Chapter 5. Chapter 5 125

Similar documents
Chapter 3 Fourier Series Representation of Periodic Signals

Linear Algebra Existence of the determinant. Expansion according to a row.

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is

ASSERTION AND REASON

page 11 equation (1.2-10c), break the bar over the right side in the middle

National Quali cations

IV. The z-transform and realization of digital filters

The z-transform. Dept. of Electronics Eng. -1- DH26029 Signals and Systems

National Quali cations

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

Lectures 9 IIR Systems: First Order System

How much air is required by the people in this lecture theatre during this lecture?

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points)

Integration by Guessing

Vtusolution.in FOURIER SERIES. Dr.A.T.Eswara Professor and Head Department of Mathematics P.E.S.College of Engineering Mandya

Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q.

Chapter 9 Infinite Series

ENGI 3424 Appendix Formulæ Page A-01

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

MAT 182: Calculus II Test on Chapter 9: Sequences and Infinite Series Take-Home Portion Solutions

IX. Ordinary Differential Equations

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Hamid R. Rabiee Arman Sepehr Fall 2010

Problem Value Score Earned No/Wrong Rec -3 Total

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Dr. Hamid R. Rabiee Fall 2013

Lectures 2 & 3 - Population ecology mathematics refresher

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

IIT JEE MATHS MATRICES AND DETERMINANTS

Digital Signal Processing. Hossein Mahvash Mohammadi

PURE MATHEMATICS A-LEVEL PAPER 1

ELEC9721: Digital Signal Processing Theory and Applications

Frequency-domain Characteristics of Discrete-time LTI Systems

Math 1272 Solutions for Fall 2004 Final Exam

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

2.1.1 Definition The Z-transform of a sequence x [n] is simply defined as (2.1) X re x k re x k r

EEE 303: Signals and Linear Systems

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

CLASS XI CHAPTER 3. Theorem 1 (sine formula) In any triangle, sides are proportional to the sines of the opposite angles. That is, in a triangle ABC

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

Digital Signal Processing, Fall 2006

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Chapter 8 Approximation Methods, Hueckel Theory

(HELD ON 22nd MAY SUNDAY 2016) MATHEMATICS CODE - 2 [PAPER -2]

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

DFT: Discrete Fourier Transform

Multi-Section Coupled Line Couplers

15/03/1439. Lectures on Signals & systems Engineering

PREPARATORY MATHEMATICS FOR ENGINEERS

H2 Mathematics Arithmetic & Geometric Series ( )

10. Joint Moments and Joint Characteristic Functions

DETERMINANT. = 0. The expression a 1. is called a determinant of the second order, and is denoted by : y + c 1

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Systems in Transform Domain Frequency Response Transfer Function Introduction to Filters

Periodic Structures. Filter Design by the Image Parameter Method

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

Problem Session (3) for Chapter 4 Signal Modeling

1985 AP Calculus BC: Section I

EC1305 SIGNALS & SYSTEMS

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

Section 5.1/5.2: Areas and Distances the Definite Integral

Chapter 4 - The Fourier Series

LEVEL I. ,... if it is known that a 1

Discrete Fourier Transform (DFT)

The z Transform. The Discrete LTI System Response to a Complex Exponential

New Advanced Higher Mathematics: Formulae

Lectures 5-8: Fourier Series

The Propagation Series

The Propagation Series

[Q. Booklet Number]

Instructions for Section 1

POWER SERIES R. E. SHOWALTER

Time: 2 hours IIT-JEE 2006-MA-1. Section A (Single Option Correct) + is (A) 0 (B) 1 (C) 1 (D) 2. lim (sin x) + x 0. = 1 (using L Hospital s rule).

