Modelling and numerical simulation of bi-temperature Euler Equations in toroidal geometry

Similar documents
Parallel Kelvin-Helmholtz instability in edge plasma

Bi-temperature Euler Equations Modeling for Fusion Plasma

Finite Volume for Fusion Simulations

0 Magnetically Confined Plasma

Magnetically Confined Fusion: Transport in the core and in the Scrape- off Layer Bogdan Hnat

Practice Final Solutions

Implicit kinetic relaxation schemes. Application to the plasma physic

Neoclassical transport

Simple examples of MHD equilibria

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Effect of magnetic reconnection on CT penetration into magnetized plasmas

Equilibrium and transport in Tokamaks

MHD modeling of the kink double-gradient branch of the ballooning instability in the magnetotail

Theoretical Foundation of 3D Alfvén Resonances: Time Dependent Solutions

On existence of resistive magnetohydrodynamic equilibria

Entropy stable schemes for compressible flows on unstructured meshes

MHD Linear Stability Analysis Using a Full Wave Code

Buoyancy of magnetic fields in accretion disks

Creation and destruction of magnetic fields

Admissibility and asymptotic-preserving scheme

Charged particle motion in external fields

A Multiscale Hybrid-Mixed method for the elastodynamic model in time domain

Un problème inverse: l identification du profil de courant dans un Tokamak

Impact of neutral atoms on plasma turbulence in the tokamak edge region

The Virial Theorem, MHD Equilibria, and Force-Free Fields

Incompressible MHD simulations

Ideal Magnetohydrodynamics (MHD)

Problem Set 5 Math 213, Fall 2016

QUELQUES APPLICATIONS D UN SCHEMA SCHEMA MIXTE-ELEMENT-VOLUME A LA LES, A L ACOUSTIQUE, AUX INTERFACES

Nonlinear magnetohydrodynamic effects on Alfvén eigenmode evolution and zonal flow

Sensors Plasma Diagnostics

MAGNETOHYDRODYNAMICS

Practice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr.

Radiative & Magnetohydrodynamic Shocks

12. MHD Approximation.

MATH 332: Vector Analysis Summer 2005 Homework

UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE B.ENG(HONS) ELECTRICAL & ELECTRONIC ENGINEERING SEMESTER ONE EXAMINATION 2015/2016

Waves in plasma. Denis Gialis

Physic-based Preconditioning and B-Splines finite elements method for Tokamak MHD

Gyrokinetic Theory and Dynamics of the Tokamak Edge

MHD Stabilization Analysis in Tokamak with Helical Field

Conservation of Mass. Computational Fluid Dynamics. The Equations Governing Fluid Motion

Creation and destruction of magnetic fields

( ) ( ) Math 17 Exam II Solutions

Abstract. We develop a new cell-centered control volume Lagrangian scheme for solving Euler

Note: Each problem is worth 14 points except numbers 5 and 6 which are 15 points. = 3 2

Mathematical Concepts & Notation

Math Exam IV - Fall 2011

0.3.4 Burgers Equation and Nonlinear Wave

Solutions to Sample Questions for Final Exam

Lecture 2 : Curvilinear Coordinates

Toroidal confinement devices

Ideal MHD Equilibria

THE DIFFERENTIAL GEOMETRY OF PARAMETRIC PRIMITIVES

The Linear Theory of Tearing Modes in periodic, cyindrical plasmas. Cary Forest University of Wisconsin

Plasmoid Motion in Helical Plasmas

Fluid Dynamics. Part 2. Massimo Ricotti. University of Maryland. Fluid Dynamics p.1/17

PLASMA: WHAT IT IS, HOW TO MAKE IT AND HOW TO HOLD IT. Felix I. Parra Rudolf Peierls Centre for Theoretical Physics, University of Oxford

MAT 211 Final Exam. Fall Jennings.

