Spin Networks and Anyonic Topological Quantum Computing L. H. Kauffman, UIC.

Similar documents
Spin Networks and Anyonic Topological Quantum Computing. L. H. Kauffman, UIC.

where the box contains a finite number of gates from the given collection. Examples of gates that are commonly used are the following: a b

Counting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs

Necessary and sucient conditions for some two. Abstract. Further we show that the necessary conditions for the existence of an OD(44 s 1 s 2 )

for all x in [a,b], then the area of the region bounded by the graphs of f and g and the vertical lines x = a and x = b is b [ ( ) ( )] A= f x g x dx

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 3 : Interaction by Particle Exchange and QED. Recap

Lecture 8: Abstract Algebra

N=2 Gauge Theories. S-duality, holography and a surprise. DG, G. Moore, A. Neitzke to appear. arxiv:

SOME COPLANAR POINTS IN TETRAHEDRON

SOME INTEGRAL INEQUALITIES FOR HARMONICALLY CONVEX STOCHASTIC PROCESSES ON THE CO-ORDINATES

MCH T 111 Handout Triangle Review Page 1 of 3

Qubit and Quantum Gates

Lecture 6: Coding theory

Graph States EPIT Mehdi Mhalla (Calgary, Canada) Simon Perdrix (Grenoble, France)

18.06 Problem Set 4 Due Wednesday, Oct. 11, 2006 at 4:00 p.m. in 2-106

CS 491G Combinatorial Optimization Lecture Notes

Eigenvectors and Eigenvalues

Implication Graphs and Logic Testing

Factorising FACTORISING.

Lecture 2: Cayley Graphs

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Generalized Kronecker Product and Its Application

Edexcel Level 3 Advanced GCE in Mathematics (9MA0) Two-year Scheme of Work

I 3 2 = I I 4 = 2A

Topological quantum computation. John Preskill, Caltech Biedenharn Lecture 4 15 September 2005

Lecture Notes No. 10

POSITIVE IMPLICATIVE AND ASSOCIATIVE FILTERS OF LATTICE IMPLICATION ALGEBRAS

CS 360 Exam 2 Fall 2014 Name

SEMI-EXCIRCLE OF QUADRILATERAL

CARLETON UNIVERSITY. 1.0 Problems and Most Solutions, Sect B, 2005

A Primer on Continuous-time Economic Dynamics

Can one hear the shape of a drum?

Learning Partially Observable Markov Models from First Passage Times

CIT 596 Theory of Computation 1. Graphs and Digraphs

John Preskill, Caltech KITP 7 June 2003

On Implicative and Strong Implicative Filters of Lattice Wajsberg Algebras

Total score: /100 points

Section 2.3. Matrix Inverses

SECTION A STUDENT MATERIAL. Part 1. What and Why.?

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite!

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point

arxiv: v1 [cond-mat.str-el] 22 Dec 2016

Sturm-Liouville Theory

#A42 INTEGERS 11 (2011) ON THE CONDITIONED BINOMIAL COEFFICIENTS

Logic Synthesis and Verification

Exercise 3 Logic Control

arxiv: v2 [cond-mat.str-el] 12 Nov 2014

On the Spectra of Bipartite Directed Subgraphs of K 4

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6

Topological Quantum Compiling

Now we must transform the original model so we can use the new parameters. = S max. Recruits

Chapter Five - Eigenvalues, Eigenfunctions, and All That

Project 6: Minigoals Towards Simplifying and Rewriting Expressions

Linear Algebra Introduction

MATH 122, Final Exam

arxiv: v2 [cond-mat.str-el] 18 Sep 2015

NON-DETERMINISTIC FSA

Graph Theory. Simple Graph G = (V, E). V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)}

ILLUSTRATING THE EXTENSION OF A SPECIAL PROPERTY OF CUBIC POLYNOMIALS TO NTH DEGREE POLYNOMIALS

Logic, Set Theory and Computability [M. Coppenbarger]

Analysis of Temporal Interactions with Link Streams and Stream Graphs

A Short Introduction to Self-similar Groups

Solutions to Problem Set #1

Math 32B Discussion Session Week 8 Notes February 28 and March 2, f(b) f(a) = f (t)dt (1)

arxiv: v1 [quant-ph] 2 Apr 2007

Tutorial Worksheet. 1. Find all solutions to the linear system by following the given steps. x + 2y + 3z = 2 2x + 3y + z = 4.