Important Facts You Need To Know/Review:

EE Control Systems LECTURE 11

DIGITAL SIGNAL PROCESSING LECTURE 5

Digital Signal Processing, Fall 2006

FOURIER ANALYSIS Signals and System Analysis

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

Unit 1. Extending the Number System. 2 Jordan School District

Department of Electronics & Telecommunication Engineering C.V.Raman College of Engineering

Module 5: IIR and FIR Filter Design Prof. Eliathamby Ambikairajah Dr. Tharmarajah Thiruvaran School of Electrical Engineering & Telecommunications

PROGRESSIONS AND SERIES

Linear-Phase FIR Transfer Functions. Functions. Functions. Functions. Functions. Functions. Let

Signals & Systems - Chapter 3

Right Angle Trigonometry

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

Chem 4502 Prof. Doreen Leopold 10/18/2017 Name (Please print) Quantum Chemistry and Spectroscopy Exam 2 (100 points, 50 minutes, 13 questions)

Remarks: (a) The Dirac delta is the function zero on the domain R {0}.

terms of discrete sequences can only take values that are discrete as opposed to

Elliptical motion, gravity, etc

APPENDIX: STATISTICAL TOOLS

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

SIGNALS AND LINEAR SYSTEMS UNIT-1 SIGNALS

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

=> PARALLEL INTERCONNECTION. Basic Properties LTI Systems. The Commutative Property. Convolution. The Commutative Property. The Distributive Property

Transcription:

Chptr 5 Chptr 5: Itroductio to Digitl Filtrs... 6 5. Itroductio... 6 5.. No rcursiv digitl filtrs FIR... 7 5.. Rcursiv digitl filtr IIR... 8 5. Digitl Filtr Rlistio... 5.. Prlll rlistio... 5.. Cscd rlistio... 5 5. Mgitud d Phs Rspos... 5 5. Miimum-phs, Mximum-phs d Mixd phs systms 6 5.5 All-Pss Filtrs... 68 5.6 A scod Ordr Rsot Filtr... 7 5.7 Stility of scod-ordr filtr... 7 5.8 Digitl Oscilltors... 7 5.8. Si d cosi oscilltors... 77 5.9 Notch filtrs... 79 5. Summry... 8 Chptr 5: Prolm Sht 5 Chptr 5 5

Chptr 5: Itroductio to Digitl Filtrs 5. Itroductio Thr r two typs of digitl filtrs:. Rcursiv thr is t lst o fdc pth i th filtr. No-rcursiv o fdc pths A lir tim ivrit LTI discrt systm dscrid y th followig qutio is commoly clld digitl filtr: y M x y Fd forwrd L whr x[] is th iput sigl, y[] is th output sigl.,,,..., M ;,,,..., L r costts filtr cofficits. Ths cofficits dtrmi th chrctristics of th systm. Fdc 5. wh = wh th filtr is sid to o-rcursiv typ rcursiv typ. Chptr 5 6

Chptr 5 7 5.. No rcursiv digitl filtrs FIR If =, th th clcultio of y[] dos ot rquir th us of prviously clcultd smpls of th output s qutio 5.. x x x x y M M This is rcogisd s covolutio sum. M x h y Thrfor th impuls rspos is idticl to th cofficits, tht is, othrwis M h x x x x y M M Ay filtr tht hs impuls rspos of fiit durtio is clld Fiit Impuls Rspos FIR filtr. Exmpl: X Y x x x y This is o-rcursiv scod ordr FIR filtr h h hm

Proprty: A proprty of th FIR filtr is tht it will lwys stl. Stility rquirs tht thr should o pols outsid th uit circl. This coditio is utomticlly stisfid sic thr r o pols t ll outsid th origi. I fct, ll pols r loctd t th origi. Aothr proprty of o-rcursiv filtr is tht w c m filtrs with xctly lir phs chrctristics Not: Th ility to hv xctly lir phs rspos is o of th most importt proprtis of LTD systm filtr. Wh sigl psss through filtr, it is modifid i mplitud d/or phs. Th tur d xtt of th modifictio of th sigl is dpdt o th mplitud d phs chrctristics of th filtr. Th phs dly or group dly of th filtr provids usful msur of how th filtr modifid th phs chrctristic of th sigl. If w cosidr sigl tht cosists of svrl frqucy compots g. spch wvform th phs dly of th filtr is th mout of tim dly ch frqucy compot of th sigl suffrs i goig through th filtr. phs _ dly T p 5. [th gtiv of th phs gl dividd y frqucy] Chptr 5 8

