Strain Measurement Techniques for Composite Coupon Testing

Similar documents
Strain Measurement. Prof. Yu Qiao. Department of Structural Engineering, UCSD. Strain Measurement

Reliable Test Results

Strain Gage Calibration Factors for Constant Room Temperature Conditions. Gage Resistance, Gage Factor and Transverse Sensitivity Coefficient)

1 Force Sensing. Lecture Notes. 1.1 Load Cell. 1.2 Stress and Strain

AE3610 Experiments in Fluid and Solid Mechanics TRANSIENT MEASUREMENTS OF HOOP STRESSES FOR A THIN-WALL PRESSURE VESSEL

STRAIN GAUGES YEDITEPE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING

Elastic Properties of Solids (One or two weights)

Project PAJ2 Dynamic Performance of Adhesively Bonded Joints. Report No. 3 August Proposed Draft for the Revision of ISO

ME411 Engineering Measurement & Instrumentation. Winter 2017 Lecture 9

What is a Strain Gauge? Strain Gauge. Schematic View Of Strain Gauge

Strength Study of Spiral Flexure Spring of Stirling Cryocooler

Lecture 20. Measuring Pressure and Temperature (Chapter 9) Measuring Pressure Measuring Temperature MECH 373. Instrumentation and Measurements

DYNAMIC ROTARY TORQUE MEASUREMENT USING SURFACE ACOUSTIC WAVES

Lecture #8: Ductile Fracture (Theory & Experiments)

Physical Properties Testing Technical Bulletin

Wheatstone Bridge Nonlinearity

Lecture 19. Measurement of Solid-Mechanical Quantities (Chapter 8) Measuring Strain Measuring Displacement Measuring Linear Velocity

1.103 CIVIL ENGINEERING MATERIALS LABORATORY (1-2-3) Dr. J.T. Germaine Spring 2004 LABORATORY ASSIGNMENT NUMBER 6

GB/T / ISO 527-1:1993

APPENDIX G I-BEAM SUMMARIES 0.6-IN. STRAND G-1

CAL GAUSS CALIBRATION MAGNET

Strain Gauge Application and Measurement of Unknown Load

An integrated approach to the design of high performance carbon fibre reinforced risers - from micro to macro - scale

MET 301 EXPERIMENT # 2 APPLICATION OF BONDED STRAIN GAGES

ME 2570 MECHANICS OF MATERIALS

Industrial Instrumentation Dr. Alok Barua Department of Electrical Engineering Indian Institute of Technology Kharagpur. Lecture - 4 Strain Gauge

Elastic Properties of Solids Exercises I II for one weight Exercises III and IV give the second weight

Errors Due to Transverse Sensitivity in Strain Gages

International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January ISSN

THE NEW 1.1 MN m TORQUE STANDARD MACHINE OF THE PTB BRAUNSCHWEIG/GERMANY

Thermal Resistance Measurement

BioMechanics and BioMaterials Lab (BME 541) Experiment #5 Mechanical Prosperities of Biomaterials Tensile Test

Pre-failure Deformability of Geomaterials. Hsin-yu Shan Dept. of Civil Engineering National Chiao Tung University


Part 2. Sensor and Transducer Instrument Selection Criteria (3 Hour)

HOW ADVANCED PYROMETERS INCREASE THERMAL PROCESS REPEATABILITY AND PRODUCT QUALITY

NUMERICAL AND EXPERIMENTAL STUDY OF FAILURE IN STEEL BEAMS UNDER IMPACT CONDITIONS

Task 1 - Material Testing of Bionax Pipe and Joints

A Portable Optical DSPI System for Residual Stresses Measurement by Hole Drilling Using the Integral Method in Terms of Displacement

Strain Measurement MEASUREMENT EXPERIMENT

Chapter 6: Mechanical Properties of Metals. Dr. Feras Fraige

FIBRE WAVINESS INDUCED BENDING IN COMPRESSION TESTS OF UNIDERECTIONAL NCF COMPOSITES

2. (a) Differentiate between rare metal thermocouples and base metal thermocouples.

MAE 322 Machine Design. Dr. Hodge Jenkins Mercer University

Full Scale Structural Durability Test Spectrum Reduction by Truncation Coupon Testing

EXPERIMENTAL TECHNIQUES STRESS ANALYSIS

DEPARTMENT OF MECHANICAL ENIGINEERING, UNIVERSITY OF ENGINEERING & TECHNOLOGY LAHORE (KSK CAMPUS).