CS 2204 DIGITAL LOGIC & STATE MACHINE DESIGN SPRING 2014

Pre-Lie algebras, rooted trees and related algebraic structures

22: Union Find. CS 473u - Algorithms - Spring April 14, We want to maintain a collection of sets, under the operations of:

Lecture 1 - Introduction and Basic Facts about PDEs

EE 108A Lecture 2 (c) W. J. Dally and P. Levis 2

Polynomials. Polynomials. Curriculum Ready ACMNA:

Electromagnetism Notes, NYU Spring 2018

Review of Gaussian Quadrature method

COMPARISON OF DIFFERENT APPROXIMATIONS OF FUZZY NUMBERS

F / x everywhere in some domain containing R. Then, + ). (10.4.1)

Figure 1. The left-handed and right-handed trefoils

Part 4. Integration (with Proofs)

Entanglement Purification

Mid-Term Examination - Spring 2014 Mathematical Programming with Applications to Economics Total Score: 45; Time: 3 hours

Measurement-Only Topological Quantum Computation

Discrete Structures Lecture 11

Compression of Palindromes and Regularity.

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution

ANALYSIS AND MODELLING OF RAINFALL EVENTS

Alpha Algorithm: Limitations

Geodesics on Regular Polyhedra with Endpoints at the Vertices

Symmetrical Components 1

arxiv: v2 [quant-ph] 15 Aug 2008

If we have a function f(x) which is well-defined for some a x b, its integral over those two values is defined as

Unfoldings of Networks of Timed Automata

Hyers-Ulam stability of Pielou logistic difference equation

NEW CIRCUITS OF HIGH-VOLTAGE PULSE GENERATORS WITH INDUCTIVE-CAPACITIVE ENERGY STORAGE

( ) { } [ ] { } [ ) { } ( ] { }

Bivariate drought analysis using entropy theory

CSC2542 State-Space Planning

Chapter 4 State-Space Planning

A STUDY OF Q-CONTIGUOUS FUNCTION RELATIONS

The Stirling Engine: The Heat Engine

"Add"-operator "Mul"-operator "Pow"-operator. def. h b. def

Transcription:

Spin Networks n Anyoni Topologil Quntum Computing L. H. Kuffmn, UIC qunt-ph/0603131 n qunt-ph/0606114 www.mth.ui.eu/~kuffmn/unitry.pf Spin Networks n Anyoni Topologil Computing Louis H. Kuffmn n Smuel J. Lomono Jr. Deprtment of Mthemtis, Sttistis n Computer Siene (m/ 249), 851 South Morgn Street, University of Illinois t Chigo, Chigo, Illinois 60607-7045, USA Deprtment of Computer Siene n Eletril Engineering, University of Mryln Bltimore County, 1000 Hilltop Cirle, Bltimore, MD 21250, USA

