Barnett Shale Showcases Tight-Gas Development

Similar documents
and a contribution from Offshore Europe

Shale Development and Hydraulic Fracturing or Frac ing (Fracking) What is it?

Considerations for Infill Well Development in Low Permeability Reservoirs

Hostile downhole conditions present complex challenges

Microdeformation: combining direct fracture height measurement with microseismic response Natalia Verkhovtseva, Greg Stanley

Kent F. Perry. Gas Technology Institute Des Plaines, Illinois. Paper Presented October 6, th World Gas Conference Buenos Aires, Argentina

Applying Stimulation Technology to Improve Production in Mature Assets. Society of Petroleum Engineers

Halliburton Engineering for Success in Developing Shale Assets

If your model can t do this, why run it?

MAXIMIZING THE RESERVOIR ACCESS WITH COMPLETION OPTIMIZATION AND EFFECTIVENESS. Luciano Fucello, NCS Multistage Fabio Chiarandini, Gaffney & Cline

IMPROVED RESERVOIR ACCESS THROUGH REFRACTURE TREATMENTS IN TIGHT GAS SANDS AND GAS SHALES

Fracture Geometry from Microseismic. Norm Warpinski

THE FIRST SUCSESSFUL MULTI STAGED FRACTURING IN A DEEP VOLCANIC GAS RESERVOIR IN JAPAN

Technology of Production from Shale

Unconventional Natural Gas A Brief Review for Instituto Petroquimica Argentina

SHALE GAS AND HYDRAULIC FRACTURING

Drilling Technology - The Emergence of New Risk, From A Loss Adjuster's Perspective

Demystifying Tight-gas Reservoirs using Multi-scale Seismic Data

Induced microseismic fracture prediction

Geomechanics for Unconventionals Series, Vol III:

Keys to Successful Multi-Fractured Horizontal Wells In Tight and Unconventional Reservoirs

The SPE Foundation through member donations and a contribution from Offshore Europe

NOTICE CONCERNING COPYRIGHT RESTRICTIONS

What s Shaking in the Barnett Shale? STEP Dallas, August 11, 2015

Revitalizing Mature Fields

Drilling & Developing the Marcellus Shale

geovision Resistivity imaging for productive drilling

StackFRAC HD system outperforms cased hole in vertical wells

A Better Modeling Approach for Hydraulic Fractures in Unconventional Reservoirs

Call for Papers. Hydraulic Fracturing Special Issue

Horizontal Injectors & Producers at SACROC Clyde Findlay II & Jeremy Pitts

An Open Air Museum. Success breeds Success. Depth Imaging; Microseismics; Dip analysis. The King of Giant Fields WESTERN NEWFOUNDLAND:

Microseismic data illuminate fractures in the Montney

Microseismicity applications in hydraulic fracturing monitoring

EXAMINER S REPORT AND RECOMMENDATION STATEMENT OF THE CASE

What Can Microseismic Tell Us About Hydraulic Fracturing?

Well Evaluation. An Integrated Well-Evaluation Process for Shale Gas Reservoirs

Modeling Optimizes Asset Performance By Chad Baillie

MicroScope. Resistivity- and imagingwhile-drilling

Horizontal Fracturing in Shale Plays. Matt McKeon

Gas Shale Hydraulic Fracturing, Enhancement. Ahmad Ghassemi

Stochastic Modeling & Petrophysical Analysis of Unconventional Shales: Spraberry-Wolfcamp Example

Project Geology RPSEA. GTI Project Technology. February 15, is a low. Similar to. Marcellus Gas Shale. area follows.

Productivity Injectivity Treating Rate Breakdown Pressure Treating Pressure Tortuosity Screenout.

US Shale Surviving the Downturn

Shale Gas:- What is it?, Where is it? How can we get it and when? Professor Peter Styles, Applied and Environmental Geophysics Research Group

stress direction are less stable during both drilling and production stages (Zhang et al., 2006). Summary

Microseismic Monitoring of a Multi-Stage Frac In the Bakken Formation, SE Saskatchewan

Heterogeneity Type Porosity. Connected Conductive Spot. Fracture Connected. Conductive Spot. Isolated Conductive Spot. Matrix.

