INEQUALITIES USING CONVEX COMBINATION CENTERS AND SET BARYCENTERS

Similar documents
ONE GENERALIZED INEQUALITY FOR CONVEX FUNCTIONS ON THE TRIANGLE

GEOMETRY OF JENSEN S INEQUALITY AND QUASI-ARITHMETIC MEANS

The Arithmetic-Geometric mean inequality in an external formula. Yuki Seo. October 23, 2012

THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 6, Number 1/2005, pp

Q-analogue of a Linear Transformation Preserving Log-concavity

The Mathematical Appendix

Arithmetic Mean and Geometric Mean

On the periodic continued radicals of 2 and generalization for Vieta s product

Trignometric Inequations and Fuzzy Information Theory

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity

Generalized Convex Functions on Fractal Sets and Two Related Inequalities

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever.

Linear Approximating to Integer Addition

STRONG CONSISTENCY FOR SIMPLE LINEAR EV MODEL WITH v/ -MIXING

International Journal of Pure and Applied Sciences and Technology

Factorization of Finite Abelian Groups

PROJECTION PROBLEM FOR REGULAR POLYGONS

ROOT-LOCUS ANALYSIS. Lecture 11: Root Locus Plot. Consider a general feedback control system with a variable gain K. Y ( s ) ( ) K

Research Article Multidimensional Hilbert-Type Inequalities with a Homogeneous Kernel

THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 9, Number 3/2008, pp

1 Onto functions and bijections Applications to Counting

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings

The internal structure of natural numbers, one method for the definition of large prime numbers, and a factorization test

A Remark on the Uniform Convergence of Some Sequences of Functions

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

On Eccentricity Sum Eigenvalue and Eccentricity Sum Energy of a Graph

Journal Of Inequalities And Applications, 2008, v. 2008, p

On the energy of complement of regular line graphs

Unique Common Fixed Point of Sequences of Mappings in G-Metric Space M. Akram *, Nosheen

Research Article Jensen Functionals on Time Scales for Several Variables

Mu Sequences/Series Solutions National Convention 2014

On a Truncated Erlang Queuing System. with Bulk Arrivals, Balking and Reneging

MATH 247/Winter Notes on the adjoint and on normal operators.

Some distances and sequences in a weighted graph

A Result of Convergence about Weighted Sum for Exchangeable Random Variable Sequence in the Errors-in-Variables Model

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables

Hamilton Cycles in Random Lifts of Graphs

Research Article Gauss-Lobatto Formulae and Extremal Problems

REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION

Application of Generating Functions to the Theory of Success Runs

Simple Linear Regression Analysis

About k-perfect numbers

EVALUATION OF FUNCTIONAL INTEGRALS BY MEANS OF A SERIES AND THE METHOD OF BOREL TRANSFORM

KR20 & Coefficient Alpha Their equivalence for binary scored items

Functions of Random Variables

Reaction Time VS. Drug Percentage Subject Amount of Drug Times % Reaction Time in Seconds 1 Mary John Carl Sara William 5 4

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d

Journal of Mathematical Analysis and Applications

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi FACTORIZATION PROPERTIES IN POLYNOMIAL EXTENSION OF UFR S

Lecture 3 Probability review (cont d)

CS473-Algorithms I. Lecture 12b. Dynamic Tables. CS 473 Lecture X 1

v 1 -periodic 2-exponents of SU(2 e ) and SU(2 e + 1)

Introduction to Probability

Econometric Methods. Review of Estimation

POSITIVE LINEAR FUNCTIONALS WITH CONVEX AND PREINVEX FUNCTIONS

CHAPTER VI Statistical Analysis of Experimental Data

Maps on Triangular Matrix Algebras

Some Wgh Inequalities for Univalent Harmonic Analytic Functions

INTEGRATION THEORY AND FUNCTIONAL ANALYSIS MM-501

Collapsing to Sample and Remainder Means. Ed Stanek. In order to collapse the expanded random variables to weighted sample and remainder

