Herschel Photodetector Array Camera & Spectrometer

Similar documents
Instrument Concept. Herschel OT KP Workshop ESTEC, Feb Focal Plane Footprint. PACS Instrument & GT Programme x 32 pixels 3.2 x 3.

FIRST carrier spacecraft

PACS Spectroscopy performance and calibration PACS Spectroscopy performance and calibration

The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Observatory

THE PACS INSTRUMENT. A. Poglitsch 1 and B. Altieri 2. 1 Introduction

arxiv: v2 [astro-ph.im] 20 May 2010


SPIRE: Herschel s Submillimetre Camera and Spectrometer

arxiv: v3 [astro-ph.im] 18 Aug 2016

PACS Spectroscopy performance and calibration PACS Spectroscopy performance and calibration

PACS Spectrometer Wavelength Calibration

Announcement of Opportunity for Open Time. SPIRE PACS Parallel Mode Observers' Manual

A Beam Splitter in the µm band for PACS calibration

The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Observatory

Ivan Valtchanov Herschel Science Centre European Space Astronomy Centre (ESAC) ESA. ESAC,20-21 Sep 2007 Ivan Valtchanov, Herschel Science Centre

arxiv: v1 [astro-ph.im] 10 Oct 2013

PACS Wavelength Switching AOT release note

PACS Newsletter. Nr. 18, 22 June The PACS Picture of last month

Extragalactic Surveys: Prospects from Herschel-PACS

arxiv:astro-ph/ v1 3 Mar 2006

Problem Solving. radians. 180 radians Stars & Elementary Astrophysics: Introduction Press F1 for Help 41. f s. picture. equation.

Specsim An IFU Spectrometer Simulator

AOT RELATED ASPECTS FOR THE PACS SPECTROMETER

Fundamental Concepts of Radiometry p. 1 Electromagnetic Radiation p. 1 Terminology Conventions p. 3 Wavelength Notations and Solid Angle p.

Status and Calibration of the erosita X ray Telescope

Astronomy 203 practice final examination

1 Lecture, 2 September 1999

Spectroscopy. Stephen Eikenberry (U. Florida) Dunlap Institute Summer School 26 July 2017

SPIRE. A Bolometer Instrument for FIRST. A Proposal to the European Space Agency in response to the ESA Call For Proposals.

The Herschel Space Observatory: Mission Overview and Observing Opportunities

First observations of the second solar spectrum with spatial resolution at the Lunette Jean Rösch

NEON Archive School 2006

SPIRE/PACS Parallel Mode

ASTRO-F SURVEY AS INPUT CATALOGUES FOR FIRST. Takao Nakagawa

Optical/NIR Spectroscopy A3130. John Wilson Univ of Virginia

Introduction of near-infrared (NIR) spectroscopy. Ken-ichi Tadaki (NAOJ)

PACS spectroscopy Data Analysis

Electro-Optical System. Analysis and Design. A Radiometry Perspective. Cornelius J. Willers SPIE PRESS. Bellingham, Washington USA

Detectors for IR astronomy

Integrated spectrographs in the era of ELTs

遠赤外線検出器の開発 Development of the Far-Infrared Detectors for Astronomical observation (n-gaas based extrinsic semiconductor)

ABSTRACT. a Institute for Space Imaging Science, University of Lethbridge, Alberta, T1K 3M4, Canada; b Joint

2001 Spectrometers. Instrument Machinery. Movies from this presentation can be access at

Req ; 4.1.2; FM-ILT3 Spectrometer Spatial Calibration

Optical/IR Observational Astronomy Spectroscopy. David Buckley, SALT

FORCAST: Science Capabili2es and Data Products. William D. Vacca

Reduction procedure of long-slit optical spectra. Astrophysical observatory of Asiago

SPIRE In-flight Performance, Status and Plans Matt Griffin on behalf of the SPIRE Consortium Herschel First Results Workshop Madrid, Dec.

FIFI-LS Commissioning

The Planetary Nebula Spectrograph

25 Instruments for Optical Spectrometry

The Promise of Herschel

Thermal And Near infrared Sensor for carbon Observation (TANSO) On board the Greenhouse gases Observing SATellite (GOSAT) Research Announcement

Notes: Reference: Merline, W. J. and S. B. Howell (1995). "A Realistic Model for Point-sources Imaged on Array Detectors: The Model and Initial

Study of Physical Characteristics of High Apogee Space Debris

Spectroscopy. Stephen Eikenberry (U. Florida) Dunlap Institute Summer School 25 July 2018

Extragalactic astrophysics experiments & instruments with the 25 meter Atacama telescope

Characterisation & Use of Array Spectrometers

arxiv:astro-ph/ v1 18 Aug 2000

Continuum Observing. Continuum Emission and Single Dishes

THE OBSERVATION AND ANALYSIS OF STELLAR PHOTOSPHERES

Mid-Infrared Astronomy with IRAIT at Dome C: performances and simulations

Hanle Echelle Spectrograph (HESP)

Stray Light Rejection in Array Spectrometers

The shapes of faint galaxies: A window unto mass in the universe

The World's Largest (operating) Telescopes.

