blue streamlines).

The model investigates the performance of a displacement ventilation system. The flow is modeled using the Non- Isothermal Turbulent Flow, k-omega Model interface. This figure shows the isotherms in a room. Ventilation

Electronic cooling The model examines the air cooling of a power supply unit (PSU) with multiple electronics components acting as heat sources. Fins are used to improve cooling efficiency. To achieve high accuracy, the simulation accounts for heat transport in combination with fluid flow. This figure shows an horizontal board with forced convection (fan cooling).

Furnace reactor This model shows a furnace reactor design that heats a susceptor of graphite, using an 8 kw RF signal at 20 khz. The temperature distribution over the wafer is extracted, as well as the temperature on the outer Quartz tube. At these high temperature (~2000 o C) the heat flux is dominated by radiation. The design of the chamber is crucial to reach a uniform temperature, efficient heating, and control of high temperature regions.

Heat losses in wires Temperature raise in a cable with PoE/PoE+ technology. In this model, the heat source is due to the Joule heating effect. This, developed by Nexans, takes into consideration several configurations of cable bundles in order to optimize temperature distribution. Finite Element Analysis of Cables Heating Due to PoE/PoE+ S. Francois 1, and P. Namy 2 1 Nexans Research Center, Lyon cedex, France 2 SIMTEC, Grenoble, France Presented at COMSOL Conference 2010 Paris

Anisotropic Heat Transfer through Woven Carbon Fibers Carbon-fiber-reinforced polymers contain woven carbon fibers that have a thermal conductivity along the fiber axis is much higher than perpendicular to it. This tutorial model shows how to use the curvilinear coordinates interface to compute the local fiber orientation and to use it to define anisotropic thermal conductivity of fibers. Because the carbon-fiber-reinforced polymer sample dimensions are rather small, infinite elements are used to avoid setting boundary conditions too close to the heat source.

Friction stir welding In this model, two aluminum plates are joined by generating friction heat with a rotating tool. Heat is transferred by conduction from the tool into the plates. The movement of the tool is taken into account by adding translation as an advective term. The plate surfaces are cooled through free convection and surface-to-ambient radiation.

This models accounts for heat transport and structural stresses and strains resulting from high temperature gradients in a stator blade. It couples the Heat Transfer in Solids and Solid Mechanics interfaces. This plot shows the von Mises stress and the deformed shape of the blade. Thermal stress

Phase transition in a cavity containing both solid and liquid tin is submitted to a temperature difference between left and right boundaries. Fluid and solid parts are solved in separate domains sharing a moving melting front. The position of this boundary through time is calculated according to the Stefan energy balance condition. In the melt, motion generated by natural convection is expected due to the temperature gradient. This motion, in turn, influences the front displacement. Tin melting front

This model treats the free convection of argon gas within a light bulb. It shows the coupling of heat transport (conduction, radiation, and advection) to momentum transport (non-isothermal flow) induced by density variations caused by temperature (free convection). Light bulb

Latent heat of evaporation This tutorial shows how to to model evaporative cooling. The effects need to be taken into account are heat transfer, transport of water vapor and fluid flow. User-defined expressions are used to implement the source term for the water vapor and evaporative heat source, as well as the moist air feature to accurately describe the material properties.

Solar and ambient radiation This model uses the external radiative heat source feature with solar position option. The sun's position and shadow effects are automatically updated during the simulation. The wavelength dependency of surface emissivity is considered

Mixed diffuse-specular radiation This model shows how to use the Mathematical Particle Tracing interface to simulate mixed diffusespecular reflection between surfaces in an enclosure. The first part compares the heat fluxes computed by the Mathematical Particle Tracing interface with the exact analytical solution for two identical infinitely long parallel gray plates under mixed diffusespecular reflection at constant temperature. The second part couples the Mathematical Particle Tracing interface with the Heat Transfer in Solids interface for the parallel plate geometry but with different characteristics and spatially varying temperatures.

This model simulates a system consisting of a small part of a circuit board containing a power transistor and the copper pathways connected to the transistor. The simulation estimates the operating temperature of the transistor. We investigate if heat sink mounting is necessary or if the operating temperature can be low enough in the absence of a heat sink. Power transistor

Fluid flow with Joule heating This model estimates the temperature field induced by Joule heating in a busbar cooled by an air flow. It shows the coupling between heat transfer, electric currents and fluid flow.

Induction Heating The model shows the magnetic flux (streamlines) and temperature distribution (color plot) in the electromagnetic induction molding apparatus and composite material Model and pictures courtesy of José Feigenblum, RocTool, Le Bourget Du Lac, France.