å 1 13 Practice Final Examination Solutions - = CS109 Dec 5, 2018

GENERALIZATIONS OF JENSEN-MERCER S INEQUALITY

Bounds for the Connective Eccentric Index

Fibonacci Identities as Binomial Sums

L5 Polynomial / Spline Curves

A study of the sum three or more consecutive natural numbers

Bivariate Vieta-Fibonacci and Bivariate Vieta-Lucas Polynomials

Entropy ISSN by MDPI

4 Inner Product Spaces

Some identities involving the partial sum of q-binomial coefficients

Research Article Some Strong Limit Theorems for Weighted Product Sums of ρ-mixing Sequences of Random Variables

5 Short Proofs of Simplified Stirling s Approximation

ON WEIGHTED INTEGRAL AND DISCRETE OPIAL TYPE INEQUALITIES

IRREDUCIBLE COVARIANT REPRESENTATIONS ASSOCIATED TO AN R-DISCRETE GROUPOID

2. Independence and Bernoulli Trials

Problem Set 3: Model Solutions

European Journal of Mathematics and Computer Science Vol. 5 No. 2, 2018 ISSN

Ideal multigrades with trigonometric coefficients

AN EULER-MC LAURIN FORMULA FOR INFINITE DIMENSIONAL SPACES

European Journal of Mathematics and Computer Science Vol. 5 No. 2, 2018 ISSN

3. REVIEW OF PROPERTIES OF EIGENVALUES AND EIGENVECTORS

EVALUATION OF PERFORMANCE MEASURES OF FMS Bottleneck Model. Part mix Mix of the various part or product styles produced by the system

D KL (P Q) := p i ln p i q i

Non-uniform Turán-type problems

Compound Means and Fast Computation of Radicals

An Unbiased Class of Ratio Type Estimator for Population Mean Using an Attribute and a Variable

Measures of Entropy based upon Statistical Constants

ANALYSIS ON THE NATURE OF THE BASIC EQUATIONS IN SYNERGETIC INTER-REPRESENTATION NETWORK

On the characteristics of partial differential equations

International Journal of Mathematical Archive-5(8), 2014, Available online through ISSN

Lecture 4 Sep 9, 2015

Unit 9. The Tangent Bundle

CHAPTER 3 POSTERIOR DISTRIBUTIONS

On Optimal Termination Rule for Primal-Dual Algorithm for Semi- Definite Programming

Further Results on Pair Sum Labeling of Trees

Semi-Riemann Metric on. the Tangent Bundle and its Index

ON THE LOGARITHMIC INTEGRAL

Complete Convergence for Weighted Sums of Arrays of Rowwise Asymptotically Almost Negative Associated Random Variables

Point Estimation: definition of estimators

A Family of Non-Self Maps Satisfying i -Contractive Condition and Having Unique Common Fixed Point in Metrically Convex Spaces *

Transcription:

Joural of Mathematcal Scece: Advace ad Alcato Volume 24, 23, Page 29-46 INEQUALITIES USING CONVEX COMBINATION CENTERS AND SET BARYCENTERS ZLATKO PAVIĆ Mechacal Egeerg Faculty Slavok Brod Uverty of Ojek Trg Ivae Brlć Mañurać 2 35 Slavok Brod Croata e-mal: Zlatko.Pavc@fb.hr Abtract The artcle demotrate the mortace of cove combato ceter ad et baryceter creatg Jee equalte. Ceter ad baryceter roerte are ued to the formulato of Jee equalty for fucto that are cove at oe de of t doma.. Itroducto Throughout th aer, I R wll be a terval wth the o- emty teror I. Ma uort for the work wll be the famou Jee equalte. The dcrete or bac form (ee [3]) ay that every cove fucto f : I R atfe the equalty 2 Mathematc Subject Clafcato: 26A5, 26D5, 28A, 28A25. Keyword ad hrae: cove combato, baryceter, Jee equalty, quaarthmetc mea. Receved November 3, 23 23 Scetfc Advace Publher