Spectroscopy with the Herschel Space Observatory

Large Area Imaging Survey of Near-Infrared Sky with Korean Compact Space Telescopes

arxiv: v1 [astro-ph.im] 22 Feb 2012

Introduction to Spectroscopic Techniques (low dispersion) M. Dennefeld (IAP-Paris) NEON school June 2008 La Palma

The SPICA Coronagraph

arxiv:astro-ph/ v1 13 Jan 2004

Astronomical calibrations of the AKARI Far-Infrared Surveyor

NICMOS Status and Plans

MERIS US Workshop. Instrument Characterization Overview. Steven Delwart

The next-generation Infrared astronomy mission SPICA Space Infrared Telescope for Cosmology & Astrophysics

Comet Measurement Techniques. Karen Meech Institute for Astronomy Session 27 1/18/05

Geant4 Simulations of GeGa module behaviour under Proton Irradiation Page 1

Observing with the Infrared Spectrograph

Some References. Measuring the Universe - G. Reike, Chapt. 3.2, 3.4, 3.5

SPIRE Observers Manual

Improving the observing efficiency of SINFONI and KMOS at the VLT by factors of 2 to 4: sophisticated sky subtraction algorithms

Real Telescopes & Cameras. Stephen Eikenberry 05 October 2017

1 General Considerations: Point Source Sensitivity, Surface Brightness Sensitivity, and Photometry

IR sounder small satellite for polar orbit weather measurements

4.2 Herschel. Introduction. Scientific objectives

ABSTRACT. Keywords: MERTIS, Breadboard, Imaging spectrometer, Bolometer array, Infrared spectrometer, Push-Broom 1. INTRODUCTION

Spitzer Space Telescope

Model SGS Dual CCD Self-Guiding Spectrograph

TNOs are Cool: A Survey of the Transneptunian Region. (37 members, 19 institutes, 9 countries)

High contrast imaging at 3-5 microns. Philip M. Hinz University of Arizona Matt Kenworthy, Ari Heinze, John Codona, Roger Angel

Spectroscopy at 8-10 m telescopes: the GTC perspective. Romano Corradi GRANTECAN

Sun Shield. Solar Paddle

A software simulator for the Herschel-SPIRE imaging photometer

Foundations of Astronomy 13e Seeds. Chapter 6. Light and Telescopes

CanariCam-Polarimetry: A Dual-Beam 10 µm Polarimeter for the GTC

Princeton University, Physics 311/312 Blackbody Radiation, Page 1 BLACKBODY RADIATION

G.Witzel Physics and Astronomy Department, University of California, Los Angeles, CA , USA

SPICA/SAFARI (SPace Infrared telescope for Cosmology and Astrophysics)

1. Give short answers to the following questions. a. What limits the size of a corrected field of view in AO?

Transcription:

Herschel Photodetector Array Camera & Spectrometer Albrecht Poglitsch, MPE Garching Christoffel Waelkens, Katholieke Universiteit Leuven Otto H. Bauer, Max-Planck-Institut für extraterrestrische Physik Jordi Cepa, Instituto de Astrofísica de Canarias Helmut Feuchtgruber, Max-Planck-Institut für extraterrestrische Physik Thomas Henning, Max-Planck-Institut für Astronomie Chris van Hoof, Interuniversity Microelectronics Center Leuven Franz Kerschbaum, Institut für Astronomie der Universität Wien Oliver Krause, Max-Planck-Institut für Astronomie Etienne Renotte, Centre Spatial de Liège Louis Rodriguez, Commissariat a l'energie Atomique, Saclay Paolo Saraceno, Istituto di Fisica dello Spazio Interplanetario Bart Vandenbussche, Katholieke Universiteit Leuven 1

FPU Mounting 9 July 2007 2

Overview Instrument concept Design Operation Flight Model test results Subunits Instrument/System level tests/verification Ground calibration Predicted in-orbit performance Observing with PACS 3

Instrument Concept Imaging photometry two bands simultaneously (60-85 or 85-125 µm and 125-210 µm) with dichroic beam splitter two filled bolometer arrays (32x16 and 64x32 pixels, full beam sampling) point source detection limit ~4 mjy (5, 1h) Integral field line spectroscopy range 57-210 µm with 5x5 pixels, image slicer, and long-slit grating spectrograph (R ~ 1500) two 16x25 Ge:Ga photoconductor arrays (stressed/unstressed) point source detection limit 3 20 x10-18 W/m 2 (5, 1h) 32 x 16 pixels 6.4 x 6.4 Focal Plane Footprint 4 64 x 32 pixels 3.2 x 3.2