Journl of Knot Theory n Its Rmifitions Vol. 16, No. 3 (2007) 267 332 Worl Sientifi Pulishing Compny q-deformed SPIN NETWORKS, KNOT POLYNOMIALS AND ANYONIC TOPOLOGICAL QUANTUM COMPUTATION LOUIS H. KAUFFMAN Deprtment of Mthemtis, Sttistis n Computer Siene (m/ 249), 851 South Morgn Street, University of Illinois t Chigo, Chigo, Illinois 60607-7045, USA kuffmn@ui.eu SAMUEL J. LOMONACO JR. Deprtment of Computer Siene n Eletril Engineering, University of Mryln Bltimore County, 1000 Hilltop Cirle, Bltimore, MD 21250, USA lomono@um.eu Aepte 10 July 2006 ABSTRACT We review the q-eforme spin network pproh to Topologil Quntum Fiel Theory n pply these methos to proue unitry representtions of the ri groups tht re ense in the unitry groups. Our methos re roote in the rket stte sum moel for the Jones polynomil. We give our results for lrge lss of representtions se on vlues for the rket polynomil tht re roots of unity. We mke seprte n self-ontine stuy of the quntum universl Fioni moel in this frmework. We pply our results to give quntum lgorithms for the omputtion of the olore Jones polynomils for knots n links, n the Witten Reshetikhin Turev invrint of three mnifols. Keywors: Knot; link; Reiemeister move; rket polynomil; Jones polynomil; olore Jones polynomils; Kuffmn polynomil; spin network; quntum omputtion; quntum omputer; Temperley Lie lger; reoupling theory; Fioni moel; ri group; unitry representtion. Mthemtis Sujet Clssifition 2000: 57M27

Quntum Mehnis in Nutshell 0. A stte of physil system orrespons to unit vetor S> in omplex vetor spe. U 1. (mesurement free) Physil proesses re moele y unitry trnsformtions pplie to the stte vetor: S> -----> U S> 2. If S> z1 e1> + z2 e2> +... + zn en> in mesurement sis { e1>, e2>,..., en>}, then mesurement of S> yiels ei> with proility zi ^2.

Preprtion,Trnsformtion, Mesurement. Psi <T U S> Psi*Psi <S U* T> <T U S> U <T S> U*

Quit A quit is the quntum version of lssil it of informtion. 0> + 1> mesure 0> 1> pro ^2 pro ^2

0> 1> 0> 1> - 1> 0> 1> 0> 0> Mh-Zener Interferometer 0> 1> 1> 0> 0> - 1> [ ] H 1 1 1-1 [ 0 1 ] /Sqrt(2) M 1 HMH [ ] 1 0 0-1 0

Quntum Gtes re unitry trnsformtions enliste for the purpose of omputtion. CNOT 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 CNOT 00> 00> CNOT 01> 01> CNOT 10> 11> CNOT 11> 10>

Quntum Computtion of the Tre of Unitry Mtrix U 1. A goo exmple of quntum lgorithm. 2. Useful for the quntum omputtion of knot polynomils suh s the Jones polynomil.

Hmr Test 0> phi> H U H Mesure 0> 0> ours with proility 1/2 + Re[<phi U phi>]/2

Grover s Algorithm (1996) [O(Sqrt(N)) time, O(log N) storge spe] Given n unsorte tse with N entries. {0,1,2,...,N-1} Prolem: Fin prtiulr element w in the tse. Form N-imensionl stte spe V. H n oservle ting on V with N istint eigenvlues. { 0>, 1>, 2>,... N-1>} sis for V.

Introue stte vetor s> (1/Sqrt(N)) Sum x> sum is over the sis of V. w> s> Ie: Use unitry opertions to rotte s> into the w> iretion.

w> Pi/2 - Thet s> Thet U(w) refletion in plne perp to w>. U(s) refletion in s>. s > U(s)U(w) s> is rotte towr w> y 2 x Thet. Do this pprox Pi Sqrt(N)/4 times. For N lrge the proility of not oserving w> is O(1/N).

