Outline. The Distance Spectra of Cayley Graphs of Coxeter Groups. Finite Reflection Group. Root Systems. Reflection/Coxeter Groups.

Similar documents
Outline. Some Reflection Group Numerology. Root Systems and Reflection Groups. Example: Symmetries of a triangle. Paul Renteln

arxiv:math/ v1 [math.co] 7 Jan 2005

Catalan numbers, parking functions, and invariant theory

The Major Problems in Group Representation Theory

is an isomorphism, and V = U W. Proof. Let u 1,..., u m be a basis of U, and add linearly independent

Setwise intersecting families of permutations

The Waring rank of the Vandermonde determinant

Character Polynomials

arxiv: v1 [math.co] 2 Aug 2013

Young s Natural Representations of S 4

Real representations

Longest element of a finite Coxeter group

Since G is a compact Lie group, we can apply Schur orthogonality to see that G χ π (g) 2 dg =

arxiv: v1 [math.co] 26 May 2014

Appendix to: Generalized Stability of Kronecker Coefficients. John R. Stembridge. 14 August 2014

Finite Subgroups of Gl 2 (C) and Universal Deformation Rings

INTRODUCTION TO REPRESENTATION THEORY AND CHARACTERS

NOTES ON POINCARÉ SERIES OF FINITE AND AFFINE COXETER GROUPS

SIMPLE ROOT SYSTEMS AND PRESENTATIONS FOR CERTAIN COMPLEX REFLECTION GROUPS. Jian-yi Shi

GRE Subject test preparation Spring 2016 Topic: Abstract Algebra, Linear Algebra, Number Theory.

Degree Graphs of Simple Orthogonal and Symplectic Groups

On some combinatorial aspects of Representation Theory

ON TYPES OF MATRICES AND CENTRALIZERS OF MATRICES AND PERMUTATIONS

NAVARRO VERTICES AND NORMAL SUBGROUPS IN GROUPS OF ODD ORDER

Algebra Exam Topics. Updated August 2017

Computation of the Dimensions of Symmetry Classes of Tensors Associated with the Finite two Dimensional Projective Special Linear Group

Root systems. S. Viswanath

Ma/CS 6b Class 23: Eigenvalues in Regular Graphs

Factorisations of the Garside element in the dual braid monoids

A PROOF OF BURNSIDE S p a q b THEOREM

An algebraic proof of the Erdős-Ko-Rado theorem for intersecting families of perfect matchings

THE BRAUER HOMOMORPHISM AND THE MINIMAL BASIS FOR CENTRES OF IWAHORI-HECKE ALGEBRAS OF TYPE A. Andrew Francis

ON REGULARITY OF FINITE REFLECTION GROUPS. School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia

Representation Theory

The Cartan Decomposition of a Complex Semisimple Lie Algebra

Representation Theory. Ricky Roy Math 434 University of Puget Sound

Radon Transforms and the Finite General Linear Groups

ORTHOGONAL BASES OF BRAUER SYMMETRY CLASSES OF TENSORS FOR THE DIHEDRAL GROUP

CUTOFF FOR THE STAR TRANSPOSITION RANDOM WALK

Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations

CUT-OFF FOR QUANTUM RANDOM WALKS. 1. Convergence of quantum random walks

Classification of root systems

Adjoint Representations of the Symmetric Group

Presentations of Finite Simple Groups

Group Theory pt 2. PHYS Southern Illinois University. November 16, 2016

Solutions to Example Sheet 1

(Ref: Schensted Part II) If we have an arbitrary tensor with k indices W i 1,,i k. we can act on it 1 2 k with a permutation P = = w ia,i b,,i l

Math Subject GRE Questions

Permutation Groups. John Bamberg, Michael Giudici and Cheryl Praeger. Centre for the Mathematics of Symmetry and Computation

REPRESENTATIONS OF S n AND GL(n, C)

Philip Puente. Statement of Research and Scholarly Interests 1 Areas of Interest

Exercises on chapter 4

Counting chains in noncrossing partition lattices

Presenting and Extending Hecke Endomorphism Algebras

Quotients of Poincaré Polynomials Evaluated at 1

MAT 445/ INTRODUCTION TO REPRESENTATION THEORY

Symmetry in quantum walks on graphs

Invariant Theory of AS-Regular Algebras: A Survey

Character tables for some small groups

Weil Representations of Finite Fields

REPRESENTATION THEORY FOR FINITE GROUPS

Standard Young Tableaux Old and New

18.702: Quiz 1 Solutions

SUPPLEMENT ON THE SYMMETRIC GROUP

CHARACTERS OF FINITE GROUPS.