3 ZLATKO PAVIĆ f f ( ), (.) for all cove combato from I. The cotuou or tegral form (ee [4]) ay that every cove µ -tegrable fucto f : I R atfe the equalty for all f tdµ () t f () t dµ (), t (.2) µ ( A) A µ ( A) A µ -meaurable ubet A I wth µ ( A ) >. 2. Cove Combato Ceter The ma reult th ecto Theorem 2.2 for rght cove ad rght cocave fucto the dcrete cae wthout retrcto o coeffcet. If I are ot, ad [, ] are coeffcet uch that, the the um c belog to I, ad t called the cove combato from I. The umber c telf called the ceter of the cove combato. For a cotuou fucto f : I R, the cove combato f ( ) belog to f ( I ). A cove hull of a et X wll be deoted by cox. The followg theorem related to cove combato wth commo ceter: Theorem A. Let,, I be ot uch that co{,, } for k,,, where k. Let α,, α R be o- egatve umber uch that < k α α < β α. k

INEQUALITIES USING CONVEX COMBINATION 3 If oe of the equalte α k α β α β α k α, (2.) vald, the the double equalty α k α f ( ) α f ( ) α f ( ), β β α k (2.2) k hold for every cove fucto f : I R. Theorem A wa realzed [7, Prooto 2]. Corollary 2.. Let,, I be ot uch that co{,, k } for k,,, where k. Let α,, α R be o- k egatve umber uch that < α α. If the equalty k α k α, (2.3) vald, the the equalty k α f ( ) α f ( ), k (2.4) hold for every cove fucto f : I R. The et theorem (weghted rght cove fucto theorem) wa reeted ad roved [2] a the ma reult. Theorem B (WRCF-theorem). Let f ( u) be a fucto defed o a real terval I ad cove for u I, ad let, 2,, be otve real umber uch that m{, 2,, }, 2.

32 ZLATKO PAVIĆ The equalty f ( ) f ( ) f ( ) f ( ), 2 2 2 2 hold for all ad oly f, 2,, I atfyg 22 f f ( ) ( ) f ( y) f ( ), for all, y I uch that y ad ( ) y. I a mlar way, WLCF-theorem (weghted left cove fucto theorem) ad WHCF-theorem (weghted half cove fucto theorem) were lted [2]. The ma defcecy of thee three theorem are cove combato cotag re-determed coeffcet. Eecally, the bomal cove combato clude the fed coeffcet m{, 2,, }. Two ubterval of I ecfed by the umber wth I wll be labelled I rg lef { t I t } ad I { t I t }. We formulate the Jee equalty for rght cove ad cocave fucto. Theorem 2.2 (Dcrete cae of rght covety ad cocavty). Let f : I R be a fucto. If f cove o rg I for ome I, the the equalty f f ( ), (2.5) hold for all cove combato from I atfyg f ad oly f the equalty

INEQUALITIES USING CONVEX COMBINATION 33 f ( qy) f ( ) qf ( y), (2.6) hold for all bomal cove combato from I atfyg qy. If f cocave o rg are vald (2.5) ad (2.6). I for ome I, the the revere equalte Proof. Let u rove the uffcecy for the cae of rght covety. The roof wll be doe by ducto o the teger. The bae of ducto. Take the bomal cove combato from I uch that qy. If qy, the the equalty (2.5) for rg 2 hold by the aumto (2.6). If qy > ad, y I, the we aly the dcrete form of Jee equalty to get the equalty (2.5) for 2. Therefore, uoe qy > wth < ad >. Let the ot be defed by the equato q The we have < qy ad < y, ad o, y co{ qy, }. We wat to aly Corollary 2.. Frt, we olve the equato. α ( qy) α α α, (2.7) 2 3 4 y wth the ukow α α,, ad α, uder the codto α, 2 α3 4 α 2 α 3 α 4. Takg α, we get α2 q, α3, ad α 4 q. Sce the codto (2.3) atfed, t ale f ( qy) qf ( ) f ( ) qf ( y), (2.8) by the equalty (2.4). Sce q, t follow f ( ) f ( ) qf ( ) by aumto. After orderg the equalty (2.8), we get f ( qy) f ( ) qf ( y).

