BAO and Lyman-α with BOSS

Similar documents
Dark Energy. Cluster counts, weak lensing & Supernovae Ia all in one survey. Survey (DES)

eboss Lyman-α Forest Cosmology

BARYON ACOUSTIC OSCILLATIONS. Cosmological Parameters and You

From quasars to dark energy Adventures with the clustering of luminous red galaxies

Introductory Review on BAO

Baryon acoustic oscillations A standard ruler method to constrain dark energy

Results from the Baryon Oscillation Spectroscopic Survey (BOSS)

Constraining Dark Energy with BOSS. Nicolas Busca - APC Rencontres de Moriond 19/10/2010

BAO & RSD. Nikhil Padmanabhan Essential Cosmology for the Next Generation VII December 2017

Baryon Acoustic Oscillations (BAO) in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample

LSS: Achievements & Goals. John Peacock Munich 20 July 2015

Jorge Cervantes-Cota, ININ. on behalf of the DESI Collaboration

Measuring Neutrino Masses and Dark Energy

Neutrino Mass & the Lyman-α Forest. Kevork Abazajian University of Maryland

Large Scale Structure After these lectures, you should be able to: Describe the matter power spectrum Explain how and why the peak position depends on

BAO from the DR14 QSO sample

Recent BAO observations and plans for the future. David Parkinson University of Sussex, UK

Rupert Croft. QuickTime and a decompressor are needed to see this picture.

Baryon Acoustic Oscillations and Beyond: Galaxy Clustering as Dark Energy Probe

Dark Energy in Light of the CMB. (or why H 0 is the Dark Energy) Wayne Hu. February 2006, NRAO, VA

Large Scale Structure (Galaxy Correlations)

THE PAU (BAO) SURVEY. 1 Introduction

The Power. of the Galaxy Power Spectrum. Eric Linder 13 February 2012 WFIRST Meeting, Pasadena

Basic BAO methodology Pressure waves that propagate in the pre-recombination universe imprint a characteristic scale on

Cross-correlations of CMB lensing as tools for cosmology and astrophysics. Alberto Vallinotto Los Alamos National Laboratory

Growth of structure in an expanding universe The Jeans length Dark matter Large scale structure simulations. Large scale structure

Mapping the Universe spectroscopic surveys for BAO measurements Meeting on fundamental cosmology, june 2016, Barcelona, Spain Johan Comparat

EUCLID Spectroscopy. Andrea Cimatti. & the EUCLID-NIS Team. University of Bologna Department of Astronomy

Cosmology on the Beach: Experiment to Cosmology

Fundamental cosmology from the galaxy distribution. John Peacock Hiroshima 1 Dec 2016

Testing General Relativity with Redshift Surveys

BAO analysis from the DR14 QSO sample

Introduction to SDSS -instruments, survey strategy, etc

Cosmology with high (z>1) redshift galaxy surveys

Present and future redshift survey David Schlegel, Berkeley Lab

SDSS-IV and eboss Science. Hyunmi Song (KIAS)

Large Scale Structure with the Lyman-α Forest

Measuring the Cosmic Distance Scale with SDSS-III

Really, really, what universe do we live in?

Physics 463, Spring 07. Formation and Evolution of Structure: Growth of Inhomogenieties & the Linear Power Spectrum

NEUTRINO COSMOLOGY. ν e ν µ. ν τ STEEN HANNESTAD UNIVERSITY OF AARHUS PARIS, 27 OCTOBER 2006

Galaxies 626. Lecture 3: From the CMBR to the first star

Cosmological observables and the nature of dark matter

Beyond BAO: Redshift-Space Anisotropy in the WFIRST Galaxy Redshift Survey

Perturbation Theory. power spectrum from high-z galaxy. Donghui Jeong (Univ. of Texas at Austin)

Measurements of Dark Energy

An accurate determination of the Hubble constant from baryon acoustic oscillation datasets

Outline. Walls, Filaments, Voids. Cosmic epochs. Jeans length I. Jeans length II. Cosmology AS7009, 2008 Lecture 10. λ =

Énergie noire Formation des structures. N. Regnault C. Yèche

Lecture 03. The Cosmic Microwave Background

Large-scale structure as a probe of dark energy. David Parkinson University of Sussex, UK

Lecture 27 The Intergalactic Medium

Current status of the ΛCDM structure formation model. Simon White Max Planck Institut für Astrophysik

Lyman-α Cosmology with BOSS Julián Bautista University of Utah. Rencontres du Vietnam Cosmology 2015