Tumor Ablation This example accomplishes localized heating by inserting a four-armed electric probe through which an electric current runs. The heat source resulting from the electric field is also known as resistive heating or Joule heating. This model uses the Bioheat Transfer interface and the Electric Currents interface to implement a transient analysis. Damage integral analysis is used to predict the tissue necrosis

Algebraic Turbulence Models Available in the Heat Transfer Module in version 5.1 Algebraic turbulence models are faster and more robust but, generally less accurate than transport-equation turbulence models No transport of turbulence No inflow or outflow BCs needed (can couple with porous media flow or lumped features such as pumps, fans or grilles) Not applicable to wakes, jets and mixing layers The algebraic turbulence models are wall-resolved models First off-wall grid point should be in the viscous sublayer (y + 5) to get accurate wall-stress Power supply unit model has been updated and implements higher flow rate. Turbulence effects are modeled using algebraic yplus model.

Thermo-capillary convection for laminar flow Surface tension coefficient library Application: metal welding, crystal growth Marangoni Effect

Non-Isothermal Flow Coupling in Porous Domains Coupling between Fluid and Matrix Properties and Heat Transfer in Porous Media Viscous dissipation and work done by pressure forces available

Heat Transfer: Cooling of a Mold Structural Mechanics: Vibration of an Impeller CFD: Propeller in a Duct AC/DC: Transformer on a PCB Chemical Engineering: Diesel Engine Filter Particle Tracing: Particles in a Static Mixer RF: Helical Antenna Acoustics: Sound Level for a Speaker

CAD & Mesh Interoperability 3D CAD File Formats ACIS (read & write) AutoCAD CATIA V5 IGES Inventor NX Parasolid (read & write) PTC Creo Parametric PTC Pro/ENGINEER SOLIDWORKS STEP ECAD File Formats GDSII NETEX-G ODB++ ODB++(X) Mesh File Formats NASTRAN (read & write) STL (read & write) VRML LiveLink Interfaces LiveLink for AutoCAD LiveLink for Inventor LiveLink for PTC Creo Parametric LiveLink for PTC Pro/ENGINEER LiveLink for Revit LiveLink for SOLIDWORKS LiveLink for Solid Edge 3rd Party Products Mimics Simpleware Geographic Information System (GIS) Digital Elevation Map (DEM) 2D CAD File Formats DXF (read & write) Copyright 2015 COMSOL. COMSOL, COMSOL Multiphysics, Capture the Concept, COMSOL Desktop, LiveLink, and COMSOL Server are either registered trademarks or trademarks of COMSOL AB. All other trademarks are the property of their respective owners, and COMSOL AB and its subsidiaries and products are not affiliated with, endorsed by, sponsored by, or supported by those trademark owners. For a list of such trademark owners, see www.comsol.com/trademarks.

From Model to App Forget everything that I have told you so far

Simulation Today Mostly used by specialist simulation engineers and scientists just like you! Require some degree of training to get started (with any kind of simulation software).

Simulation Expertise in High Demand Engineering R&D Manufacturing Installation Sales

COMSOL Users Turn App Designers Building Apps Running Apps

The Application Builder

COMSOL Applications Application = Model + User Interface Application file name extension:.mph Can be password protected

Application Builder For building applications based on COMSOL Multiphysics models Included in the Windows version of COMSOL Multiphysics Can run Applications with COMSOL Multiphysics or COMSOL Server

The Form Editor Two Editors For user interface layout design The Method Editor For programming

COMSOL Server

COMSOL Server Web Interface

Running Applications COMSOL client for Windows Web Browser iphone ipad COMSOL Client Web Browser

Live Demo 2: The Application Builder and COMSOL Server

COMSOL Heat Apps COMSOL App for heat exchanger dimensioning. Heat exchanger properties (exchanged power, pressure loss, effectiveness) are computer from users inputs. COMSOL App for heat sink tuning. Heat exchanger properties (power, pressure loss) are computer from user inputs (inlet velocity, fins number and dimensions)

Heat sink with fins

COMSOL Server Deploy COMSOL applications Throughout your organization Worldwide access Administrative tools Immediate access to application updates Create user accounts and privileges Create user groups More

Run Applications in Two Ways COMSOL Client for Windows Free download: 40MB Same look-and-feel as the COMSOL Desktop Full graphics and selection support Run with LiveLink products for CAD Web Browser No installation required No browser extensions required 1D, 2D, and 3D graphics Interactive 3D graphics using the WebGL standard

License Options COMSOL Server See www.comsol.com/sla for complete licensing terms. Trademarks are the property of their respective owners. See www.comsol.com/trademarks.

License Options COMSOL Multiphysics See www.comsol.com/sla for complete licensing terms. Trademarks are the property of their respective owners. See www.comsol.com/trademarks.

any colleague outside of the engineering team will now be able to confidently run these studies by themselves, with no learning curve. - Brice McPherson, APEI User Testimony

The COMSOL Server and Application Builder completely make sense for us. Most importantly, now this powerful computational tool is available for anyone in the company to use. - Peter Vavaroutsos, Cypress Semiconductor User Testimony

PEAB Asphalt First in the business with app for asphalt properties. http://www.comsol.com/ press/news/article/2241/

COMSOL Users Turn App Designers Building Apps Running Apps

Thank you

Product Suite COMSOL 5.1