Observation: predictable patterns of ecosystem distribution across Earth. Observation: predictable patterns of ecosystem distribution across Earth 1.

Similar documents
Climate System. Sophie Zechmeister-Boltenstern

Climate and the Atmosphere

ENVIRONMENTAL MANAGEMENT I

Energy Systems, Structures and Processes Essential Standard: Analyze patterns of global climate change over time Learning Objective: Differentiate

Earth s Climate Patterns

Wind: Global Systems Chapter 10

Factors That Affect Climate

Weather & Ocean Currents

Prentice Hall EARTH SCIENCE

COURSE CLIMATE SCIENCE A SHORT COURSE AT THE ROYAL INSTITUTION

Course Outline CLIMATE SCIENCE A SHORT COURSE AT THE ROYAL INSTITUTION. 1. Current climate. 2. Changing climate. 3. Future climate change

Prentice Hall EARTH SCIENCE

Fluid Circulation Review. Vocabulary. - Dark colored surfaces absorb more energy.

CHAPTER 6 Air-Sea Interaction Pearson Education, Inc.

5.1. Weather, climate, and components of the climate system

General Circulation. Nili Harnik DEES, Lamont-Doherty Earth Observatory

Course Outline. About Me. Today s Outline CLIMATE SCIENCE A SHORT COURSE AT THE ROYAL INSTITUTION. 1. Current climate. 2.

World Geography Chapter 3

1 What Is Climate? TAKE A LOOK 2. Explain Why do areas near the equator tend to have high temperatures?

Atmosphere Stuff WEATHER AND CLIMATE. Practice. Answer:

Meteorology Practice Test

Climate and Biomes. Adapted by T.Brunetto from: Developed by Steven Taylor Wichmanowski based in part on Pearson Environmental Science by Jay Withgott

Section 4 Professor Donald McFarlane

Seasons, Global Wind and Climate Study Guide

ESS 111 Climate & Global Change. Week 1 Weather vs Climate Structure of the Atmosphere Global Wind Belts

Earth s Heat Budget. What causes the seasons? Seasons

Earth is tilted (oblique) on its Axis!

The Planetary Circulation System

Electromagnetic Radiation. Radiation and the Planetary Energy Balance. Electromagnetic Spectrum of the Sun

Major climate change triggers

Website Lecture 3 The Physical Environment Part 1

Match (one-to-one) the following (1 5) from the list (A E) below.

4-1 The Role of Climate

4-1 The Role of Climate

Lecture 3: Global Energy Cycle

Weather Atmospheric condition in one place during a limited period of time Climate Weather patterns that an area typically experiences over a long

The Atmosphere. Topic 3: Global Cycles and Physical Systems. Topic 3: Global Cycles and Physical Systems. Topic 3: Global Cycles and Physical Systems

ATMO 436a. The General Circulation. Redacted version from my NATS lectures because Wallace and Hobbs virtually ignores it

Science 1206 Chapter 1 - Inquiring about Weather

The Atmosphere. Importance of our. 4 Layers of the Atmosphere. Introduction to atmosphere, weather, and climate. What makes up the atmosphere?

Weather Atmospheric condition in one place during a limited period of time Climate Weather patterns that an area typically experiences over a long

Environmental Science Chapter 13 Atmosphere and Climate Change Review

TOPIC #12. Wrap Up on GLOBAL CLIMATE PATTERNS

1 What Is Climate? TAKE A LOOK 2. Explain Why do areas near the equator tend to have high temperatures?

What is Climate? Understanding and predicting climatic changes are the basic goals of climatology.

2. Fargo, North Dakota receives more snow than Charleston, South Carolina.

1. The and the act as one interdependent system. 2. Why do we have to study both to understand the relationship?

Torben Königk Rossby Centre/ SMHI

4-1 The Role of Climate. Copyright Pearson Prentice Hall

- continental vs. marine regimes

Earth s Heat Budget. What causes the seasons? Seasons

Lecture 11: Meridonal structure of the atmosphere

CLIMATE AND CLIMATE CHANGE MIDTERM EXAM ATM S 211 FEB 9TH 2012 V1

ATMOSPHERIC ENERGY and GLOBAL TEMPERATURES. Physical Geography (Geog. 300) Prof. Hugh Howard American River College