Observing Modes Concept Combinations of instrument modes and satellite pointing modes Instrument modes: photometry (dual-band) line spectroscopy observation of individual lines range spectroscopy observation of extended wavelength ranges Pointing modes: stare/raster/line scan with/without nodding/off-position Internal chopper background subtraction calibration 5

FPU/Optics Chopper Photometer Optics Blue Bolometer 0.3 K Cooler Red Bolometer sgegadetector Red Spectrometer Filter Wheel I Slicer Optics Grating Grating Drive Encoder Spectrometer Optics Calibrator I and II Filter Wheel II Calibrator Optics Entrance Optics GeGa Detector Blue Spectrometer FPU 6

Photoconductor Arrays (Spectrometer) Two 25x16 pixel filled arrays Extrinsic photoconductors (Ge:Ga, stressed/unstressed) Integrated cryogenic readout electronics (CRE) Near-backgroundnoise limited performance expected CRE 7

Detector Performance: System NEP Blue Median detector NEP: Median detector NEP: 2.1 10 17 W Hz -1/2 8.9 10 18 W Hz -1/2 System NEP of red array as expected Red System NEP of blue array better than at module level 8

Detector Performance: Transient Response Response of blue detector to transient signal of 1/3 of typical background flux Fast modulation is possible at expected background with small penalty in terms of sensitivity But detailed calibration required 9

Detector Performance: Transient Response Red Blue Flux-step dependent photometric correction necessary 10

Detector Operation/Performance under p+ Irradiation Responsivity Jumps: Must be filtered out Different for LS & HS Force short chopper plateaus 11

Bolometer Arrays (Photometer) Two filled arrays: 64x32 pixels (blue) and 32x16 pixels (red) Bolometers and multiplexing readout electronics operating at 0.3K Detector/readout noise comparable to background-noise (FM) Cooler hold time ~48h Blue focal plane Pixel Photometer unit with blue + red focal planes and 3 He cooler 12

FM Bolometer Performance Pixel yield ~98% NEP ~1.7...5 x BLIP Trade-off NEP <--> speed 1/f noise Narrow frequency window for signal modulation (scanning, chopping 13

Bolometer Bandwidth <--> NEP Optimization Simulations show acceptable PSF at close-to-minimum NEP Re-optimization for actual background in orbit necessary 14

Mechanisms: Dynamics and Precision Chopper reaches duty-cycle >90% for 1/4s plateaus Grating achieves required 30ms settling time for small steps (normal scanning) 15

Filter Performance Spectrometer filter bands (grating order sorters) 16

Photometer PSF Source: ~ diffraction PSF size hole mask in front of external blackbody, contrast ~1% of background Slightly wider core / excess at 1-3 gaussian sigmasno indication for unexpected large scale wings Slight astigmatism gain up 17

Photometer Focal Plane Geometry/Distortions Positions/distortions determined with ~1/20 pixel accuracy All these precise results refer to the test optics (XY stage)! Ongoing modeling to transfer to sky 18

Spectrometer PSF across along slice direction No significant deviations from predicted performance 19

Spectrometer Focal Plane Geometry/Distortions Spatial pixel positions red/blue (spectral pixels averaged) Center positions red/blue vs. chopper angle Spatial positions of all spectral pixels (blue) Some displacement between slices in IFU Chopper-angle dependent field rotation (as in photometer) No dependency on grating position 20

Spectrometer Resolution Spectral line profiles determined with FIR gas laser Derived spectral resolution in good agreement with calculated values 21

Spectrometer Spectral Calibration FIR laser, H20 + CO (absorption cell) Requirement peak position to within 10-20% of a spectral resolution element fulfilled (Littrow + pixel correction terms) n=3, 2 n=2 n=1 C=1pF C=0.2pF C=0.1pF Leak models 22

Predicted Spectrometer Sensitivity Proposal sensitivity partly achieved...but cosmic rays! Spectrometer velocity resolution Spectral line sensitivity [W/m 2 ] (5, 1 hour) Continuum sensitivity [Jy] (5, 1 hour) 23

Predicted Photometer Sensitivity Point source sensitivity equivalent to mapping speed of ~10 x 10 in 1 day 24

Spectrometer Observing Modes Line Spectroscopy: observation of individual line(s) Chop/nod or wavelength switching Staring or mapping R ~ 1500 Range Spectroscopy: observation of extended range(s) Chop/nod or off position Staring or mapping SED mode 25

Spectrometer Line Scan Schemes Bright Line Mode Faint Line Mode 26

Photometer Observing Modes Dual Band: 70+160 μm or 100+160 μm

Remarks on Scan Map βουστροφηδόν

Sneak preview (SPIE 2010) 1.4 x1.4 XMM COSMOS (Hasinger et al.) ~100 Mpc spatial scale ~10 14 M sun mass scale ~200h for full 2sq.deg field to 11mJy Simulated deep PACS sub-field survey