Th group dly o th othr hd is th vrg tim dly th composit sigl suffrs t ch frqucy s it psss from th iput to th output of th filtr. group _ dly T g d d 5. [th gtiv of th drivtiv of th phs with rspct to frqucy] = - - Figur 5.: Phs rspos of lir phs filtr A costt group dly ms tht sigl compots t diffrt frqucis rciv th sm dly i th filtr. Chptr 5 9

A lir phs filtr givs sm tim dly to ll frqucy compots of th iput sigl. A filtr with olir phs chrctristic will cus phs distortio i th sigl tht psss through it. This is cus th frqucy compots i th sigl will ch dlyd y mout ot proportiol to frqucy, thry ltrig thir hrmoic rltioship. Such distortio is udsirl i my pplictios, for xmpl music, vido tc. A filtr is sid to hv lir phs rspos if its phs rspos stisfis o of th followig rltioships: 5. whr d r costts. Exmpl: Two filtr structurs r show low. Show tht oth filtrs hv lir phs. x[] - - x[] - - - y[] y[] Chptr 5

Chptr 5 5... Pol-ro Pttrs of Lir Phs Filtrs Lir phs filtrs provid costt dly with o mplitud distortio. A FIR filtr with its impuls rspos symmtric out th midpoit is dowd with lir phs d costt dly. For lir phs FIR filtr, th pols must li t th origi = if th squc h[] is to of fiit lgth. Squcs tht r symmtric out th origi i.. = rquir ] [ ] [ h h d thus phs: = - lir phs phs: = / - lir phs cos x x x y si si x x y

Th ros of lir-phs squc must occur i rciprocl pirs d xhiit cougt rciprocl symmtry s show low. = = r /r r r For rl ro A ro o th rl xis is pird with ust its rciprocl r /r /r Complx cougts For complx ro Ech ro ot o th rl xis is pird with its rciprocl d its cougt. Zros t = or t =- c occur sigly, cus thy form thir ow rciprocl d thir ow cougt. If thr r o ros t =, lir-phs squc is lwys v symmtric out its midpoit. For odd symmtry out th mid-poit, thr must odd umr of ros t =. Th frqucy rspos of lir phs filtr my writt s A for v symmtry or A A for odd symmtry. Chptr 5

Exmpl: Is this lir phs filtr? Stch th pol-ro plot. h,,, = = = = All of its pols r t =; Its ros r t =- d =-.5±.866 Th rl ro t =- c occur sigly Complx cougt pir of ros li o th uit circl => Th impuls rspos h[] cot symmtric out th origi, v though it is symmtric out its midpoit =.5 Im -.5,.866 = - R -.5, -.866 Lir phs squc with v symmtry out its mid poit. Chptr 5

Exmpl:.5 h[ ] {,,.5,,} =- =- = = = Is lir phs? Stch th pol-ro plot of. Sic h[] is v symmtric out = with h[]=h[-], w hv =/.5.5.5.5 Im.5 = -.5 R Chptr 5

5... Typs of Lir-phs Squcs Lir phs squcs fll ito typs: Typ : Squc hs v symmtry d odd lgth. Typ squc must hv v umr of ros t =- if prst d = if prst. = Im - - R Ev umr of ros Pol-ro plot All othr ros must show cougt rciprocl symmtry. Typ : Squc hs v symmtry d v lgth. Typ squc must hv odd umr of ros t =- if prst d v umr of ros t = if prst. Im Cougt rciprocl symmtry = Ev umr of ros Odd umr of ros - R Chptr 5 5