Polynomil-Time Algorithms for Prime Ftoriztion n Disrete Logrithms on Quntum Computer rxiv:qunt-ph/9508027 v2 25 Jn 1996 Peter W. Shor Astrt A igitl omputer is generlly elieve to e n effiient universl omputing evie; tht is, it is elieve le to simulte ny physil omputing evie with n inrese in omputtion time y t most polynomil ftor. This my not e true when quntum mehnis is tken into onsiertion. This pper onsiers ftoring integers n fining isrete logrithms, two prolems whih re generlly thought to e hr on lssil omputer n whih hve een use s the sis of severl propose ryptosystems. Effiient rnomize lgorithms re given for these two prolems on hypothetil quntum omputer. These lgorithms tke numer of steps polynomil in the input size, e.g., the numer of igits of the integer to e ftore. Keywors: lgorithmi numer theory, prime ftoriztion, isrete logrithms, Churh s thesis, quntum omputers, fountions of quntum mehnis, spin systems, Fourier trnsforms AMS sujet lssifitions: 81P10, 11Y05, 68Q10, 03D10

Universl Gtes A two-quit gte G is unitry liner mpping G : V V V V where V is two omplex imensionl vetor spe. We sy tht the gte G is universl for quntum omputtion (or just universl) if G together with lol unitry trnsformtions (unitry trnsformtions from V to V ) genertes ll unitry trnsformtions of the omplex vetor spe of imension 2 n to itself. It is well-known [44] tht CNOT is universl gte. Lol Unitries re generte (up to ensity) y smll numer of gtes. Expliit gte reliztion in the sis fj0i; j1ig: H D p 1 1 1 ; S D 2 1 1 1 0 0 i ; T D 1 0 0 e i4

A gte G is universl iff G is entngling. A gte G, s ove, is si to e entngling if there is vetor αβ α β V V suh tht G αβ is not eomposle s tensor prout of two quits. Uner these irumstnes, one sys tht G αβ is entngle. In [6], the Brylinskis give generl riterion of G to e universl. They prove tht two-quit gte G is universl if n only if it is entngling.

An Entngle Stte

An Entnglement Criterion Remrk. A two-quit pure stte φ 00 + 01 + 10 + 11 is entngle extly when ( ) 0. It is esy to use this ft to hek when speifi mtrix is, or is not, entngling. The Bell Sttes R 00 (1/ 2) 00 (1/ 2) 11, R 01 (1/ 2) 01 + (1/ 2) 10, R 10 (1/ 2) 01 + (1/ 2) 10, R 11 (1/ 2) 00 + (1/ 2) 11.

Briing n the Yng-Bxter Eqution R I I R R I I R I R R I R I I R (R I)(I R)(R I) (I R)(R I)(I R).

Let V e two omplex imensionl vetor spe. Briing Opertors re Universl Quntum Gtes Universl gtes n e onstrute from ertin solutions to the Yng-Bxter Eqution R: V V V V (R I)(I R)(R I) (I R)(R I)(I R).

Representtive Exmples of Unitry Solutions to the Yng-Bxter Eqution tht re Universl Gtes. te. R R R 0 1/ 2 0 0 1/ 2 0 1/ 2 1/ 2 0 0 1/ 2 1/ 2 0 1/ 2 0 0 1/ 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 Swp Gte with Phse R 0 0 0 0 0 0 0 0 0 0 0 0 Bell Bsis Chnge Mtrix R + R* Sqrt[2]I Corresponing Link Invrint is Speil Cse of Homfly Poly. (virtul rossing orrespons to swp gte.)

Issues 1. Giving Universl Gte tht is topologil gives PARTIAL topologil quntum omputing euse the U(2) lol opertions hve not een me topologil. 2. Nevertheless, Yng-Bxter gtes re interesting to onstrut n help to isuss Topologil Entnglement versus Quntum Entnglement.

Quntum Entnglement n Topologil Entnglement An exmple of Arvin [1] mkes the possiility of suh onnetion even more tntlizing. Arvin ompres the Borromen rings (see figure 2) n the GHZ stte ψ ( β 1 β 2 β 3 α 1 α 2 α 3 )/ 2. ( 000> - 111>)/Sqrt(2) Is the Arvin nlogy only superfiil?!