ZLATKO PAVIĆ 34 The te of ducto. Let 2 be a fed teger. Suoe that the equalty (2.5) true for all correodg -membered cove combato. Let be a cove combato from I, ad wthout lo of geeralty, uoe all. > If all, the the equalty (2.5) follow from Jee equalty for cove fucto. Otherwe, f, the. Ug the ducto bae ad reme, t follow: ( ) f f ( ) ( ) f f ( ) ( ) ( ) f f ( ), f whch ed the roof of the theorem. Theorem for left cove ad left cocave fucto ca be formulated o the model of Theorem 2.2. We ed th ecto wth the formulato of the theorem for half cove ad half cocave fucto. Theorem 2.3 (Dcrete cae of half covety ad cocavty). Let R I f : be a fucto. If f cove o rg I or lef I for ome, I the the equalty

INEQUALITIES USING CONVEX COMBINATION 35 f f ( ), (2.9) hold for all cove combato from I atfyg f ad oly f the equalty f ( qy) f ( ) qf ( y), (2.) hold for all bomal cove combato from I atfyg qy. If f cocave o rg I or lef equalte are vald (2.9) ad (2.). I for ome I, the the revere 3. Set Baryceter The ma reult th ecto Theorem 3.3 for rght cove ad rght cocave fucto the tegral cae. Itegral geeralzato of the cocet of arthmetc mea the fte meaure ace are the baryceter of meaurable et, ad the tegral arthmetc mea of tegrable fucto. The bac reult o the tegral arthmetc mea jut the tegral form of Jee equalty. See [6, age 44-45]. For a gve fte meaure µ o I wll be aumed that all ubterval of I, ad therefore the ot, are µ -meaurable. Let A I be a µ -meaurable et wth µ ( A ) >, ad A be the detty fucto o A. If the fucto A µ -tegrable, the the µ -baryceter of A defed by If a fucto mea of f o A defed by B ( A, µ ) tdµ (). t µ ( A) (3.) A f : I R µ -tegrable o A, the the µ -arthmetc

36 ZLATKO PAVIĆ M ( f, A, µ ) f () t dµ (). t µ ( A) (3.2) Note that M (, A, µ ) B( A, µ ). If A the terval, the t A µ -baryceter B ( A, µ ) belog to A. If A the terval ad f cotuou o A, the t µ -arthmetc mea o A belog to f ( A). Theorem C. Let µ be a fte meaure o I. Let A B I be a µ -meaurable et ad A B be a bouded terval uch that < µ ( A ) <. If oe of the equalte vald, the the double equalty B ( A, µ ) B( B, µ ) B( B\ A, µ ), (3.3) M ( f, A, µ ) M( f, B, µ ) M( f, B\ A, µ ), (3.4) hold for every µ -tegrable cove fucto f : I R. The vero of Theorem C for bouded cloed terval A [ a, b] ad B wa roved [7, Prooto ]. A meaure µ o I ad to be cotuou, f µ ({ t }) for every ot t I (accordg to the defto the book [9, age 49]). I the ret of the aer, we wll ue the cotuou fte meaure µ o I, whch otve o the terval, that, whch atfe µ ( A ) > for every odegeerate terval A I. If µ a cotuou fte meaure o I that otve o the terval, the the fucto lef tdµ () t B( I, µ ), lef lef µ ( ) (3.5) I I