Typ : Squc hs odd symmtry d odd lgth. Typ squc must hv odd umr of ros t =- d odd umr of ros t =. Im = - Odd umr of ros R Cougt rciprocl symmtry Typ : Squc hs odd symmtry d v lgth. Typ squc must hv odd umr of ros t =. Th umr of othr ros, if prst t =-, must v. Im = Odd umr of ros Ev umr of ros - R Chptr 5 6

Exmpl: Fid ll of th ro loctios of typ lir-phs squc if it is ow tht thr is ro t d ro t. Im = /r= r=/ - r=/ 6º R Ev umr of ros /r= Pol-ro plot Du to cougt rciprocl symmtry, th ro t implis w hv ro t, d. For typ squc, th umr of ros t =- must v, so thr must othr ro t =-. Thus, thr r 6 ros. Chptr 5 7

Chptr 5 8 5.. Rcursiv digitl filtr IIR Evry rcursiv digitl filtr must coti t lst o closd loop. Ech closd loop cotis t lst o dly lmt. L M y x y For rcursiv digitl filtrs. Lt =, = for > d = & = for >. y x y IIR filtr A rcursiv filtr is ifiit impuls rspos filtr IIR. Exmpl: d ordr FIR filtr d ordr IIR filtr ll pol filtr IIR filtr Zros oly Pols d Zros oly

Not: Pols d ros c rl or imgiry Exmpl: Th diffrc qutio is: y[] = x[] y[-]. Th DC gi of c otid y sustitutig =. If dc gi is udsirl, itroduc costt gi fctor of -, so tht coms dc gi = y[] = -x[] y[-] Exmpl: Cosidr lowpss filtr y[] = y[-] x[], < < i Dtrmi so tht =. ii Dtrmi th db dwidth hr for th ormlisd filtr i prt i. i Y = Y - X w hv = Chptr 5 9

Chptr 5 = - cos si cos si cos Scod Mthod: * cos cos c θ θ θ hlf-powr poit c c cos cos c c db db

Chptr 5 Exmpl: Cosidr filtr dscrid y c c whr & c r costts. Show tht th mgitud rspos is uity for ll. ] [ ] [ * c c c c c c c c This is ll-pss filtr. -

Chptr 5 5. Digitl Filtr Rlistio structur ros M pols L structur pols L ros M L M L M L M X Y Y X Y y x y

X Y - - - - - - - M - L - Figur 5.: Structur or Dirct Form X Y - - - - - - - L - - M Figur 5.: Structur or Dirct Form II Chptr 5

I th cs wh L = M, w hv coic form rlistio. X Y - - - - - L - M Figur 5.: Coic form A discrt-tim filtr is sid to coic if it cotis th miimum umrs of dly lmts cssry to rlis th ssocitd frqucy rspos. 5.. Prlll rlistio i i prlll_ structur us prtil frctio to oti i M M L L... Chptr 5

X Y Figur 5.5: Prlll structur 5.. Cscd rlistio M M L L ˆ i ˆ ˆ ˆ ˆ... i cscd_ structur Product of lowr ordr trsfr fuctio i. st or d ordr sctios Th cscd structur is th most populr form X ˆ ˆ ˆ Y Figur 5.6: Cscd structur Chptr 5 5

Chptr 5 6 Exmpl: A prlll rlistio of third ordr systm is giv y 5 5 9 6 D C B A.6. 5 5.5.5 9.6. 5.5 5 9 5 5 9

Chptr 5 7 Exmpl: A cscd rlistio of third-ordr systm is giv y.6..8..6.5.5.5.6..8..6.5.5.5.6. 5 9 7.5 5 9 7 8 9 9 6 -.5 5 -. -.6 9 5 x[] - - -.5 - y[]

x[].5.6 y[] -.5 -.5 -. -. -.6 -.8 Cscd Exmpl: Implmt th followig systm i th cscd, dirct form II d prlll structurs. All cofficits r rl.. x[] y[] - - - cscd structur x[] y[] -- - Dirct form II - Chptr 5 8