CLIMATE. SECTION 14.1 Defining Climate

Chapter 02 Energy and Matter in the Atmosphere

ATMOSPHERE PACKET CHAPTER 22 PAGES Section 1 page 546

Climate Changes due to Natural Processes

Climate. What is climate? STUDY GUIDE FOR CONTENT MASTERY. Name Class Date

MAR110 LECTURE #22 Climate Change

IV. Atmospheric Science Section

Lecture Outlines PowerPoint. Chapter 16 Earth Science 11e Tarbuck/Lutgens

Topic # 11 HOW CLIMATE WORKS continued (Part II) pp in Class Notes

GEO1010 tirsdag

16 Global Climate. Learning Goals. Summary. After studying this chapter, students should be able to:

Topic # 12 How Climate Works

Energy Efficiency Review

Introduction to Climate Change

MAR110 LECTURE #28 Climate Change I

Science Chapter 13,14,15

Chapter 3. Multiple Choice Questions

CORE CONCEPTS WEATHER AND CLIMATE

Unit 2 Meteorology Test **Please do not write on this test** 5. El Nino & La Nina 6. Photosynthesis 7. Coriolis Effect 8.

Topic 6: Insolation and the Seasons

HEATING THE ATMOSPHERE

Climate Roles of Land Surface

Chapter 3 Packet. and causes seasons Earth tilted at 23.5 / 365 1/4 days = one year or revolution

Insolation and Temperature variation. The Sun & Insolation. The Sun (cont.) The Sun

Chapter 2 Solar and Infrared Radiation

Week: Dates: 3/2 3/20 Unit: Climate

The Ice Age sequence in the Quaternary

Seasonal & Diurnal Temp Variations. Earth-Sun Distance. Eccentricity 2/2/2010. ATS351 Lecture 3

climate system and its subcomponents: the atmosphere, ocean, land surface, Prof. Jin-Yi Yu ESS200A A general description of the Earth

Winds and Global Circulation

TROPICAL-EXTRATROPICAL INTERACTIONS

Give me one example of: Benthos. Diagram Upwelling. Explain a Convection Cell. What does it mean to have a high albedo?

2018 Science Olympiad: Badger Invitational Meteorology Exam. Team Name: Team Motto:

1. Weather and climate.

L.O: THE ANGLE OF INSOLATION ANGLE INSOLATION: THE ANGLE SUNLIGHT HITS THE EARTH

Assessment Schedule 2017 Earth and Space Science: Demonstrate understanding of processes in the atmosphere system (91414)

Topic # 12 Natural Climate Processes

Concepts of energy and heat

Topic # 11 HOW CLIMATE WORKS PART II

Earth s Heat Budget. What causes the seasons?

Understanding the Greenhouse Effect

Chapter 9 External Energy Fuels Weather and Climate

All objects emit radiation. Radiation Energy that travels in the form of waves Waves release energy when absorbed by an object. Earth s energy budget

1 Our Dynamic Climate Guiding Question: What factors determine Earth s climate?

School Name Team # International Academy East Meteorology Test Graphs, Pictures, and Diagrams Diagram #1

Winds and Currents in the Oceans

Transcription:

Climate Chap. 2 Introduction I. Forces that drive climate and their global patterns A. Solar Input Earth s energy budget B. Seasonal cycles C. Atmospheric circulation D. Oceanic circulation E. Landform effects F. Vegetation feedbacks II. Variability in climate A. Seasonally (see I.B.) B. Yearly El Niño Southern Oscillation (ENSO) C. Millenial D. Human impacts Powerpoint modified from Harte & Hungate (http://www2.for.nau.edu/courses/hart/for479/notes.htm) and Chapin (http://www.faculty.uaf.edu/fffsc/) 1.3 Climate is the state factor that most strongly governs the global pattern of ecosystem structure and processes Climate gives rise to predictable types of ecosystems Climate is a key mechanism by which ecosystems interact with the total Earth System 2.21 1.2 Observation: predictable patterns of ecosystem distribution across Earth Observation: predictable patterns of ecosystem distribution across Earth Why are there rainforests in the tropics? Why are there bands of desert at ~30 o N & S? Plate 1 1