Algebra SEP Solutions

REPRESENTATION THEORY. WEEK 4

1 Fields and vector spaces

Scaffolds. A graph-based system for computations in Bose-Mesner algebras. William J. Martin

REPRESENTATION THEORY OF S n

CONJECTURES ON CHARACTER DEGREES FOR THE SIMPLE THOMPSON GROUP

Root system chip-firing

REPRESENTATION THEORY WEEK 7

The Terwilliger Algebras of Group Association Schemes

Euler characteristic of the truncated order complex of generalized noncrossing partitions

Background on Chevalley Groups Constructed from a Root System

YOUNG TABLEAUX AND THE REPRESENTATIONS OF THE SYMMETRIC GROUP

4 Group representations

REPRESENTATION THEORY NOTES FOR MATH 4108 SPRING 2012

Combinatorial semigroups and induced/deduced operators

Canonical systems of basic invariants for unitary reflection groups

On a question of B.H. Neumann

Rational Catalan Combinatorics: Intro

Math 121 Homework 5 Solutions

Notes 10: Consequences of Eli Cartan s theorem.

Lecture Notes Introduction to Cluster Algebra

Unipotent Brauer character values of GL(n, F q ) and the forgotten basis of the Hall algebra

Topological Matter, Strings, K-theory and related areas September 2016

Smith Normal Form and Combinatorics

YOUNG-JUCYS-MURPHY ELEMENTS

Eigenvalues of Random Matrices over Finite Fields

Max Hopkins. Advisor: Madhu Sudan

ALGEBRA QUALIFYING EXAM PROBLEMS

THE REPRESENTATIONS OF THE SYMMETRIC GROUP

Discriminants of Brauer Algebra

Weeks 6 and 7. November 24, 2013

L(C G (x) 0 ) c g (x). Proof. Recall C G (x) = {g G xgx 1 = g} and c g (x) = {X g Ad xx = X}. In general, it is obvious that

LOCALLY ELUSIVE CLASSICAL GROUPS. 1. Introduction

A SHORT COURSE IN LIE THEORY

Liouvillian solutions of third order differential equations

Transcription:

The Distance Spectra of of Coxeter Groups Paul Renteln 1 Department of Physics California State University San Bernardino 2 Department of Mathematics California Institute of Technology ECNU, Shanghai June 7, 2010 Outline Open Problems Root Systems Finite Reflection Group V an n dimensional inner product space over R Given α V, reflection t α : V V fixes hyperplane H α := {v V : (α, v) = 0} (pointwise) and sends α to α. Let Φ V satisfy tα Φ = Φ for all α Φ Φ Rα = { α, α} for all α Φ Φ is called a root system. Let Φ be an irreducible finite root system Let W be the group generated by reflections t α, α Φ W called a finite reflection group or finite Coxeter group Four infinite families: A n, B n, D n, I 2 (m), and six exceptional types: E 6, E 7, E 8, F 4, H 3, H 4

Reflection Groups Arising in Nature Simple Systems S 4 = W (A 3 ) W (B 3 ) W (H 3 ) Φ is a set of simple roots if: is a basis for V Every root α Φ can be written α = α i c iα i where all c i 0 or all c i 0 The simple reflections are S := {s α : α } Source: http://en.wikipedia.org/wiki/regular polytope Ex: S 3 = W (A 2 ) Symmetries of a triangle Length and Absolute Length hyperplanes simple roots roots Let T := {set of all reflections} Let S := {set of simple reflections} Every element w W is a word in the reflections in T or S The minimum length l T (w) of w W written as a word in T is called the absolute length of w. The minimum length l S (w) of w W written as a word in S is called the length of w. Note: l T (w) is constant on conjugacy classes, while l S (w) is not