ROSAT Roentgen Satellite. Chandra X-ray Observatory

Chapter 9. Cosmic Structures. 9.1 Quantifying structures Introduction

Brief Introduction to Cosmology

9.1 Large Scale Structure: Basic Observations and Redshift Surveys

Cosmology with Wide Field Astronomy

Galaxy formation and evolution. Astro 850

Measuring Baryon Acoustic Oscillations with Angular Two-Point Correlation Function

Really, what universe do we live in? White dwarfs Supernova type Ia Accelerating universe Cosmic shear Lyman α forest

Quasar Absorption Lines

Physics of the Large Scale Structure. Pengjie Zhang. Department of Astronomy Shanghai Jiao Tong University

QSO ABSORPTION LINE STUDIES with the HUBBLE SPACE TELESCOPE

NEUTRINO COSMOLOGY. n m. n e. n t STEEN HANNESTAD UNIVERSITY OF AARHUS PLANCK 06, 31 MAY 2006

Vasiliki A. Mitsou. IFIC Valencia TAUP International Conference on Topics in Astroparticle and Underground Physics

Neutrino Mass Limits from Cosmology

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy

The State of Tension Between the CMB and LSS

What do we really know about Dark Energy?

Correlations between the Cosmic Microwave Background and Infrared Galaxies

Is there a hope of discovering new physics in the Euclid era? Francisco Prada Instituto de Física Teórica UAM-CSIC, Madrid IAA-CSIC, Granada

Astronomy 182: Origin and Evolution of the Universe

Cosmology II: The thermal history of the Universe

Exploring dark energy in the universe through baryon acoustic oscillation

Background Picture: Millennium Simulation (MPA); Spectrum-Roentgen-Gamma satellite (P. Predehl 2011)

Concordance Cosmology and Particle Physics. Richard Easther (Yale University)

Tests on the Expansion of the Universe

Probing dark matter and the physical state of the IGM with the Lyα forest

The Plasma Physics and Cosmological Impact of TeV Blazars

MApping the Most Massive Overdensity Through Hydrogen (MAMMOTH) Zheng Cai (UCSC)

Neutrinos in Cosmology (IV)

The cosmological principle is not in the sky

LSST + BigBOSS. 3.5 deg. 3 deg

Large Scale Structure

BAO & RSD. Nikhil Padmanabhan Essential Cosmology for the Next Generation December, 2017

Theoretical developments for BAO Surveys. Takahiko Matsubara Nagoya Univ.

Mapping the z 2 Large-Scale Structure with 3D Lyα Forest Tomography

Large Scale Structure (Galaxy Correlations)

Cosmological Constraints from a Combined Analysis of Clustering & Galaxy-Galaxy Lensing in the SDSS. Frank van den Bosch.

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy

Cosmology with Peculiar Velocity Surveys

NeoClassical Probes. of the Dark Energy. Wayne Hu COSMO04 Toronto, September 2004

Large Scale Structure I

Galaxy Formation Now and Then

COSMIC MICROWAVE BACKGROUND ANISOTROPIES

Baryon Acoustic Oscillations Part I

Physics 24: The Big Bang, Week 3: Hubble s Law David Schlegel, LBNL

The Epoch of Reionization: Observational & Theoretical Topics

Transcription:

BAO and Lyman-α with BOSS Nathalie Palanque-Delabrouille (CEA-Saclay) BAO and Ly-α The SDSS-III/BOSS experiment Current results with BOSS - 3D BAO analysis with QSOs - 1D Ly-α power spectra and ν mass - Highlights on BAO with galaxies Deep surveys, Large Scale Structures and dark energy Valencia, Mar 29-30, 2012 1

Baryonic Acoustic Oscillations D. J. Eisenstein Acoustic propagation of an overdensity: Sound wave through relativistic plasma (baryons, electrons, photons). Baryon and photon perturbations travel together till recombination (z~1100). Radius of baryonic overdensity then frozen at 150 Mpc (comobile). Standard ruler: Structures form in overdense shells At all z, small excess of galaxies 150 Mpc (comobile) away from other galaxies. N. Palanque-Delabrouille Valencia, Mar. 29-30, 2012 2

3D observation of BAO peak 3D observation of density excess Position of acoustic peak size of sound horizon s Transverse direction Δθ = s/(1+z)/d A (z) Sensitive to angular distance D A (z) same as SNIa: D L (z) = (1+z) 2 D A (z) Radial direction (along the line of sight) Δz = s H(z)/c Sensitive to Hubble parameter H(z) Requires accurate z spectroscopy (5x more volume to probe if photo-z) N. Palanque-Delabrouille Valencia, Mar. 29-30, 2012 3