Motion in Three Dimensions

Set 5: Classical E&M and Plasma Processes

SUPPLEMENTARY INFORMATION

Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas )

THE numerical simulation of the creation and evolution

Hydrogen and Helium Edge-Plasmas

A Space-Time Expansion Discontinuous Galerkin Scheme with Local Time-Stepping for the Ideal and Viscous MHD Equations

Fluid Dynamics. Massimo Ricotti. University of Maryland. Fluid Dynamics p.1/14

A Godunov-type method for the diphasic Baer-Nunziato model

Stopping, blooming, and straggling of directed energetic electrons in hydrogenic and arbitrary-z plasmas

Variation Principle in Mechanics

A kinetic neutral atom model for tokamak scrape-off layer tubulence simulations. Christoph Wersal, Paolo Ricci, Federico Halpern, Fabio Riva

Consider a volume Ω enclosing a mass M and bounded by a surface δω. d dt. q n ds. The Work done by the body on the surroundings is.

13. ASTROPHYSICAL GAS DYNAMICS AND MHD Hydrodynamics

A Study of 3-Dimensional Plasma Configurations using the Two-Fluid Plasma Model

Introduction to Physical Acoustics

EELE 3332 Electromagnetic II Chapter 9. Maxwell s Equations. Islamic University of Gaza Electrical Engineering Department Dr.

Finite volume evolution Galerkin method for hyperbolic conservation laws with spatially varying flux functions

Lecture 5: Kinetic theory of fluids

Per Helander. Contributions from: R. Kleiber, A. Mishchenko, J. Nührenberg, P. Xanthopoulos. Wendelsteinstraße 1, Greifswald

Nonlinear MHD effects on TAE evolution and TAE bursts

Flow, current, & electric field in omnigenous stellarators

Christoffel Symbols. 1 In General Topologies. Joshua Albert. September 28, W. First we say W : λ n = x µ (λ) so that the world

A theory for localized low-frequency ideal MHD modes in axisymmetric toroidal systems is generalized to take into account both toroidal and poloidal

Math 23b Practice Final Summer 2011

Numerical methods for FCI Part IV Multi-temperature fluid models Hele-Shaw models

20. Alfven waves. ([3], p ; [1], p ; Chen, Sec.4.18, p ) We have considered two types of waves in plasma:

B field of the tokamak

MHD equilibrium calculations for stellarators. Antoine Cerfon, MIT PSFC with F. Parra, J. Freidberg (MIT NSE)

A class of the fourth order finite volume Hermite weighted essentially non-oscillatory schemes

MHD-particle simulations and collective alpha-particle transport: analysis of ITER scenarios and perspectives for integrated modelling

Fast Ion Confinement in the MST Reversed Field Pinch

Predictive Engineering and Computational Sciences. Detailed and simplified kinetic mechanisms for high enthalpy flows

Archive of Calculus IV Questions Noel Brady Department of Mathematics University of Oklahoma

Sawteeth in Tokamaks and their relation to other Two-Fluid Reconnection Phenomena

Transition From Single Fluid To Pure Electron MHD Regime Of Tearing Instability

Turbulence and Transport The Secrets of Magnetic Confinement

Fluid-Structure Interaction Problems using SU2 and External Finite-Element Solvers

FOUR-WAY COUPLED SIMULATIONS OF TURBULENT

Chapter 5 MAGNETIZED PLASMAS. 5.1 Introduction. 5.2 Diamagnetic current

AE/ME 339. Computational Fluid Dynamics (CFD) K. M. Isaac. Momentum equation. Computational Fluid Dynamics (AE/ME 339) MAEEM Dept.