Coxeter Transformations The Coxeter element of W is c = s S s (unique up to conjugacy) The order of c is h, the Coxeter number The eigenvalues of c (in the reflection representation) are of the form ζ m i for some primitive h th root of unity ζ. The numbers m 1, m 2,... m n are the exponents of W The Exponents of the Reflection Groups Type m 1, m 2,..., m n A n 1, 2,..., n B n 1, 3, 5,..., 2n 1 D n 1, 3, 5,..., 2n 1, n 1 E 6 1, 4, 5, 7, 8, 11 E 7 1, 5, 7, 9, 11, 13, 17 E 8 1, 7, 11, 13, 17, 19, 23, 29 F 4 1, 5, 7, 11 G 2 1, 5 H 3 1, 5, 9 H 4 1, 11, 19, 29 I 2 (m) 1, m 1 Poincaré Polynomials Theorem (Chevalley 55, Solomon 66, Steinberg 68) w W q l S(w) = n i=1 1 q m i+1 1 q Theorem (Shephard & Todd 54, Solomon 63) w W q l T (w) = n (1 + m i q) i=1 W a finite group R W a symmetric subset of generators without identity: Γ(W, R) a Cayley graph: {r W : r R r 1 R, r 1} V (Γ) = W E(Γ) = {{w, wr} : r R} A Cayley graph Γ(W, R) is normal if R is closed under conjugation

Adjacency Spectrum Distance Spectrum Let u, v V (Γ). The adjacency matrix: A(u, v) = 1 if {u, v} E(Γ) and 0 otherwise. The adjacency spectrum is the set of eigenvalues of A Some known adjacency spectra: Γ(S n, all transpositions) (= Γ(S n, T )) Diaconis & Shahshahani, 81 Γ(S n, star transpositions) Flatto, Odlyzko, and Wales, 85 Γ(S n, adjacent transpositions) (= Γ(S n, S)) Bacher, 94 (part) Γ(S n, derangements), 07 Let u, v V (Γ). The distance d(u, v) = the length of a shortest path from u to v The distance polynomial is the characteristic polynomial of d considered as a matrix The distance spectrum is the set of eigenvalues of d, i.e., roots of the distance polynomial Absolute Order Graph Absolute Order Graph on W : Γ(W, T ) where T = {all reflections}. Normal Example: (123) (12) (13) 1 (132) (23) 1 (12) (123) (13) (132) (23) 1 0 1 2 1 2 1 (12) 1 0 1 2 1 2 (123) 2 1 0 1 2 1 (13) 1 2 1 0 1 2 (132) 2 1 2 1 0 1 (23) 1 2 1 2 1 0 Weak Order Graph (123) (12) Weak Order Graph on W : Γ(W, S) where S = {simple reflections}. Not normal Example: (13) 1 (132) (23) 1 (12) (123) (13) (132) (23) 1 0 1 2 3 2 1 (12) 1 0 1 2 3 2 (123) 2 1 0 1 2 3 (13) 3 2 1 0 1 2 (132) 2 3 2 1 0 1 (23) 1 2 3 2 1 0 Absolute Order Graph Γ(S 3, T ) Distance Matrix d Weak Order Graph Γ(S 3, S) Distance Matrix d