3D observation of BAO peak First observation: SDSS 2005: BAO peak measured through galaxy-galaxy power spectrum (2dFGRS) or correlation function (SDSS) SDSS: ~50 000 LRGs Luminous Red Galaxies <z> ~ 0.35 D. Eisenstein et al., ApJ, 633, 560 (2005) Improvements? Increase significance more LRGs Probe different (higher) redshifts new probes QSOs N. Palanque-Delabrouille Valencia, Mar. 29-30, 2012 4

QSO s as IGM probe Use QSO as background lighthouse IGM is mostly ionized H, BUT some neutral H in IGM absorbs light at λ Ly-α (n=2 n=1) N. Palanque-Delabrouille Valencia, Mar. 29-30, 2012 5

QSO s as IGM probe N. Palanque-Delabrouille Valencia, Mar. 29-30, 2012 6

QSO s as IGM probe Use Ly-α forests of quasars (2.2<z<4 visible range) Transmitted flux fraction exp(-τ) where τ n HI (1+z) 3.8 Low density gas (IGM) expected to follow dark matter density BAO measurement for z~2.5 Ly-α forest QSO continuum High-resolution spectrum of z=3.6 QSO N. Palanque-Delabrouille Valencia, Mar. 29-30, 2012 7

BAO and Lyman-α with BOSS BAO and Ly-α The SDSS-III/BOSS experiment Current results with BOSS - 3D BAO analysis with QSOs - 1D Ly-α power spectra and ν mass - Highlights on BAO with galaxies 8

SDSS-III / BOSS Sloan Telescope - 2.5m telescope at Apache Point (New Mexico) - 7 deg2 field - Total survey area: 10,000 deg2 Upgrades for SDSS-III spectroscopic survey - New fiber system 1000 fibers - Replacement of red CCDs LRG at higher z - Replacement of blue CCDs (UV) Ly-α forest program Data taking 2009-2014 N. Palanque-Delabrouille Valencia, Mar. 29-30, 2012 9

SDSS-III / BOSS CCD λ Fiber number 1000 N. Palanque-Delabrouille Valencia, Mar. 29-30, 2012 10

SDSS-III coverage z=0.6 z=0.5 z=0.4 z=0.3 z=0.2 z=0.1 SDSS main galaxy survey 1 million galaxies Too little volume for BAO SDSS-I + SDSS-II Luminous Red Galaxies (LRG) z ~ 0.35 80,000 galaxies 8,000 deg 2 SDSS-III BOSS 1.5M LRG with z up to 0.7 10,000 deg 2 Volume x2, Density x5 + N. Palanque-Delabrouille Valencia, Mar. 29-30, 2012 11

SDSS-III coverage z=2.5 z=1.5 z=0.5 SDSS-III BOSS 1.5M LRG with z up to 0.7 10,000 deg 2 Volume x2, Density x5 160,000 2.2<z<4.5 quasars N. Palanque-Delabrouille Valencia, Mar. 29-30, 2012 12

QSO target selection in SDSS Hard to distinguish z>2.2 QSOs from stars Intensive use of photometric surveys ugriz (SDSS) + NIR (UKIDSS) + UV (GALEX) g-r Stars z<2.2 QSOs z>2.2 QSOs Dedicated algorithms Yèche et al., A&A 523, A14 (2010) Bovy et al., ApJ 729, 141 (2011) Kirkpatrick et al., AJ 743, 125 (2011) Time variability Palanque-Delabrouille et al., A&A 530, A122 (2011) u-g Results N. Ross et al., AJ Suppl., 199, 3 (2012) Target budget: 40 deg -2 15-20 deg -2 QSOs at z>2.2 28 deg -2 QSOs with variability (220 deg 2 only) N. Palanque-Delabrouille Valencia, Mar. 29-30, 2012 13

QSO target selection in SDSS Cumulative number of z>2.2 QSOs So far 130,000 QSOs including 85,000 z>2.2 QSOs over 5500 deg 2 Year 2 Year 3 Year 1 On average 4000 z>2.2 QSOs per month End of survey (July 2014) 150,000 to 200,000 z>2.2 QSOs Jan 2010 Summer 2010 Summer 2011 MJD N. Palanque-Delabrouille Valencia, Mar. 29-30, 2012 14