Transcription:

Modelling and numerical simulation of bi-temperature Euler Equations in toroidal geometry E. Estibals H. Guillard A. Sangam elise.estibals@inria.fr Inria Sophia Antipolis Méditerranée June 9, 2015 1 / 19 E. Estibals, H. Guillard, A. Sangam

Context of this work src : iter.org Hot plasma where ions and electrons may behave in independent way. Ion and electron temperatures can be very different. Complete model of plasma: MHD equations. MHD: MagnetoHydroDynamics. 2 / 19 E. Estibals, H. Guillard, A. Sangam

Goal of this work Introduction Numerical method to approximate a two temperature model: Two temperatures model:. Numerical methods:. Applied to study flows in tokamaks: Spatial discretization: cylindrical coordinates. Adapt the finite volume scheme to this coordinate system. 3 / 19 E. Estibals, H. Guillard, A. Sangam

Table of contents Introduction 1 2 The numerical scheme Numerical test 3 Spatial discretization Volume of control cell Normal and length 4 4 / 19 E. Estibals, H. Guillard, A. Sangam

Non-conservative and conservative systems Non-conservative system, E α = ε α + 1 2 V2, p α = p α (ρ α, ε α ), and c α = ρ α /ρ: t ρ + (ρv) = 0, t (ρv) + (ρv V) + (p e + p i ) = 0, t (ρ e E e ) + ((ρ e E e + p e )V) u(c i p e c e p i ) = ν ei (T i T e ), t (ρ i E i ) + ((ρ i E i + p i )V)+u(c i p e c e p i ) = ν ei (T i T e ). Conservative system, S e = p e ρ γe e et ρe = ρ e E e + ρ i E i : t ρ + (ρv) = 0, t (ρv) + (ρv V) + (p e + p i ) = 0, t (ρe) + ((ρe + p e + p i )V) = 0, t (ρ e S e ) + (ρ e S e V) = (γ e 1)ρe 1 γe ν ei (T i T e ). F. Coquel, and C. Marmignon, Numerical methods for weakly ionized gas, Astrophysics and Space Science, 1998. 5 / 19 E. Estibals, H. Guillard, A. Sangam

Transformation of the system Rotationally invariant system. Can write the system in any direction n, u = n V, v = t V: t ρ + n (ρu) = 0, t (ρu) + n (ρu 2 + p e + p i ) = 0, t (ρv) + n (ρuv) = 0, t (ρe) + n ((ρe + p e + p i )u) = 0, t (ρ e S e ) + n (ρ e S e u) = (γ e 1)ρ 1 γe e ν ei (T i T e ). 1D numerical scheme. 6 / 19 E. Estibals, H. Guillard, A. Sangam

Principle Introduction The numerical scheme Numerical test t U + n F (U, n) = S(U) Relaxation: t [ U V ] + n [ G1 (U, V ) G 2 (U, V ) ] [ = S(U) 1 τ Q(U, V ) If τ 0 then Q(U, V ) 0 and G 1 (U, V ) F (U) Numerically: 1 Transport. 2 Projection. ]. 7 / 19 E. Estibals, H. Guillard, A. Sangam

Relaxed system Introduction The numerical scheme Numerical test Relaxation variables: π e and π i. Relaxed system: t ρ + n (ρu) = 0, t (ρu) + n (ρu 2 + π e + π i ) = 0, t (ρv) + n (ρuv) = 0, t (ρe) + n ((ρe + π e + π i )u) = 0, t (ρ e S e ) + n (ρ e S e u) = (γ e 1)ρ 1 γe e ν ei (T i T e ), t π α + u n π α + a2 ρ α ρ 2 n u = 1 τ (p α π α ). Stability condition on impedance: a 2 ρ 2 max(γ e p e ρ e, γ i p i ρ i ). D. Aregba, J. Breil, S. Brull, B. Dubroca, E. Estibals, in preparation. 8 / 19 E. Estibals, H. Guillard, A. Sangam

Introduction The numerical scheme Numerical test Transport step: Godunov scheme t ρ + n (ρu) = 0, t (ρu) + n (ρu 2 + π e + π i ) = 0, t (ρv) + n (ρuv) = 0, t (ρe) + n ((ρe + π e + π i )u) = 0, t (ρ e S e ) + n (ρ e S e u) = 0, t (ρπ α ) + n (ρπ α u + a 2 ρα ρ u) = 0. Projection step: dρ dt = du dt = dv dt = 0, π α = p α, α = e, i, dt C e v,e dt = ν ei (T i T e ), dt C i v,i dt = ν ei (T i T e ). 9 / 19 E. Estibals, H. Guillard, A. Sangam