Distance Polynomials of Some Absolute Order Graphs Type Distance Polynomial A 2 (z 7)(z 1)(z + 2) 4 A 3 (z 46)(z 2) 9 (z + 2) 5 (z + 6) 9 A 4 (z 326)(z 6) 37 (z 2) 25 (z + 4) 16 (z + 6) 25 (z + 24) 16 B 3 z 9 (z 100)(z 4) 14 (z + 4) 9 (z + 8) 15 H 3 (z 268)(z 8) 18 (z 4) 25 (z +2) 32 (z +8) 25 (z +12) 18 (z +32) D 4 z 27 (z 544)(z 16)(z 8) 36 (z 4) 64 (z + 8) 20 (z + 16) 27 (z + 32) 16 F 4 z 160 (z 3600)(z 240)(z 48) 2 (z 32) 36 (z 24) 16 (z 16) 162 (z 12) 256 (z 8) 144 (z + 16) 117 (z + 24) 128 (z + 48) 105 (z + 96) 24 I 2 (5) (z 13)(z 3)(z + 2) 8 I 2 (6) (z 16)(z 4)(z + 2) 10 I 2 (7) (z 19)(z 5)(z + 2) 12 Generalized Poincaré Polynomials and the Distance Spectrum For each χ Irr(W ) introduce generalized Poincaré polynomial: P χ (q) := 1 χ(1) w W χ(w)q l T (w) Theorem The eigenvalues of the absolute order graphs Γ(W, T ) are given by η χ = dp χ(q) dq, q=1 with multiplicity χ(1) 2 for each χ Irr(W ). Moreover, η χ Z. Proof Sketch Proof Sketch cont. Consider L := w W l T (w)w CW. l T is a conjugacy class invariant, so L T = l T (w K ) w = K w K K l T (w K )I K, Let ρ be left regular representation of W extended to CW. Then L is represented by distance matrix: ρ(l T )v = w = u l T (w)ρ(w)v = w l T (uv 1 )u = u (Last equality follows from bi-invariance of d.) l T (w)wv d(u, v)u. where I K is (up to constant) the trivial idempotent on class K, and hence constant on irreducible modules, by Schur s lemma. The irreducible modules appear with multiplicity equal to their dimensions, so taking traces yields the eigenvalues η χ = 1 χ(1) K K l T (w K )χ(w K ) = dp χ(q) dq, q=1 each with multiplicity χ(1) 2. Integrality follows by a theorem of Isaacs.

Leading (?) Eigenvalue of Absolute Order Graphs P 1 (q) = ordinary Poincaré polynomial = i (1 + m iq) Corollary η 1 = W i m i 1 + m i. Conjecture η 1 is the largest eigenvalue of the distance matrix of the absolute order graphs. Generalized Poincaré Polynomial in Type A n 1 Can obtain remaining eigenvalues without knowing characters explicitly Theorem (Molchanov 82, Stanley EC2) The generalized Poincaré polynomial for the symmetric group S n = W (A n 1 ) is P λ (q) = u λ(1 + qc(u)), where λ n is a partition of n, and c(u) is the content of box u (namely j i if box u is at (i, j) in Ferrers diagram of partition). Multiplicity of η λ is f 2 λ, where f λ = n!/h λ and H λ is the product of all the hook lengths of λ. Generalized Poincaré Polynomials in Other Types Theorem (Molchanov 82) The generalized Poincaré polynomial for the hyperoctachedral group W (B n ) is Γ(S 4, S): The Permutahedron in R 3 P (λ,µ) = u λ [1 + q(c(u) + 1)] v µ[1 + q(c(v) 1)], where λ k, µ m, and n = k + m. Multiplicity of η (λ,µ) is f 2 λµ, where f λµ = n! k!m! f λf µ. Molchanov also computed generalized Poincaré polynomials in types D n and I 2 (n) Source: http://www.antiquark.com/math/permutahedron 4.gif