Do we nee Quntum Knots? K> + K > 7 777 7 + 1 K: proility ^2 K :proility ^2 K K Oserving Quntum Knot

The Temperley-Lie Ctegory Ientity Ω > Θ < Θ Ω < > Ω Θ > < U U U φ > Θ > ψ > { Ω Θ } > < 1 P Ω < 1 QPQQ { Ω > < } Θ Q { 1 < } { > PQP Θ P Ω φ > ψ > Θ Ω φ > ψ > Θ Ω The Key to Teleporttion

Digrmmti Mtries, Knots n Teleporttion i N i N M i M M M Figure 5 - Mtrix Composition

Quntum Link Invrints

y mesuring mplitue n phse in referene setting.. r.. Untying Knots y NMR: first experimentl implementtion of quntum lgorithm for pproximting the Jones polynomil 1 2 3 4 Rimun Mrx 1, Anres Spörl, Amr F. Fhmy, John M. Myers, Louis H. Kuffmn, 5 1 1 Smuel J. Lomono, Jr., Thoms-Shulte-Herrüggen, n Steffen J. Glser 1 Deprtment of Chemistry, Tehnil University Munih, Lihtenergstr. 4, 85747 Grhing, Germny 2 Hrvr Meil Shool, 25 Shttuk Street, Boston, MA 02115, U.S.A. 3 Goron MKy Lortory, Hrvr University, 29 Oxfor Street, Cmrige, MA 02138, U.S.A. 4 University of Illinois t Chigo, 851 S. Morgn Street, Chigo, IL 60607-7045, U.S.A. 5 University of Mryln Bltimore County, 1000 Hilltop Cirle, Bltimore, MD 21250, U.S.A. romp of the quntum lgorithm exmple #1 Trefoil exmple #2 Figure-Eight exmple #3 Borromen rings A knot is efine s lose, non-self-interseting urve tht is emee in three imensions. exmple: onstrution of the Trefoil knot: knot or link mke knot fuse the free ens mke it look nie strt with rope en up with Trefoil trelose ri 1 1 1 1 2-1 1 2-1 1 2-1 1 2-1 1 2-1 J. W. Alexner prove, tht ny knot n e represente s lose ri (polynomil time lgorithm) genertors of the 3 strn ri group: -1 1 1 1 2 2-1 unitry mtrix i e U 1 0 U 3 1 U Trefoil 1 U U 2 Figure Eight 2 U1 0 i sin(4 ) i e e sin(2 ) 1 U 3 2 1 U Borrom. R. U i sin(6 ) i i sin(6 )sin(2 ) e e e sin(4 ) sin(4 ) U 2 i sin(2 ) i sin(6 )sin(2 ) i e e e sin(4 ) sin(4 ) -1-1 It is well known in knot theory, how to otin the unitry mtrix representtion of ll genertors of given ri goup (see Temperley-Lie lger n pth moel representtion ). The unitry mtries U1 n U 2, orresponing to the genertors 1 n 2 of the 3 strn ri group re shown on the left, where the vrile is relte i to the vrile A of the Jones polynomil y: A e. 1 2 The unitry mtrix representtions of n -1-1 re given y U1 n U 2. The knot or link tht ws expresse s prout of ri group genertors n therefore lso e expresse s prout of the orresponing unitry mtries. ontrolle unitry mtrix Step #1: from the 2x2 mtrix U to the 4x4 mtrix U: 1 0 U ( 0 U ) U I 1x Step #2: pplition of U on the NMR prout opertor I1x : 1 0 U 1 ( 0 U ) ( ) 0 1 1 0 2 1 0 ( 0 U ) 1 ( ) 0 U 2 U 0 Step #3: mesurement of I 1x n I 1y : 0 U tr { I 1x ( U 0 )} 1 1 ( tr{ U}) 2 2 0 U