Strain Measurements. Isaac Choutapalli

STRAIN ANALYSIS OF HDPE BUTT FUSION JOINT IN SIDE BEND TEST

Special edition paper

Strain Measurement on Composites: Errors due to Rosette Misalignment

Lab Exercise #5: Tension and Bending with Strain Gages

Slide 1. Temperatures Light (Optoelectronics) Magnetic Fields Strain Pressure Displacement and Rotation Acceleration Electronic Sensors

Bending Load & Calibration Module

Module III - Macro-mechanics of Lamina. Lecture 23. Macro-Mechanics of Lamina

Because the third wire carries practically no current (due to the voltmeter's extremely high internal resistance), its resistance will not drop any

DEVELOPMENT OF DROP WEIGHT IMPACT TEST MACHINE

Force and Displacement Measurement

Module 2 Mechanics of Machining. Version 2 ME IIT, Kharagpur

ONYX -MCE MULTI-CHANNEL OPTICAL FIBER PYROMETERS WITH ACTIVE EMISSIVITY COMPENSATION PRECISION TEMPERATURE MEASUREMENT FOR DEMANDING INDUSTRIAL

ENSC387: Introduction to Electromechanical Sensors and Actuators LAB 3: USING STRAIN GAUGES TO FIND POISSON S RATIO AND YOUNG S MODULUS

BIAXIAL STRENGTH INVESTIGATION OF CFRP COMPOSITE LAMINATES BY USING CRUCIFORM SPECIMENS

[5] Stress and Strain

Testing and Analysis

Nonlinear Analysis Of An EPDM Hydraulic Accumulator Bladder. Richard Kennison, Race-Tec

STRESS ANALYSIS EXPERIMENTS FOR MECHANICAL ENGINEERING STUDENTS

III B.Tech. II Semester Regular Examinations, April/May INSTRUMENTATION & CONTROL SYSTEMS (Mechanical Engineering) Time: 3 Hours Max Marks: 75

ME 243. Mechanics of Solids

USE OF DIGITAL IMAGE CORRELATION TO OBTAIN MATERIAL MODEL PARAMETERS FOR COMPOSITES

Introduction. Energy Generation with the Piezo Effect

Load Washers. Force. for Forces of 7, kn. F z. Type 9001A A 9081B, 9091B

CHAPTER 6. Quality Assurance of Axial Mis-alignment (Bend and Twist) of Connecting Rod

Drilling in tempered glass modelling and experiments

Experimental Approach to Determine the Stress at a Section of Semi Circular Curved Beam Subjected to Out-Of-Plane Load Using Strain Rosette

CHAPTER II EXPERIMENTAL INVESTIGATION

FOLDING OF WOVEN COMPOSITE STRUCTURES

T e c h n i c a l L e x i c o n

Load Washers. Force kn until kn. Type 9101A A

Mechatronics II Laboratory EXPERIMENT #1 MOTOR CHARACTERISTICS FORCE/TORQUE SENSORS AND DYNAMOMETER PART 1

Applying the Wheatstone Bridge Circuit

PROCESS CONTROL BASIS FOR A COST-EFFECTIVE SELECTIVE SOLDERING PROCESS

Mechatronics II Laboratory EXPERIMENT #1: FORCE AND TORQUE SENSORS DC Motor Characteristics Dynamometer, Part I

An orthotropic damage model for crash simulation of composites

Technical Notes. Introduction. PCB (printed circuit board) Design. Issue 1 January 2010

TINIUS OLSEN Testing Machine Co., Inc.

Foundations of Ultraprecision Mechanism Design

VMS-GeoMil. Background

Pressure Vessels Stresses Under Combined Loads Yield Criteria for Ductile Materials and Fracture Criteria for Brittle Materials

APPLICATIONS OF VIBRATION TRANSDUCERS

INSTRUMENTATION ECE Fourth Semester. Presented By:- Sumit Grover Lect., Deptt. of ECE

International Journal of Advance Engineering and Research Development

CE 320 Structures Laboratory 1 Flexure Fall 2006

Data Logger V2. Instruction Manual

12/8/2009. Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka

Strain Gage Rosettes: Selection, Application and Data Reduction

COMPARISON BETWEEN TENSILE AND COMPRESSIVE YOUNG S MODULUS OF STRUCTURAL SIZE LUMBER

Strain Gauges and Accessories

TE 75R RESEARCH RUBBER FRICTION TEST MACHINE

A Guide to Reticle Design on the Autostep 200 Edward Tang 6/4/04

Thermal Output and Thermal Compensation Models for Apparent Strain in a. Structural Health. Monitoring-Based Environment.