Major goals in this lecture Answer these questions: I. - What are the forces that drive climate? - Are there predictable patterns of climate across the globe? II. Why and how does climate vary through time? Seasonally Annually Millenial scales Human effects I. What are the forces that drive climate? What are the global patterns? A. Solar radiation - Earth s energy budget Question: What is the greenhouse effect? Is this a recent phenomenon? Enhanced Greenhouse Effect Atmosphere is more transparent to incoming short-wave radiation than to outgoing long-wave radiation The temperature of a body determines wavelengths of energy emitted Solar radiation has high energy (shortwave) that readily penetrates the atmosphere Earth emits low-energy (longwave) radiation that is absorbed by different gases in the atmosphere Starr and Taggart 1997 2.1 Energy in = energy out Half of solar radiation reaches Earth (latent & sensible heat) The atmosphere is transparent to shortwave but absorbs longwave radiation (greenhouse effect) The atmosphere is heated from the bottom by longwave radiation and convection The atmosphere is heated from the bottom Therefore it is warmest near the bottom, and gets colder with increasing elevation Except the stratosphere is heated from the top ozone absorption of incoming UV Mesosphere and Thermosphere have little impact on the biosphere. 2.2 2.3 2

Uneven heating of Earth s surface causes predictable latitudinal variation in climate. 1. Greater heating at equator than poles 2. Why? a. sun s rays hit more directly b. less atmosphere to penetrate B. Seasonality What causes seasons? Earth s distance from the sun varies throughout the year 2.5 2.20 Tilt! Because of the tilt of Earth s axis, the amount of radiation received by Northern and Southern Hemispheres varies through the year - angle of incidence and day length 2.20 Look at this light projected onto the globe. Earth s Seasons Earth s Seasons Tilt of the Earth s axis towards or away from the sun creates the seasons When the north pole tilts toward the sun, it gets more radiation more warmth during the summer SUMMER (Northern Hemisphere) North Pole Tilt of the Earth s axis towards or away from the sun creates the seasons WINTER (Northern Hemisphere) North Pole When the north pole tilts away from the sun, it gets less radiation So it s colder during the winter Equator Earth Earth Equator When the north pole tilts toward the sun, the south pole tilts away So when it s summer in the north, it s winter in the south South Pole WINTER (Southern Hemisphere) South Pole SUMMER (Southern Hemisphere) When the north pole tilts away from the sun, the south pole tilts toward it When it s winter in the north, it s summer in the south 3

Common geographic boundaries relate directly to Earth s tilt Tropics: Capricorn (S) & Cancer(N) Arctic, Antarctic circles C. Atmospheric circulation Questions 1. Why are there rainforests in the tropics and deserts at ~30 o N and S? 2. What drives the major wind patterns? (e.g., Doldrums, Tradewinds, Westerlies) 2.20 C. Atmospheric circulation - Uneven heating of Earth s surface causes atmospheric circulation Greater heating at equator than poles Therefore 1. Net transfer of energy from Equator to poles. 2. Transfer occurs through circulation of atmosphere and oceans. Here s how it works Air cools as it rises, moisture condenses and falls as rain Intense radiation at the equator warms the air Warm air rises, collecting moisture 2.5 Lots of rain in the tropics! Rising air is now dry Circulation patterns repeat at 30-60º and 60-90º These are called circulation cells the basic units of Vertical atmospheric circulation Hadley cells some of the rising air flows north some of the rising air flows south Dry air descends at around 30º N and at around 30º S Wet Wet Dry Dry Ferrell cells (30-60º) Wet Polar cells (60-90º) Deserts The descending air flows N and S Deserts Dry Dry 4

Air rises and falls in Hadley, Ferrel, and Polar cells (vertical circulation) Circulation cells explain global distribution of rainfall Earth s rotation determines wind direction (horizontal circulation, Coriolis force) These general circulation patterns are modified by the distribution of oceans and continents. High heat capacity of water and ocean currents buffer ocean temperatures Land temperatures fluctuate more, especially in higher latitudes These differences in surface energy balance influence air movements, and create prevailing winds ITCZ and cell locations shift seasonally depending on location of maximal heating of Earth s surface 2.6 In summer at 60 º N & S, air descends over cold ocean (high pressure) and rises over warm land (low pressure) Observation: predictable patterns of ecosystem distribution across Earth 2.7b Cool equator-ward flow of air on W coast of continents Warm poleward flow of air on E coasts of continents Plate 1 D. Ocean currents Questions: 1. Why is San Francisco so cold? 2. Why is London so warm? D. Surface ocean currents are similar to wind patterns: 1. Driven by Coriolis forces 2. Driven by winds 2.9 Warm currents solid, Cold currents - dashed 5