BAO and Lyman-α with BOSS BAO and Ly-α The SDSS-III/BOSS experiment Current results with BOSS - 3D BAO analysis with QSOs - 1D Ly-α power spectra and ν mass - Highlights on BAO with galaxies 15

QSO Ly-α forest 1 st year BOSS results A. Slozar et al., JCAP 09, 001 (2011) Typical BOSS QSO Very noisy (SNR~1-2) λ>λ Ly-α : fluctuations from noise λ<λ Ly-α : fluctuations from noise and absorption z=3.3 Data Set Year one : 14,000 QSOs with z>2.15 Demonstration of the method Correlation function for r<100mpc/h (below BAO scale) N. Palanque-Delabrouille Valencia, Mar. 29-30, 2012 16

Correlation function of QSO Ly-α forests Transmitted flux fraction F = Flux / QSO continuum δ F F F 1 continuum ξ F ( r ) = δ F ( x ) δ F ( x + r ) N. Palanque-Delabrouille Valencia, Mar. 29-30, 2012 17

Correlation function of QSO Ly-α forests 1 st year BOSS results A. Slozar et al., JCAP 09, 001 (2011) First observation in 3D of clustering in IGM Correlations in HI seen to 60 Mpc/h Projection over r = r of the 3D correlation function r ξ F (r) Data ΛCDM + 2 free parameters related to HI bias and mean absorption Results consistent with ΛCDM simulations N. Palanque-Delabrouille Valencia, Mar. 29-30, 2012 18

Correlation function of QSO Ly-α forests Next step : out to r> BAO peak (105 Mpc/h) coming out soon 0.03 0.02 r ξ F (r) 0.01 0 20 40 60 80 100 120 140 160 180 200 Expected performance at end of BOSS survey with 15 QSO/deg 2, <z>=2.5 and 10,000 deg 2 D V (D A2 /H) 1/3 δd v ~ 2% r (Mpc/h) N. Palanque-Delabrouille Valencia, Mar. 29-30, 2012 19

Large-scale redshift distortions Peculiar velocity overdense region Real Space Acceleration towards overdense regions Flattening of radial length in redshift space (over tens Mpc) Measurable with Kaiser formula N. Kaiser, MNRAS 227, 1 (1987) P F k ( ) = P F k,cos(θ) ( ) = b F 2 (1+ β cos(θ) 2 ) 2 P L (k) P L (k): linear power spectrum Redshift Space θ: angle between vector and QSO line of sight N. Palanque-Delabrouille Valencia, Mar. 29-30, 2012 20

Large-scale redshift distortions LRG Data LRG N-body Clearly seen with 44,000 LRGs <z>~0.6 in BOSS M. White et al., ApJ 728, 126 (2011) Ly-α forests Flattening of correlation function distribution First observation of redshift distortion at z~2.5 (β=0 excluded at 5σ) Gravity is forming structures at z~2.5 Distortions quantified with multipole decomposition 0.16 < b < 0.24 @95% 0.44 < β <1.20 @95% N. Palanque-Delabrouille Valencia, Mar. 29-30, 2012 21

BAO and Lyman-α with BOSS BAO and Ly-α The SDSS-III/BOSS experiment Current results with BOSS - 3D BAO analysis with QSOs - 1D Ly-α power spectra and ν mass - Highlights on BAO with galaxies 22

At z < z NR ( m ν ): Large-scale structures and neutrinos Neutrinos are massive but m ν is small relativistic during most of history of Universe δ ν ~ 0 at high z (free streaming) Spreading out grav. potential, growth suppressed on small scales by free-streaming ν Heavy neutrinos: Strong suppression over short range ΔP/P = -8 Ω ν / Ω m = -8 f ν Light neutrinos: Weak suppression over long range ν ν N. Palanque-Delabrouille Valencia, Mar. 29-30, 2012 23

At z < z NR ( m ν ): Large-scale structures and neutrinos Neutrinos are massive but m ν is small relativistic during most of history of Universe δ ν ~ 0 at high z (free streaming) Spreading out grav. potential, growth suppressed on small scales by free-streaming ν 0.14 ev Heavy neutrinos: Strong suppression over short range ΔP/P = -8 Ω ν / Ω m = -8 f ν Light neutrinos: Weak suppression over long range P(k,Σm i ) P(k,Σm i = 0) 1.4 ev Shape is z-dependent k (Mpc/h) -1 8f ν N. Palanque-Delabrouille Valencia, Mar. 29-30, 2012 24