INEQUALITIES USING CONVEX COMBINATION 37 trctly creag cotuou o I. The related fucto wth I rg tead of I lef ha the ame roerte. We ca alo ue ay terval A I for the fucto defto (3.5) whch cae the reultg fucto oberved o A. Lemma 3.. Let µ be a cotuou fte meaure o I that otve o the terval. I If a a ot, the the decreag ere ( A ) of bouded terval A I et o that B ( A, µ ) a ad A { a}. Proof. Take a ot a I. Let u how the bac ad the teratve te. I the frt te, we chooe the ot, y I uch that < a < y, ad determe the µ -baryceter of the terval [, y ]: a (). ([, ]) tdµ µ y [ y ] t, If a a, the we take A [, y ]. If a > a, the we oberve the g : a, y defed by fucto [ ] R g( ) td () t a. ([, ] ) µ µ [ ], Sce g cotuou, g ( a) < ad g ( y ) >, there mut be a ot y < a, y > uch that g ( y ). I th cae, we ca take A [, y ]. If a < a, the we creae utl we obta oe of the revou two cae.

38 ZLATKO PAVIĆ I the et te, f A [, y ], we take the ot 2 a 2 ad y2 a y 2, ad reeat the revou rocedure to determe A 2. Lemma 3.2. Let µ be a cotuou fte meaure o I that otve o the terval. Let b B ( B, µ ). B I be a terval wth the µ -baryceter If a B a ot dfferet from b, the the terval A B et o that the bomal cove combato b µ ( A) µ ( B \ A) a a, (3.6) hold wth a B ( A, µ ) ad a B ( B \ A, µ ). Proof. I the cae a < b, we ue the fucto g( ) tdµ () t a, (3.7) lef lef µ ( B ) B o the doma B. The fucto g trctly creag cotuou o, B ad ha the uque zero-ot. Takg A B, the equalty rg (3.6) evdet. Alo, B \ A B \ { } B. rg a lef I the cae a > b, we ue the fucto g wth the et lef rg rg B tead of the et B, ad take A B. I th cae, B \ A B \ { } B. Theorem 3.3 (Itegral cae of rght covety ad cocavty). Let µ be a cotuou fte meaure o I that otve o the terval, ad f : I R be a µ -tegrable fucto. lef lef a

INEQUALITIES USING CONVEX COMBINATION 39 If f cove o rg I for ome I, the the equalty hold for all terval f ad oly f the equalty hold for all bouded terval If f cocave o f tdµ () t f () t dµ (), t (3.8) B B B I atfyg tdµ () t, (3.9) B f tdµ () t f () t dµ (), t (3.) µ ( A) A µ ( A) A A I atfyg tdµ () t. (3.) µ ( A) A rg are vald (3.8) ad (3.). I for ome I, the the revere equalte Proof. Let u rove the uffcecy for the cae of rght covety. Suoe B a terval from I uch that t µ -baryceter b B tdµ () t. If B rg I whch cae B, the equalty (3.8) follow from the tegral form of Jee equalty for cove fucto. Suoe B. If b, the ug Lemma 3., we ca determe the bouded terval A B wth the µ -baryceter. Ug the aumto (3.), ad the equalty (3.4) uder the codto B ( A, µ ) B( B, µ ), we get

4 ZLATKO PAVIĆ f tdµ () t f tdµ () t B µ ( A) A µ ( A) f () t dµ (). t B A f () t dµ () t If < b, the ug Lemma 3.2, we ca determe the terval S B o that the bomal cove combato b µ ( S) µ ( B \ S), (3.2) rg hold wth B ( S, µ ) ad B ( B \ S, µ ). Sce,, we ca aly the dcrete form of Jee equalty to the equalty (3.2), ad get µ ( S) µ ( B \ S) f ( b) f () f ( ). (3.3) I Sce B rg rg \ S B I alo vald, we may aly the tegral form of Jee equalty to the baryceter, ad have the etmate for f ( ): f ( ) f tdµ () t µ ( B \ S) B\ S µ ( B \ S) B\ S f () t dµ (). t Now, we clude Lemma 3. to determe the bouded terval A S wth the µ -baryceter. Ug the aumto (3.), ad the equalty (3.4) uder the codto B ( A, µ ) B( S, µ ), we obta the etmate for f (): f () f tdµ () t µ ( A) A µ ( A) f () t dµ (). t µ ( S) S A f () t dµ () t