A B x[] y[] - - - Prlll structur. x[] y[] - - - cscd structur No prlll structur xists cus prtil frctio xpsio cot prformd. Chptr 5 9

x[] y[] - - - Dirct Form II - c. prlll cscd x[] - - y[] - - prlll structur Chptr 5 5

Chptr 5 5 5. Mgitud d Phs Rspos W c show tht th mgitud rspos is v fuctio of frqucy. Th phs rspos is odd fuctio of frqucy. Exmpl: Clcult th mgitud d phs rspos of th - smpl vrgr giv y othrwis h h h - y[] - - - - - x[] -

cos Prcutios must t wh dtrmiig th phs rspos of filtr hvig rl-vlud trsfr fuctio, cus gtiv rl vlus produc dditiol phs of rdis. For xmpl, lt us cosidr th followig lir-phs form of th trsfr fuctio = - B rl-vlud fuctio of tht c t positiv d gtiv vlus. B cos B si B cos B si Lt phs gl : B si t t B cos t = t- = - or = - phs gl Th phs fuctio icluds lir phs trm d lso ccommodts for th sig chgs i B. Sic - c xprssd s, phs umps of will occur t frqucis whr B chgs sig. If B >, th = -. If B <, th = -.. Chptr 5 5

Lt us gt c to our xmpl [ cos ] [ cos ] d Th pproprit sig of must chos to m odd fuctio of frqucy. Ev fuctio - - -/ / Odd fuctio - - -/ / - Exmpl: Fid th mgitud d phs rspos of th followig: h, h, h, h, othrwis. Chptr 5 5

Chptr 5 5 ] cos [ B Exmpl: cs othrwis Th mplitud fuctio is vr gtiv thrfor thr is o phs umps of - - - Ev fuctio - - Odd fuctio

h[] = [-] = - = - - - - - B = = - Not: Wh phs xcds rg ump of is dd to rig th phs c ito rg. Phs Jumps: From th prvious xmpls, w ot tht thr r two occsios for which th phs fuctio xprics discotiuitis or umps.. A ump of occurs to miti th phs fuctio withi th pricipl vlu rg of [- d ]. A ump of occurs wh B udrgos chg of sig Th sig of th phs ump is chos such tht th rsultig phs fuctio is odd d, ftr th ump, lis i th rg [- d ]. Chptr 5 55

Chptr 5 56 Exmpl: Mgitud d phs rspos of cusl -smpl vrg. ] cos [ ; ] cos [ othrwis for B B B h B Phs is udfid t poits =. Exmpl: Dtrmi d stch th mgitud d phs rspos of th followig filtrs: i x x y ii 8 x x y iii x y - - - -/ / / -/

Chptr 5 57 i si si ] [ ] [ ] [ X X Y - / -/ -

Chptr 5 58 ii si si 8 8 8 B X Y X X Y / / / -/ / / / /

Chptr 5 59 iii X Y x y Exmpl: Dtrmi d stch th mgitud d phs rspos of st ordr rcursiv filtr IIR filtr y x y phs X Y cos si t cos si cos cos cos si t cos si cos cos - - = - /

Mgitud: = * [ * is th complx cougt] Assumig < < cos Ev Symmtry =.5 - Odd Symmtry - No-lir phs Exmpl: Low pss filtr Th gi c slctd s, so tht th filtr hs uity gi t =. Chptr 5 6

I this cs, for uity gi t =. Th dditio of ro t = - furthr ttuts th rspos of th filtr t high frqucis Lowpss filtr - c W c oti simpl highpss filtrs y rflctig foldig th pol-ro loctios of th lowpss filtrs out th imgiry xis i th -pl. igh pss filtr - d y x x lowpss filtr Chptr 5 6