Large-scale structures and neutrinos Best seen on small scales Ly-α data z-dependence large z range 5000 4000 N QSO (z) With BOSS: 3 2.5 2.1<z<2.3 2.3<z<2.5 2.5<z<2.7 2.7<z<2.9 2.9<z<3.1 3.1<z<3.3 3.3<z<3.5 3000 2000 2 1.5 z = 2.2 3.5<z<3.7 3.7<z<3.9 3.9<z<4.1 4.1<z<4.3 4.3<z<4.5 1000 N QSO (z) 0 2 2.5 3 3.5 4 4.5 mean z HI on spectrum part 2 3 4 z 1 0.5 0 z = 4.4 1050 1100 1150 1200 1250 1300 1350 1400 1450! (Å) ~16,000 QSOs after cuts on S/N and spectrograph resolution in QSO spectrum rest-frame N. Palanque-Delabrouille Valencia, Mar. 29-30, 2012 25

Large-scale structures and neutrinos P(k)*k/! k P(k) / π -1 10 σ stat 5x smaller than previous measurements Mc Donald et al., 2004 SDSS-I -2 10 4.3<z<4.5 4.1<z<4.3 3.9<z<4.1 3.7<z<3.9 3.5<z<3.7 3.3<z<3.5 3.1<z<3.3 2.9<z<3.1 2.7<z<2.9 2.5<z<2.7 2.3<z<2.5 2.1<z<2.3 BOSS 1D power spectra z=4.4 z=2.2-3 10-2 10-1 k (km/s) to be compared to hydro-simulations including neutrinos current limits: m ν < 0.2 ev (95% CL) (Seljak et al. 2006, issue of bias) m ν < 0.9 ev (95% CL) (Viel et al. 2010, Ly-α only) N. Palanque-Delabrouille Valencia, Mar. 29-30, 2012 26

BAO and Lyman-α with BOSS BAO and Ly-α The SDSS-III/BOSS experiment Current results with BOSS - 3D BAO analysis with QSOs - 1D Ly-α power spectra and ν mass - Highlights on BAO with galaxies on arxiv TODAY! (arxiv:1203.6594) 27

BAO with BOSS massive galaxies 330,000 galaxies over 3300 deg 2 <z> = 0.57 DR9 sample (July 2012) 1/3 of total BOSS Deeper and denser than SDSS-II (DR7) BOSS 80,000 LRGs, <z> = 0.35 SDSS-II N. Palanque-Delabrouille Valencia, Mar. 29-30, 2012 28

BAO with BOSS massive galaxies position of BAO peak cz D V = H(z) (1+ z)2 D 2 A (z) Correlation function 1/ 3 distance D V relative to sound horizon s D V /s = α ( D V /s) fiducial fiducial = WMAP7 Ω M = 0.274 h = 0.7 Ω b h 2 = 0.0224 Power spectrum α = 1.022 ± 0.017 5σ detection N. Palanque-Delabrouille Valencia, Mar. 29-30, 2012 29

BOSS (DR9) + SDSS-II (DR7) DR9 <z> = 0.35 DR7 DR7 DR9 <z> = 0.57 combined BAO peak detected at 6.7 σ N. Palanque-Delabrouille Valencia, Mar. 29-30, 2012 30

BAO and ΛCDM BOSS 2 w 0 w a CDM Padmanabhan et al., 2012 Blake et al, 2011 1 0 w a 1 Beutler et al., 2011 2 CMB+CMASS+LRG+SN CMB+SN CMB+CMASS+LRG 3 2.5 2 1.5 1 0.5 0 w 0 N. Palanque-Delabrouille Valencia, Mar. 29-30, 2012 31

BAO and ΛCDM BOSS 2 1 w 0 w a CDM 0 w a 1 2 CMB+CMASS+LRG+SN CMB+SN CMB+CMASS+LRG 3 2.5 2 1.5 1 0.5 0 w 0 N. Palanque-Delabrouille Valencia, Mar. 29-30, 2012 32

Conclusions on BOSS results Massive galaxies at <z> = 0.57 Detection of BAO peak in BOSS at 5σ 7σ (all SDSS data combined) Lyman-α forests at <z> = 2.5 First detection of redshift space distortions at z=2.5 Ongoing blind analysis for 3D BAO in IGM 1D power spectrum soon m ν BOSS quasars σ (D V ) / D V 0.1 0.01 BOSS (2009-2014) quasars BOSS galaxies galaxies 0 1 2 3 z N. Palanque-Delabrouille Valencia, Mar. 29-30, 2012 33