Deep ocean currents are driven by cooling, freezing of polebound water (thermohaline circulation). - Deepwater formation occurs at high latitudes (near Greenland and Antarctic) - Upwelling at lower latitudes, western continental margins due to Coriolis effect. Oceans affect terrestrial climate by 1. High heat capacity of water 2. Currents 3. Upwelling 2.10 Ocean currents move 40% of excess heat from equator to poles (60% of heat transport is carried by atmosphere through storms that move along pressure gradients). 2.9 E. Landform effects on climate Mountain effects Orographic precipitation Rain shadow Effects of aspect Air drainage (inversion, arising due to topography, where cold air settles in valleys, for example) Climate of any region is predictable from topography, wind and ocean currents http://www.ocs.orst.edu/pub/maps/precipitation/total/states/wa/wa.gif F. Vegetation effects on climate Vegetation effects on climate Climate effects on vegetation In space (global distribution) Vegetation can affect components of surface energy balance Rt r(a) = λe + C + G 2.21 1. Rt is total solar radiation reaching Earth 2. r is reflected radiation, a function of albedo (a) 3. λe is latent heat transfer, driven by evapotranspiration 4. C is convective heat transfer (sometimes called sensible heat flux) 5. G is storage 6

Vegetation change effects on climate in the Amazon Basin Vegetation can alter albedo Leaf color Land-use change: Grazing, exposes soil, increases albedo, reducing net radiation, decreasing latent heat flux (less evapotrans) Over large enough scales, such changes can alter regional precipitation Similar phenomenon for deforestation rough smooth Tree migration into tundra Tundra is snow-covered in winter, very high albedo With warming, trees could advance, decreasing winter albedo dramatically Potentially, creates a positive feedback to warming 2.11 Rough canopies promote turbulence, increasing air exchange and evapotranspiration (λe) Smooth canopies have large boundary layers, impeding transfer of water vapor, decreasing latent heat flux (λe), increasing sensible heat flux (C) and storage (G) Bottom-line: conversion of forest to pasture leads to lower rainfall. II. Changes in climate A. Seasonal (see I.B.) B. Yearly (interannual) C. Millenial scales D. Human impacts - Is global warming for real? - How do we know that it isn t just a natural fluctuation in temperature? - What are some of the forces that lead to natural climate variability? II.B. Interannual Variation El Niño Southern Oscillation - The Pacific Ocean strongly influences the global climate system because it is the largest ocean basin - Normal ocean current and wind direction in central Pacific is easterly 2.9 ENSO events result from weakening of tropical Pacific atmospheric and oceanic circulation II. C. Millenial scale variation Climatic connections carry these climate effects throughout the globe (e.g., El Niño creates warm winters in AK and lots of rain in Calif) 2.19 7

Changes in orbit cause long-term variations in solar input to Earth Shape of orbit (100,000 yrs) Wobble of tilt (23,000 yrs) Angle of tilt (41,000 yrs) Eccentricity: The Earth's orbit around the sun is an ellipse. The shape of the elliptical orbit, which is measured by its eccentricity, varies through time. The eccentricity affects the difference in the amounts of radiation the Earth's surface receives at aphelion and at perihelion. When the orbit is highly elliptical, one hemisphere will have hot summers and cold winters; the other hemisphere will have warm summers and cool winters. When the orbit is nearly circular (now), both hemispheres will have similar seasonal contrasts in temperature. 2.14 Rotation axis executes a slow precession with a period of 23,000 years (see following figure) Pole Stars are Transient Precession: Present and past orbital locations of the Earth during the N Hemisphere winter Wobble in the tilt Milankovitch cycles The interactive effects of Earth s orbital variation on timing and distribution of total solar input. Strong effect on glacial/interglacial cycles D. Human effects Global warming http://en.wikipedia.org/wiki/image:vostok_420ky_4curves_insolation.jpg 8

Earth s climate is now warmer than at any time in the last 1000 years How can the atmosphere warm? 1. Increased solar input 2. Less reflected shortwave, less sulfate aerosols, darker surface of Earth (land-cover change) 3. More absorbed longwave more greenhouse gases 2.16 2.2 Most major greenhouse gases are increasing in atmospheric concentrations Earth s climate is now warmer than at any time in the last 1000 years 1. increased solar input (small warming effect) 2. Increased sulfate aerosols reflects radiation (small cooling effect) 3. Increased greenhouse gas concentrations (large warming effect) 4. Land-cover change creates a darker surface (large warming effect) 15.3 2.16 Climate is warming most rapidly at high latitudes This warming is most pronounced in Siberia and western North America Summary: Functioning of ecosystems varies predictably with climate 9

Combination of temperature and precipitation END 10