Transcription:

Strain Measurement Techniques for Composite Coupon Testing Introduction Characterization of the properties of anisotropic and inhomogeneous composite materials for use in demanding structural applications requires a wide range of mechanical tests. Furthermore, tests need to be conducted over a range of temperatures on materials conditioned in a variety of different environmental conditions. The measurement of strain is a key requirement in tests to determine, and monitor, tension, compression, and shear properties. Currently, most approaches to strain measurement in Composites Coupon testing use contacting methods involving bonded strain gauges or clip-on extensometers. Recent developments in non-contacting strain measurement mean these systems now offer similar performance to traditional contacting systems, as well as providing significant other benefits such as the ability to provide full field strain maps. General Aspects of Strain Measurement for Coupon Testing Measurement of axial strain in tension tests can be achieved using a single strain measurement on one side of the specimen; however, more consistent and accurate results can be achieved by using the average of a pair of measurements on opposite sides of the test specimen, in order to compensate for the effects of bending due to misalignment. For compression testing the use of an average strain value derived from measurements on opposite sides of the specimen is required by most standards. In principle, since the strains in tension and compression test specimens are generally uniform, so either local strain can be measured using a strain gauge or an average strain over an extended gauge length can be measured using an extensometer. In some cases the small size of the specimen gauge section used in unsupported compression tests may prevent the use of extensometers and require the use of strain gauges. Strain Gauges Bonded strain gauges are still widely used to measure the strain in Composite Coupons. The strain gauges in common use consist of thin metal foil grids mounted on an insulating backing and their operation relies on the change in resistance of an electrical conductor subject to an applied strain. The changes in the resistance of a strain gauge at the strain levels encountered in Composites testing (typically 3%) is small and specialist strain gauge conditioning electronics is required to provide accurate measurements. The sensitivity of the gauge (known as the Gauge Factor) is required in order for the correct calibration of the measurement system; this information is provided by the manufacturer of the gauges. In order to make accurate measurements, strain gauges must be correctly aligned and carefully bonded to the surface of test specimens (with specimens that have been wet conditioned, this can be difficult). Strain gauges are mainly sensitive to strains in the direction parallel to gauge grid; however, they are also somewhat sensitive to transverse strains i.e. strains at right angle to the grid and, when testing composite materials with wide variations in Poisson s ratio, this can cause significant errors. Strain gauges are available in a variety of forms as either single gauge or as pre-aligned gauge combinations known, generically, as rosettes. Foil Strain gauges can be used over a range of temperatures from cryogenic to over 200 ⁰C. Although Strain Gauges can provide very accurate strain measurements, they are a consumable item and are costly in terms of both materials and the skilled labor needed to apply them. www.instron.com Page 1 of 5

Clip-On Extensometers Clip-on extensometers are widely used in the testing of Composites Coupons. They are designed to attach to the Coupon and measure engineering strain by determining displacement over a fixed gauge length. For composites testing, the most commonly used gauge lengths are 25 mm and the maximum strain is generally less than 5%. Most clip-on extensometers use strain gauged flexures to measure displacement, these extensometers can be used from cryogenic temperatures to about 200 C. Operation above 200 C requires either some form of cooling (e.g. water or air) or the use of a transducer capable of operating at the test temperature. An example of a high-temperature extensometer employing a capacitive sensor and capable of operating at up to 600 C is shown in Figure-1. In addition to single axial clip-on extensometers a number of other types of extensometers are commonly used for composites testing. The averaging axial clip-on extensometer uses a pair of axial extensometers positioned on either side the specimen. The measurements from the extensometers are then averaged. The measurement of average axial strain eliminates strain measurement errors arising from the presence of bending in the test specimen caused by alignment errors in the load string. Measurement of shear strains and Poisson s ratio requires the simultaneous measurement of axial and transverse strain. Transverse clip-on extensometers are similar in design to axial types but they measure the change in width of the test specimen. Biaxial extensometers, which integrate both axial and transverse extensometers in to a single unit, are available and these units are more convenient to attach than two separate extensometers. An example of a Biaxial Extensometer is shown in Figure-2. Figure 2 Biaxial Clip-on Extensometer Figure 1 High-Temperature Clip-on Extensometer Clip-on extensometers can provide accurate strain measurements and are very cost effective when compared to strain gauges; however they do require careful handling and attachment. With any type of clip-on extensometer the www.instron.com Page 2 of 5