tr { I 1y ( U 0 ) } 1 1 ( tr{ U}) 2 2 U, U Inste of pplying the unitry mtrix we pply it s ontrolle vrint. This mtrix is espeilly suite for NMR quntum omputers [4] n other therml stte expettion vlue quntum omputers: you only hve to pply U to the NMR prout opertor I n mesure I1x n I1y in orer to otin 1x the tre of the originl mtrix U. Inepenent of the imension of mtrix U you only nee ONE extr quit for the implementtion of U s ompre to the implementtion of U itself. The mesurement of I1x n I1y n e omplishe in one single-sn experiment. NMR pulse sequene I S U 1 mens I S - z - z J I S U 1 U 1 U 1 I S U -1 1 mens I S y J I S - y z z I S U 2 mens -1-1 U 1 U 2 U 1 U 2 I S y - z - z J - y I S I S U -1 2 mens I S + -1-1 -1 U 1 U 2 U 1 U 2 U 1 U 2 y J - y z z - y All knots n links n e expresse s prout of ri group genertors (see ove). Hene the orresponing NMR pulse sequene n lso e expresse s sequene of NMR pulse sequene loks, where eh lok orrespons to the ontrolle unitry mtrix U of one ri group genertor.. This moulr pproh llows for n esy optimiztion of the NMR pulse sequenes: only smll n limite numer of pulse sequene loks hve to e optimize.. NMR experiment Comprison of experimentl results, theoretil preitions, n simulte experiments, where relisiti inperfetions like relxtion, B1 fiel inhomogeneity, n finite length of the pulses re inlue. For eh t point, four single-sn NMR experiments hve een performe: mesurement of I1x, mesurement of I1y, referene for I1x, n referene for I1y. If neessry eh t point n lso e otine in one single-sn experiment Jones polynomil Jones Polynomil Trefoil": -4-12 -16 ( A + A - A ) 2-2 (- A - A ) Jones Polynomil Figure-Eight": Jones Polynomil Borromen rings": + 4A 8 4 3 2 1 + A - A - A + 3A - 2A + A - A -4 - A + 3A 0-2A -1 + A 0 The Jones Polynomils n e reonstrute out of the NMR experiments y: 3 -w( L) I( L) 2-2 2 V (A)(- A ) ( tr{ U} + A [(-A -A ) -2]) L where: w( L) is the writhe of the knot or link L tr{ U} is etermine y the NMR experiments I( L) is the sum of exponents in the ri wor orresponing to the knot or link L Referenes: 1) 1) L. Kuffmn, AMS Contemp. Mth. Series, 305, eite y S. J. Lomono, (2002), 101-137 (mth.qa/0105255) 2) R. Mrx, A. Spörl, A. F. Fhmy, J. M. Myers, L. H. Kuffmn, S. J. Lomono, Jr., T. Shulte-Herrüggen, n S. J. Glser: pper in preprtion 3) Vughn F. R. Jones, Bull. Amer. Mth. So., (1985), no. 1, 103-111 4) J. M. Myers, A. F. Fhmy, S. J. Glser, R. Mrx, Phys. Rev. A, (2001), 63, 032302 (qunt-ph/0007043) 5) D. Ahronov, V. Jones, Z. Lnu, Proeeings of the STOC 2006, (2006), 427-436 (qunt-ph/0511096) 6) M. H. Freemn, A. Kitev, Z. Wng, Commun. Mth. Phys., (2002), 227, 587-622