5 y x x ighpss filtr 5 5 = -cos - f 6 6 6 = -cos - g 7 8 7 7 = 8-cos - Chptr 5 6

5. Miimum-phs, Mximum-phs d Mixd phs systms Lt us cosidr two FIR filtrs: = -.5 ρ = = is th rvrs of th systm. This is du to th rciprocl rltioship tw th ros of d. & 5 cos Th mgitud chrctristics for th two filtrs r idticl cus th roots of d r rciprocl. Phs: φ θ t φ θ t siθ cosθ siθ cosθ - - - - Chptr 5 6

Not: If w rflct ro with mgitud = tht is isid th uit circl ito ro with mgitud outsid th uit circl th mgitud chrctristic of th systm is ultrd, ut th phs rspos chgs. W osrv tht th phs chrctrs gis t ro phs t frqucy = d trmits t ro phs t th frqucy =. c th t phs chg. Miimum phs filtr O th othr hd, th phs chrctristic for th filtr with th ro outsid th uit circl udrgos t phs chg rdis As cosquc of ths diffrt phs chrctristics, w cll th first filtr miimum-phs systm d th scod systm is clld mximum-phs systm. If filtr with M ros hs som of its ros isid th uit circl d th rmiig outsid th uit circl, it is clld mixd-phs systm. A miimum-phs proprty of FIR filtr crris ovr to IIR filtr. Lt us cosidr B A is clld miimum phs if ll its pols d ros r isid th uit circl. = R Miimum phs Chptr 5 6

If ll th ros li outsid th uit circl, th systm is clld mximum phs. = R Mximum phs If ros li oth isid d outsid th uit circl, th systm is clld mixd-phs. R Mixd phs = Not: For giv mgitud rspos, th miimum-phs systm is th cusl systm tht hs th smllst mgitud phs t vry frqucy. Tht is, i th st of cusl d stl filtrs hvig th sm mgitud rspos, th miimum-phs rspos xhiits th smllst dvitio from ro phs. Exmpl: Cosidr fourth-ordr ll-ro filtr cotiig doul complx cougt st of ros loctd t.7. Th miimum-phs, mixd phs d mximum phs systm pol-ro pttrs hvig idticl mgitud rspos r show low. Chptr 5 65

= = = =.7 / Miimum-phs mixd-phs mximum-phs Th mgitud rspos d th phs rspos of th thr systms r show low: Th miimum-phs systm sms to hv th phs with th smllst dvitio from ro t ch frqucy. miimum phs - - - mixd-phs I th cs lir phs - mximum phs Chptr 5 66

Exmpl: A third ordr FIR filtr hs trsfr fuctio G giv y G 6 5 From G, dtrmi th trsfr fuctio of FIR filtr whos mgitud rspos is idticl to tht of G d hs miimum phs rspos. G 5 G 5 > Im 5 5 = R Th miimum phsfiltr P 5 Chptr 5 67

Chptr 5 68 5.5 All-Pss Filtrs A ll-pss filtr is o whos mgitud rspos is costt for ll frqucis, ut whos phs rspos is ot idticlly ro. [Th simplst xmpl of ll-pss filtr is pur dly systm with systm fuctio = - ] A mor itrstig ll-pss filtr is o tht is dscrid y L L L L L L, whr = d ll cofficits r rl. If w dfi th polyomil A s L L A A A i.. ll pss filtr. Furthrmor, if is th modulus of pol of, th / is th modulus of ro of {i.. th modulus of pols d ros r rciprocls of o othr}. Th figur show low illustrts typicl pol-ro pttrs for sigl-pol, siglro filtr d two-pol, two-ro filtr. = All-pss filtr = r All pss filtr /r, /r, - r, -

Chptr 5 69 < for stility W c sily show tht th mgitud rspos is costt. * cos cos Phs rspos: cos si t cos si cos Wh < <, th ro lis o th positiv rl xis. Th phs ovr is positiv, t = it is qul to d dcrss util =, whr it is ro. Wh -< <, th ro lis o th gtiv rl xis. Th phs ovr is gtiv, strtig t for = d dcrss to - t =. - =.5 = -.5 = -.8