Distance Polynomials of Some Weak Order Graphs Type Distance Polynomial A 2 z 2 (z 9)(z + 1)(z + 4) 2 A 3 z 17 (z 72)(z + 4) 3 (z + 20) 3 A 4 z 109 (z 600)(z + 20) 6 (z + 120) 4 B 3 z 38 (z 216)(z + 8) 3 (z 2 + 64z + 384) 3 D 4 z 179 (z 1152)(z + 224) 4 (z + 32) 8 D 5 z 1899 (z 19200)(z + 2880) 5 (z + 320) 15 H 3 z 104 (z 900)(z 2 + 248z + 3856) 3 (z + 24) 4 (z + 12) 5 F 4 z 1127 (z 13824)(z + 192) 16 (z 2 + 2688z + 313344) 4 E 6 z 51803 (z 933120)(z + 112320) 6 (z + 8640) 30 I 2 (5) z 4 (z 25)(z + 1)(z 2 + 12z + 16) 2 I 2 (6) z 5 (z 36)(z + 2) 2 (z 2 + 16z + 16) 2 I 2 (7) z 6 (z 49)(z + 1)(z 3 + 24z 2 + 80z + 64) 2 Distance Polynomials of Some Weak Order Graphs Type Distance Polynomial A 2 z 2 (z 9)(z + 1)(z + 4) 2 A 3 z 17 (z 72)(z + 4) 3 (z + 20) 3 A 4 z 109 (z 600)(z + 20) 6 (z + 120) 4 B 3 z 38 (z 216)(z + 8) 3 (z 2 + 64z + 384) 3 D 4 z 179 (z 1152)(z + 224) 4 (z + 32) 8 D 5 z 1899 (z 19200)(z + 2880) 5 (z + 320) 15 H 3 z 104 (z 900)(z 2 + 248z + 3856) 3 (z + 24) 4 (z + 12) 5 F 4 z 1127 (z 13824)(z + 192) 16 (z 2 + 2688z + 313344) 4 E 6 z 51803 (z 933120)(z + 112320) 6 (z + 8640) 30 I 2 (5) z 4 (z 25)(z + 1)(z 2 + 12z + 16) 2 I 2 (6) z 5 (z 36)(z + 2) 2 (z 2 + 16z + 16) 2 I 2 (7) z 6 (z 49)(z + 1)(z 3 + 24z 2 + 80z + 64) 2 Observations A Variant of the Distance Matrix Γ(W, S) not normal, so no simple formula involving characters Lots of zeros (huge degeneracy) and very few distinct eigenvalues! Spectrum not integral in general, but... Conjecture The distance spectra of the weak order graphs of types A, D, and E each contain only four distinct integral eigenvalues. Have partial proof of conjecture and explanations for some of these observations Difficulty is that distance matrix is too large: size W W Instead of working with group elements, can work with roots Use Coxeter combinatorics to find a smaller matrix with size Φ Φ and related spectrum

The Angle Operator Proof Idea Let Ψ = { α : α Φ} be the permutation representation of W Define angle operator Θ by Let Π be set of positive roots (all c i 0). Well known that l S (w) = wπ ( Π), Θ β = α θ αβ α, so d S (u, v) = l S (u 1 v) = vπ u( Π). where θ αβ is the angle between α and β. Theorem The distance spectrum of the weak order graphs can be recovered from the spectrum of Θ. Now define d S (u, v) = uπ vπ. Can show Spec d S = {λ 1, λ 2,..., λ W } Spec d S = {λ 1, λ 2,..., λ W }. Proof Idea cont. Proof Idea cont. Define ψ w := α>0 wα. It follows that d S (u, v) = ψ u ψ v. This has same spectrum as D = ψ w ψ w. w Can show that Show for dihedral groups that D = W (π Θ), 2π then show it holds for all other reflection groups by considering cosets of dihedral subgroups. D αβ = {w W : wα > 0 and wβ > 0}.

Cyclic Eigenvectors in Types A, D, and E A Combinatorial Problem Theorem Let (α, β, γ) Φ be distinct, coplanar roots with α + β + γ = 0. Define cyclic subspace Ψ c Ψ to be space spanned by vectors of form ( ) ( ) ψ αβγ := α + β + γ α + β + γ. Let W be of type A, D, or E. Then Θ ψ αβγ = 2π 3 ψ αβγ. Problem What is the dimension of Ψ c? In type A n 1 roots are of form e i e j for 1 i < j n. Can map roots to directed edges in complete graph K n. Ψ c can be identified with cycle space of K n, which has dimension ( ) n 1 2. In type D can show dim Ψ c = n(n 2). (Proof by representation theory.) Combinatorial argument desired. Open Problems Distance Polynomial of Weak Order Graph in Type A Things To Do Theorem The distance polynomial of Γ(S n, S) is ( q n! (1/2)(n2 n+2) q n! ( )) n 2 2 ( q + n! 6 ) (n 1)(n 2)/2 ( q + ) (n + 1)! n 1. 6 Distance polynomial in type D obtained similarly. (Type I also known.) What about the other types? Applications? Chemistry? Can similar methods help to determine the adjacency spectrum of weak order graphs? Proof. By constructing remaining eigenvectors.