Implosion, Initial data The numerical scheme Numerical test ρ L, V L T L i, T L e ρ R, V R 10µm Ti R, Te R ρ L = ρ R = 1, V L = V R = 0, T L T R i = 150eV = 1.7406.10 6 K, i = 1500eV = 1.7406.10 7 K, Te L = 198, 2eV = 2, 3.10 6 K, Te R = 1982eV = 2, 3.10 7 K. 10 / 19 E. Estibals, H. Guillard, A. Sangam

The numerical scheme Numerical test Density and Temperatures at t = 5ps 11 / 19 E. Estibals, H. Guillard, A. Sangam

Velocity at t = 5ps Introduction The numerical scheme Numerical test 12 / 19 E. Estibals, H. Guillard, A. Sangam

Torus model Introduction Spatial discretization Volume of control cell Normal and length Coordinate system: cylindrical. Input: 2D mesh. Simulation: 2D axisymetric and 3D. 2D mesh: plan (R, Z) i.e. poloidal plan. 3 rd direction: φ, toroidal direction. 13 / 19 E. Estibals, H. Guillard, A. Sangam

Numerical tools Introduction Spatial discretization Volume of control cell Normal and length Time step: U n+1 i = U n i t Ω i j V (i) (F (U ij, n ij )n ij l ij ). Numerical approach: Vertex Centered. Numerical tools: 1 Ω i : volume of control cell. 2 n ij : unit normal. 2 cases: Normal between 2 points of the same poloidal plan. Normal between 2 points which are not inside the poloidal plan 3 l ij : length of segments. 14 / 19 E. Estibals, H. Guillard, A. Sangam

Computing of Ω is Introduction Spatial discretization Volume of control cell Normal and length φ iplan = φ iplan+1/2 φ iplan 1/2. is Ω 2D is Ω is = Ω is RdRdZdφ, = φ iplan+1/2 φ iplan 1/2 dφ Ω RdRdZ, 2D is = φ iplan Ω 2D = φ iplan is, τ Ω 2D is R τ τ 6. A. Bonnement, T. Fajraoui, H. Guillard, M. Martin, A. Mouton, B. Nkonga, and A. Sangam, Finite Volume Method in Curvilinear Coordinates, ESAIM Proc., Vol. 32, 163-176, 2011. 15 / 19 E. Estibals, H. Guillard, A. Sangam

l ij n ij in poloidal plane Spatial discretization Volume of control cell Normal and length is1 is3 τ1 G 1 M N 1 N 2 is2 N = N 1 + N 2 = = n R cos(φ) n R sin(φ) n Z [ nr n Z ] (x,y,z), (R,Z), G 2 is3 τ2 l ij n ij = Ω is NRdRdZ, [ ] 2n = n R sin( φ iplan 2 ) n Z φ iplan 16 / 19 E. Estibals, H. Guillard, A. Sangam (R,Z).

l ij and n ij in toroidal direction Spatial discretization Volume of control cell Normal and length n ij : easy to compute, the points are not in the same poloidal plan, n ij = e φiplan+1/2. l ij computing: l ij = Ω ± is RdRdZ = τ Ω 2D is R τ τ 6. 17 / 19 E. Estibals, H. Guillard, A. Sangam

Summary and perpectives Summary: Bi-temperature model tested in 2D geometry. Spatial discretezation of a torus. Perpective: Need a numeric test with the toroidal geometry. Extension to a bi-temperature MHD model. 18 / 19 E. Estibals, H. Guillard, A. Sangam

Merci de votre attention! 19 / 19 E. Estibals, H. Guillard, A. Sangam

Density and Temperatures at t = 5ps 20 / 19 E. Estibals, H. Guillard, A. Sangam

Velocity at t = 5ps Introduction 21 / 19 E. Estibals, H. Guillard, A. Sangam