SU(2) Representtions of the Artin Bri Group Theorem. If g + u n h + v re pure unit quternions,then, without loss of generlity, the ri reltion ghg hgh is true if n only if h + v, n φ g (v) φ h 1(u). Furthermore, given tht g + u n h + v, the onition φ g (v) φ h 1(u) is stisfie if n only if u v 2 2 2 2 when u v. If u v then then g h n the ri reltion is trivilly stisfie. g + u h + v u v (^2 - ^2)/2^2

An Exmple. Let where os(θ) n sin(θ). Let g e iθ + i h + [( 2 s 2 )i + 2sk] where 2 +s 2 1 n 2 s 2 2 2. Then we n reexpress g n h in mtrix 2 2 form s the mtries G n H. Inste of writing the expliit form of H, we write H F GF where F is n element of SU(2) s shown elow. G F ( e iθ 0 0 e iθ ( i is is i ) ) ing where one genert

SU(2) Fioni Moel τ 2 + τ 1. g e 7πi/10 f iτ + k τ h frf 1 fgf -1 {g,h} represents 3-strn ris, generting ense suset of SU(2).

We shll see tht the representtion lele SU(2) Fioni Moel in the lst slie extens eyon SU(2) to representtions of mny-strne ri groups rih enough to generte quntum omputtion.

Quntum Hll Effet

The qusi-prtile theory is onnete with Chern-Simons Theory n it explins the FQHE on the sis of nyons : prtiles tht hve non-trivil (not +1 or -1) phse hnge when they exhnge ples in the plne.

Nuler Physis B360 (1991) 362-396 North-Holln NONABELIONS IN THE FRACTIONAL QUANTUM HALL EFFECT Gregory MOORE Deprmzent of Physis, Yle Uniersity, New Hen, CT 06511, USA Nihols READ Deprtments of Applie Physis n Physis, Yle Unirersity, New Ht'en, CT 06520, USA Reeive 31 My 1990 (Revise 5 Deemer 1990) Applitions of onforml fiel theory to the theory of frtionl quntum Hll systems re isusse. In prtiulr, Lughlin's wve funtion n its ousins re interprete s onforml loks in ertin rtionl onforml fiel theories. Using this point of view hmiitonin is onstrute for eletrons for whih the groun stte is known extly n whose qusihole exittions hve nonelin sttistis; we term these ojets "nonelions". It is rgue tht universlity lsses of frtionl quntum Hll systems n e hrterize y the quntum numers n sttistis of their exittions. The reltion etween the orer prmeter in the frtionl quntum Hll effet n the hirl lger in rtionl onforml fiel theory is stresse, n new orer prmeters for severl sttes re given.

3. Eletron wve funtions s onforml loks: Lughlin sttes n the hierrhy Let us return to the Lughlin stte in the is geometry:, 2] ~l~.gi, li,,(zl,---, zn) r l ( z, - zs) exp[ - ~ Y:lz, I, i < j (3.1) where q is n o integer [3]. In the thermoynmi limit this stte IOL; N ) esries flui groun stte with uniform numer ensity P0 - v/2z: 1/2zrq insie rius of orer 2~-N. The GL esription of this limit for normlize flui stte [t~ ) of slowly vrying ensity involves guge fiel i ~ ( z ) ~ f z - z ' z' (3.2) In the GL esription [4] this guge fiel ouples to the orer prmeter (whih hs hrge q; we set the hrge of the eletron to 1 from now on) n lso enters with Chern-Simons term q 4rr f z C ~ (3.3) in the tion. If we re intereste primrily in sttistis of exittions we my expet suh topologil terms in the tion to ply ominnt role - sine they ominte ll other terms t long istnes n low energies. On the other hn, it is now well known tht CSW theory (i.e. (2 + 1)-imensionl guge theory with only CS term in the tion) for n elin guge fiel is losely onnete to the (1 + 1)-imensionl onforml fiel theory known s the "rtionl torus" [1,5].

Briing Anyons Λ Reoupling Proess Spes

Proess Vetor Spes n Reoupling ε V( ) e f ε V( )

A B A B C C

Topologil Quntum Fiel Theory Trinion Proess Spes on Surfes Le to Three-Mnifol Invrints.

Non-Lol Briing is Inue vi Reoupling F R -1 F B F -1 RF

Proess Spes Cn e Aitrrily Lrge. With oherent reoupling theory, ll trnsformtions re in the representtion of one ri group.

Mthemtil Moels for Reoupling Theory with Briing ome from Comintion of Penrose Spin Networks n Knot Theory. See Temperley Lie Reoupling Theory n Invrints of Three-Mnifols y L. Kuffmn n S. Lins, PUP, 1994.