5.6 A scod Ordr Rsot Filtr x[] y[] r p - - p - - p p r r r cos r cos r si r si A All pol systms hs pols oly without coutig th ros s th origi r r p p r r cos r r B Comprig A d B, w oti r cos r Cos f s f = rsot frqucy Chptr 5 7

5.7 Stility of scod-ordr filtr Cosidr two-pol rsot filtr giv y & r cofficits This systm hs two ros t th origi d pols t p, p Th filtr is stl if th pols lis isid th uit circl i.. p < & p < For stility <. If = th th systm is oscilltor Mrgilly stl Assum tht th pols r complx i. < < d If th w gt rl roots. Th stility coditios dfi rgio i th cofficit pl, which is i th form of trigl s low Th systm is oly stl if d oly if th poit, lis isid th stility trigl. Chptr 5 7

Chptr 5 7 Stility Trigl If th two pols r rl th thy must hv vlu tw - d for th systm to stl. Th rgio low th prol > corrspods to rl d distict pols. Th poits o th prol = rsult i rl d qul doul pols. Th poits ov th prol corrspod to complxcougt pols. - - - = Rl Pols Complx Cougt Pols prol = d d d

5.8 Digitl Oscilltors A digitl oscilltor c md usig scod ordr discrttim systm, y usig pproprit cofficits. A diffrc qutio for oscilltig systm is giv y p Acos From th tl of -trsforms w ow tht th -trsform of p[] ov is P cos cos P Y X cos cos Lt, Tig ivrs -trsform o oth sids, w oti y cos y y x cosx No Iput trm for oscilltor x[] =, x[-] = So th qutio of th digitl oscilltor coms cos y y y Chptr 5 7

d its structur is show low. y[] = A cos y[-] - - y[-] = cos = - To oti y[] = A cos, us th followig iitil coditios: y[] = A cos. = A y[-] = A cos-. = A cos Th frqucy c tud y chgig th cofficit is costt. Th rsot frqucy of th oscilltor is, cos For oscilltor = Exmpl: A digitl siusoidl oscilltor is show low. x[] - y[] = A si - - - Assumig is th rsot frqucy of th digitl oscilltor, fid th vlus of d for sustiig th oscilltio. Chptr 5 7

K r cos θ K r r θ K r θ r θ K θ r = - r cos ; = r For oscilltio = r = = - cos Writ th diffrc qutio for th ov figur. Assumig x[] = Asi [], d y- = y- =. Show, y lysig th diffrc qutio, tht th pplictio of impuls t = srvs th purpos of giig th siusoidl oscilltio, d prov tht th oscilltio is slfsustiig thrftr. y y y y x cos y y Asi = y[] = cos y[-] y[-] A si [] y[] = A si = y[] = cos y[] y[-] A si [] y[] = cos Asi = A si = y[] = cos y[] y[] A si [] = cos A si A si = A cos [ si cos ] A si = A si [ cos ] = A[si si ] Chptr 5 75

whr si = si si y[] = A si d so forth. c By sttig th iput to ro d udr crti iitil coditios, siusoidl oscilltio c otid usig th structur show ov. Fid ths iitil coditios. y cos y y x x[] = for oscilltor = y[] = cos y[-] y[-] for oscilltio, y[-] = o cosi trms y[] = -y[-] y[-] = -Asi si trm is rquird y[] = --A si = A si Iitil coditios: y[-] = ; y[-] = -Asi Chptr 5 76

5.8. Si d cosi oscilltors Siusoidl oscilltors c usd to dlivr th crrir i modultors. I modultio schms, oth sis d cosis oscilltors r dd. A structur tht dlivrs sis d cosis simultously is show low: - si cos y[]= cos -si cos x[]= si - Proof: Trigoomtric qutio for cos is: cos = coscos - si si Lt y[] = cos d x[] = si y[] = cos y[] si x[] Rplc y - y[] = cos y[-] si x[-] A Similrly si = si cos si cos x[] = si y[] x[] cos Rplc - x[] = si y[-] x[-] cos B Usig qutios A & B ov, th structur show ov c otid. Chptr 5 77