INEQUALITIES USING CONVEX COMBINATION 4 After orderg the equalty (3.3), t follow: f tdµ () t f () t dµ () t B S B\ S f () t dµ (), t S f () t dµ () t ad the roof doe. Ug the revou theorem, we ca ere the theorem for left cove ad left cocave fucto the tegral cae. Combg thee cae, we get the theorem for half cove ad half cocave fucto the tegral cae. Theorem 3.4 (Itegral cae of half covety ad cocavty). Let µ be a cotuou fte meaure o I that otve o the terval, ad f : I R be a µ -tegrable fucto. If f cove o hold for all terval rg I or f ad oly f the equalty lef hold for all bouded terval I for ome I, the the equalty f tdµ () t f () t dµ (), t (3.4) B B B I atfyg tdµ () t, (3.5) B f tdµ () t f () t dµ (), t (3.6) µ ( A) A µ ( A) A A I atfyg tdµ () t. (3.7) µ ( A) A

42 ZLATKO PAVIĆ If f cocave o rg I or lef equalte are vald (3.4) ad (3.6). I for ome I, the the revere 4. Alcato to Qua-Arthmetc Mea I the alcato of covety to qua-arthmetc mea, we ue trctly mootoe cotuou fucto ϕ, v / : I R uch that v/ cove wth reect to ϕ( v / ϕ-cove ), that, f v/ ϕ cove (accordg to the termology the book [8, Defto.9]). A mlar otato ued for cocavty. Very geeral form of dcrete ad tegral qua-arthmetc mea, ad t refemet, were tuded [5]. A good aroach to mea ca be ee []. 4.. Dcrete cae Let be a cove combato from I. The dcrete ϕ -qua- arthmetc mea of the ot wth the coeffcet the umber M ( ; ) ( ) ϕ ϕ ϕ, (4.) whch belog to I, becaue the cove combato ϕ( ) belog to ϕ ( I ). If ϕ the detty fucto o I, that, ϕ, the the I dcrete I -qua-arthmetc mea jut the cove combato. The followg the theorem for rght covety ad rght cocavty for qua-arthmetc mea the dcrete cae: Theorem 4. (Dcrete cae of rght covety ad cocavty for quaarthmetc mea). Let ϕ, v / : I R be trctly mootoe cotuou fucto, ad J ϕ( I ).

INEQUALITIES USING CONVEX COMBINATION 43 If v/ ether ϕ -cove o rg J ϕ ( ) for ome ϕ () J ad creag o I or ϕ -cocave o rg J ϕ ( ) ad decreag o I, the the equalty M ( ) M ( ; ), (4.2) ϕ ; v/ hold for all cove combato from J atfyg ϕ( ) ϕ( ) ad oly f the equalty f M (, y;, q) M (, y;, q), (4.3) ϕ v/ hold for all bomal cove combato from J atfyg ϕ ( ) qϕ( y) ϕ(). If v/ ether ϕ -cove o rg J ϕ ( ) for ome ϕ () J ad decreag o I rg or ϕ -cocave o J ϕ ( ) ad creag o I, the the revere equalte are vald (4.2) ad (4.3). Proof. We rove the cae whch the fucto v/ ϕ -cove o the terval rg J ϕ ( ) ad creag o the terval I. Put f v/ ϕ. Frt, f we aly DRCF-theorem to the fucto rg o the terval J ( ), ϕ the we have f : J R cove f ϕ( ) f ( ϕ( )), hold for all cove combato from J atfyg ϕ( ) ϕ( ) ad oly f f f ( ϕ ( ) qϕ( y) ) f ( ϕ( ) ) qf ( ϕ( y) ), hold for all bomal cove combato from J atfyg ϕ ( ) qϕ( y) ϕ().