effect of energetic specimen breaks on the long term reliability of the extensometer should be considered and, if possible, the extensometer should be removed from the specimen prior to failure. Automatic Extensometers Automatic Extensometers are contacting types incorporating remote control of many or all of the extensometer functions. These extensometers are used within a wide application range of high-volume tensile testing and are an essential part of many fully-automated (robotic) testing systems. Automatic extensometers have a set of arms that contact the specimen and link directly to a high-accuracy linear measurement transducer. Typically an automatic extensometer will be provided with an ability to engage and disengage from a test specimen and change the gauge length. An example of an Automatic Extensometer is shown in Figure-3. Use of an Automatic Extensometer reduces the influence of the operator and improves the consistency of test results. Automatic extensometers are also more robust than clip-on types and can be automatically removed from the test specimen prior to failure. Non-Contacting Automatic Extensometers Non-Contact Video Extensometers utilize high-resolution digital cameras and real-time image processing to track the movement of contrasting marks on a test coupon. Strain is determined from the change in the distance between the marks divided by the initial mark separation. As mentioned earlier in this article, a high proportion of composites coupon testing is performed at non-ambient temperatures with the coupon and test fixtures located inside a temperature chamber. One of the key advantages of a non-contact approach to strain measurement is having the camera located outside the chamber viewing the specimen through a window, keeping the measurement system isolated from the hostile environment Figure 4. Figure 3 Automatic Extensometer Figure 4 Non-Contacting Video Extensometer Mounted Outside a Temperature Cabinet www.instron.com Page 3 of 5

Video Image based measurement systems need to include suitable illumination in order to eliminate the influence of changes in ambient illumination on the measurement. Means of calibration are also required to correct for optical distortions (e.g. from lenses or chamber windows). An effective calibration method is the use of a precision grid target Along with Automatic Extensometers, Non-Contact Video Extensometers reduce the influence of the operator improving the consistency of test results. The absence of contact with the coupon means that there is no possibility of the extensometer influencing the material behavior or of the extensometer being damaged by the energy released when the coupon fails. Full-Field Strain Measurement An exciting development in non-contact strain measurement is the availability of systems capable of measuring Full-Field Strain distributions. The most widely used approach to Full-Field Strain Measurement is Digital Image Correlation (DIC). This technique works by applying a random pattern to the surface of a test specimen, capturing a series of images of a specimen during a test and then analyzing the images with an algorithm that determines first the displacement field and then the strain field for each image. The number of images captured during a test depends on time, speed, and the sample, but between 50 and 100 images are usually adequate. The first image also known as the reference image is captured when there is no strain on the sample. The image is then split into small subsets and the patterns within each subset of subsequent images are compared to the reference image and displacements are calculated. From these displacements, a strain map is calculated. The strain maps of all the strain components (axial, transverse, shear strain), along with maximum and minimum normal strains can be determined. Example Strain maps for an Open Hole Composite Tensile Test Coupon are shown in Figure-5. Figure 5 DIC Axial & Shear Strain Maps for an Open Hole Specimen Even efficient DIC Algorithms require a large amount of computing power and it is not possible to perform the analysis in real time i.e. during the test the usual approach is to acquire and store the images during the test and then perform the analysis after the test. One challenge when using DIC systems with testing machines that incorporate other measurement systems (force, displacement, and temperature) is how to synchronize and record all of the test data. One recent, integrated, DIC system for use with material testing machines has solved this problem by synchronizing the recording of the images and the other test data digitally. Compared to traditional methods of local strain (e.g. strain gauges) or average strain over a large gauge length (e.g. Extensometers) measurement, Full-Field Strain measurement yields an enormous amount of additional information that can help engineers and scientists better understand material behavior. Conclusion Strain gauges and contacting extensometers will continue to have a major role is composites testing. Generally, extensometers are preferred because of their ease of use and lower costs; however, there are situations where strain gauges are still required. www.instron.com Page 4 of 5

Non-contact strain measurement systems now offer accuracies similar to traditional contacting extensometers whilst providing practical advantages in terms of operation and robustness. Furthermore, the availability of non-contact Full-Field Strain measurement tools is opening up new ways of understanding the behavior of Composite materials. www.instron.com Page 5 of 5