Exrcis: A oscilltor is giv y th followig coupld diffrc qutios xprssd i mtrix form. y y c s cos si si y cos y c s Drw th structur for th rlistio of this oscilltor, whr is th oscilltio frqucy. If th iitil coditios y c [-] = Acos d y s [-] = -Asi, oti th outputs y c [] d y s [] usig th ov diffrc qutios. y y c s cos yc si ys si y cos y c s - cos y c [] si -si cos - = y s [] = si A cos cos -Asi = = y c [] = cos Acos - si -Asi = A = y c [] = cos.a - si. = Acos = y s [] = A si = A si = y c [] = cos y c [] - si y s [] = cos A cos - si A si = A cos = y c [] = A cos similrly y s [] = A si Chptr 5 78

Exrcis: For th structur show low, writ dow th pproprit diffrc qutios d hc stt th fuctio of this structur. - si y [] - - - 5.9 Notch filtrs Wh ro is plcd t giv poit o th -pl, th frqucy rspos will ro t th corrspodig poit. A pol o th othr hd producs p t th corrspodig frqucy poit. Pols tht r clos to th uit circl giv ris lrg ps, whr s ros clos to or o th uit circl producs troughs or miim. Thus, y strtgiclly plcig pols d ros o th - pl, w c oti smpl low pss or othr frqucy slctiv filtrs otch filtrs. Exmpl: Oti, y th pol-ro plcmt mthod, th trsfr fuctio of smpl digitl otch filtr s figur low tht mts th followig spcifictios: Notch Frqucy: 5 d width of th Notch: ±5 Smplig frqucy: 5 Chptr 5 79

Th rdius, r of th pols is dtrmid y: f r f s f 5 5 f To rct th compot t 5, plc pir of complx ros t poits o th uit circl corrspods to 5. i.. t gls of 6 5 5 6. To chiv shrp otch filtr d improvd mplitud rspos o ithr sid of th otch frqucy, pir of complx cougt ros r plcd t rdius r <. r f.97 f s 5 = 6 6 Chptr 5 8

.....97.97..878.97.68.56.878. cos....878.97cos. 5. Summry At th d of this chptr, it is xpctd tht you should ow: Typs of digitl filtrs FIR/IIR d thir proprtis. Covrsio from FIR/IIR diffrc qutios to trsfr fuctios d c gi. FIR No Rcursiv, ll-ro Filtrs o Udrstdig of phs dly d group dly o Dfiitio of lir phs filtrs IIR Rcursiv, ll-pol or pol-ro Filtrs o Cscdd, prlll, d coic structurs Clcultio of db cut-off frqucy d db dwidth for simpl first-ordr FIR d IIR filtr B l to plot th mgitud rspos of simpl first-ordr FIR d IIR filtr. B l to distiguish tw lowpss d highpss filtrs sd o th diffrc qutios or trsfr fuctios for oth FIR d IIR Chptr 5 8

Giv FIR filtr diffrc qutio or trsfr fuctio, l to drw th mgitud d phs rsposs, d l to xpli th rltioship tw mgitud d phss rsposs. Th diffrcs tw miimum, mximum d mixd phs filtrs. Th similrity i mgitud rsposs wh filtr ros r rflctd out th uit circl. All-pss filtrs: l to show tht thir mgitud rspos is costt ut thir phs rspos is o-ro. B l to driv th trsfr fuctio for scod ordr rsotor filtr, d l to lys its stility proprtis usig th stility trigl d pol positios. B l to udrstd th rg th filtr cofficits c t i ordr to prsrv stility. Pricipls of stl, mrgilly stl d ustl filtrs d qutios for digitl oscilltors. B l to drw th structur of digitl oscilltor tht c simultously produc si d cosi oscilltios, d to iitilis it corrctly. Udrstdig d dsig of otch filtrs. Chptr 5 8