Brket Polynomil Moel for Jones Polynomil -1 A A A -1 A A -1 A -1 < > A < > + A < > -1 < > A < > + A < > < K > S < K S > δ S 1.

q-deforme Spin Networks ~ 2-2 -A - A 2 1/δ A + -1 A n 1 1 n 1 1 n... n n / n n+1 n 1... -1 0 0 1 n strns δ n+1 - n n-1 {n}! Σ σ ε S n -4 t( σ) (A ) 0 n -3 t( σ ) (1/{n}!) (A ) Σ σ ε S n ~ σ i j k 45 i + j j + k i + k

Projetors re Sums over Permutions, Lifte to Bris n Expne vi the Brket into the Temperley Lie Alger

Briing, Nturlity, Reoupling, Pentgon n Hexgon -- Automti Consequenes of the Constution R F F R F F F F F F R R F

P P P P Fioni Moel A e 3πi/5. ) ( 1/δ * P P P P 0 P 111 im(v ) 1 0 Forien * P P P P P P P P * P 1111 im(v ) 2 0 * * 0 > 1 > P P Temperley Lie Representtion of Fioni Moel

Fioni Moel

The Simple, yet Quntum Universl, Struture of the Fioni Moel A e 3πi/5. ) ( ( ) ( ) δ A 2 A 2 δ (1 + 5)/2, ( 1/ 1/ F 1/ 1/ ( ) A 4 0 R 0 A 8 ) ( ) τ τ τ τ ( e 4πi/5 0 0 e 2πi/5 exmple of ri group representtion ).

Spin Network Gymnstis

1/δ (δ 1/δ) (δ 1/δ) (δ 1/δ) δ 2 δ 1 Θ 1/δ Θ 2 (δ 1/δ) δ /δ

+ + 1/ 2 Θ Θ / /Θ 2 Θ/ Τ /Θ 2

Θ(,, ) Θ(,, ) δ { } i j Σ j i j k [ ] Tet i k i Closure, Bule n Reoupling

The 6-j Coeffiients i k Σ j i { j } j k Σ j i { j } Θ(,, j ) Θ(,, j ) j j j k δ j { } i Θ(,, k) Θ(,, k ) k k i { } k Tet i [ ] k k Θ(,, k) Θ(,, k)

Lol Briing λ λ (+-)/2 (-1) A ('+'-')/2 x' x(x+2)

Θ(,, ) Reefining the Vertex is the key to otining Unitry Reoupling Trnsformtions. Θ(,, ) Θ(,, )

Σ j i k Σ j δ j k k MoTet[ ] i i j i j i i j j j k k k j j i j j j j j j New Reoupling Formul

The Reoupling Mtrix is Rel Unitry t Roots of Unity. i Σ j i j j i j i j, i j j i M[,,,] i j i j T -1

Theorem. Unitry Representtions of the Bri Group ome from Temperley Lie Reoupling Theory t roots of unity. A e iπ/2r Suffiient to Proue Enough Unitry Trnsformtions for Quntum Computing.

Quntum Computtion of Colore Jones Polynomils n WRT invrints. B P(B) Σ B(x,y) x y x, y 0 0 0 0 0 Σ B(x,y) if 0 0 Σ x, y B(x,y) x 0 y 0 0 B(0,0) 0 0 0 0 0 0 if 0 B(0,0) ( ) 2 B(0,0) ( ) 2 Nee to ompute igonl element of unitry trnsformtion. Use the Hmr Test.

Colore Jones Polynomil for n 2 is Speiliztion of the Durovnik version of Kuffmn polynomil. 4-4 A + A + δ -4 4 A + A + δ 4-4 - ( A - A ) - ( ) - 4-4 ( A - A ) - ( ) 8 A

Will these moels tully e use for quntum omputtion? Will quntum omputtion tully hppen? Will topology ply key role? Time will tell.