44 ZLATKO PAVIĆ Secod, after alyg the creag fucto /v o the above equalte, t follow: M ϕ ( ; ) ϕ ( ) v v( ) v/ ( ; ), ϕ / / M hold for all bomal cove combato from J atfyg ϕ( ) ϕ( ) f ad oly f (, y;, q) ϕ ( ϕ( ) qϕ( y) ) v/ ( ϕ( ) qϕ( y) ) M (, y;, q), M ϕ v/ hold for all, y I atfyg ϕ ( ) qϕ( y) ϕ( ). 4.2. Itegral cae Let A I be a µ -meaurable et wth µ ( A ) >, ad ϕ : I R be a trctly mootoe cotuou fucto that µ -tegrable o A. The tegral ϕ -qua-arthmetc mea of the et A wth reect to the meaure µ the ot (, µ M ) ϕ ϕ() µ (). µ ( ) ϕ A t d t (4.4) A A If A the terval, the t ϕ -qua-arthmetc mea M ϕ ( A, µ ) belog to A becaue the ot ϕ() t dµ () t µ ( A ) belog to ϕ ( A). If A ot A coected, the M ( A µ ) may be outde of A. If ϕ, the the ϕ, tegral I -qua-arthmetc mea of A jut the baryceter B ( A, µ ). Theorem for rght covety ad rght cocavty for qua-arthmetc mea the tegral cae a follow: Theorem 4.2 (Itegral cae of rght covety ad cocavty for qua-arthmetc mea). Let µ be a cotuou fte meaure o I that I

INEQUALITIES USING CONVEX COMBINATION 45 otve o the terval. Let mootoe cotuou fucto, ad J ϕ( I ). If v/ ether ϕ -cove o ϕ, v / : I R be µ -tegrable trctly rg J ϕ ( ) for ome ϕ () J ad creag o I or ϕ -cocave o rg J ϕ ( ) ad decreag o I, the the equalty hold for all terval f ad oly f the equalty hold for all bouded terval If v/ ether M ( B, ) M ( B, µ ), (4.5) ϕ µ v/ B I atfyg ϕ() t dµ () t ϕ(), (4.6) B M ( A, ) M ( A, µ ), (4.7) ϕ µ v/ A I atfyg ϕ() t dµ () t ϕ(). (4.8) µ ( A) A ϕ -cove o rg J ϕ ( ) for ome ϕ () J ad decreag o I rg or ϕ -cocave o J ϕ ( ) ad creag o I, the the revere equalte are vald (4.5) ad (4.7). Referece [] P. S. Bulle, D. S. Mtrovć ad P. M. Vać, Mea ad ther Iequalte, Redel, Dordrecht, NL, 988. [2] V. Crtoaje ad A. Baeu, A eteo of Jee dcrete equalty to half cove fucto, Joural of Iequalte ad Alcato 2 (2), 3; Artcle. [3] J. L. W. V. Jee, Om koveke Fuktoer og Ulgheder mellem Mddelværder, Nyt Tdkrft for Matematk. B. 6 (95), 49-68. [4] J. L. W. V. Jee, Sur le focto covee et le égalté etre le valeur moyee, Acta Mathematca 3 (96), 75-93.

46 ZLATKO PAVIĆ [5] J. Mćć, Z. Pavć ad J. E. Pečarć, The equalte for quaarthmetc mea, Abtract ad Aled Aaly 22 (22), 25; Artcle ID 2345. [6] C. P. Nculecu ad L. E. Pero, Cove Fucto ad ther Alcato, Caada Mathematcal Socety, Srger, New York, USA, 26. [7] Z. Pavć, J. E. Pečarć ad I. Perć, Itegral, dcrete ad fuctoal varat of Jee equalty, Joural of Mathematcal Iequalte 5(2) (2), 253-264. [8] J. E. Pečarć, F. Procha ad Y. L. Tog, Cove Fucto, Partal Orderg, ad Stattcal Alcato, Academc Pre, New York, USA, 992. [9] W. Rud, Real ad Comle Aaly, McGraw-Hll, New York, USA, 987. g