Stress Shadows Explained: What It Is, What It Isn t, And Why You Should Care

What Microseismicity Tells Us About Re-fracturing An Engineering Approach to Re-fracturing Design

Optimizing Vaca Muerta Development

Downloaded 01/29/13 to Redistribution subject to SEG license or copyright; see Terms of Use at

For personal use only

Scientific approach applied to multi-well pad development in Eagle Ford shale

Identified a possible new offset location where the customer is currently exploring drill options.

NORTH AMERICAN ANALOGUES AND STRATEGIES FOR SUCCESS IN DEVELOPING SHALE GAS PLAYS IN EUROPE Unconventional Gas Shale in Poland: A Look at the Science

For personal use only

Shale Gas; Wellbore Positioning Challenges

RPSEA Research Project Overview

Elastic anisotropy in the Haynesville Shale from dipole sonic data

Microseismic Aids In Fracturing Shale By Adam Baig, Sheri Bowman and Katie Jeziorski

MITIGATE RISK, ENHANCE RECOVERY Seismically-Constrained Multivariate Analysis Optimizes Development, Increases EUR in Unconventional Plays

Integrated Approach to Drilling Project in Unconventional Reservoir Using Reservoir Simulation

2015 Training Course Offerings

Shale Gas Reservoir Simulation in Eclipse

For personal use only

Microseismic Geomechanical Modelling of Asymmetric Upper Montney Hydraulic Fractures

Optimized Recovery from Unconventional Reservoirs: How Nanophysics, the Micro-Crack Debate, and Complex Fracture Geometry Impact Operations

This paper was prepared for presentation at the Unconventional Resources Technology Conference held in San Antonio, Texas, USA, 1-3 August 2016.

region includes nine states and four provinces, covering over 1.4 million square miles. The PCOR Partnership

Optimizing Completions within the Montney Resource Play Mike Seifert, Mark Lenko, Joshua Lee Canadian Discovery Ltd.

THE MARCELLUS SHALE GAS PLAY Geology, Development, and Water-Resource Impact Mitigation

AADE Mid Continent Chapter. Bakken Shale Resource Play. Revisited. January 14, 2009 Jim Thompson

Petroleum Geology of Shale Gas & Tight Oil and How To Do It: Drill and Frack a Horizontal Well

Rate Transient Analysis COPYRIGHT. Introduction. This section will cover the following learning objectives:

Improving Well Performance through Multi Variate Completion Analyses in the US Bakken Shale. C. Mark Pearson

ADVANCED RESERVOIR CHARACTERIZATION AND EVALUATION OF CO, GRAVITY DRAINAGE IN T H E NATU RALLY FRACTU RED S P RABERRY RES ERVOl R

Shale Natural Resources. Stephen Ingram, North America Technology Manager, Halliburton

Before beginning, I would like to acknowledge the amazing contributions of Ken Nolte. I suspect that the origins of most of our discussion during

Title: Application and use of near-wellbore mechanical rock property information to model stimulation and completion operations

Presentation to the NATIONAL BUYER / SELLER FORUM March 24, Brad J. Hayes Petrel Robertson Consulting Ltd.

September 28, Michael James Murphy PROPOSAL FOR DECISION PROCEDURAL HISTORY

Characterization of Fractures from Borehole Images. Sandeep Mukherjee- Halliburton

A Better Modeling Approach for Hydraulic Fractures in Unconventional Reservoirs

Evaluating Horizontal Cased Wells for Completion Design

EVALUATION OF KEY FACTORS AFFECTING SUCCESSFUL OIL PRODUCTION IN THE BAKKEN FORMATION, NORTH DAKOTA. Technology Status Assessment.

Shale Capacity Key In Shale Modeling

1 of 5 12/10/2018, 2:38 PM

Abstracts ESG Solutions

Summary. Introduction

Jornadas de Producción, Tratamiento y Transporte de Gas El Desafío del Gas no Convencional

Microseismic Monitoring Shale Gas Plays: Advances in the Understanding of Hydraulic Fracturing 20 MAR 16 HANNAH CHITTENDEN

Comparison of Microseismic Results in Complex Geologies Reveals the Effect of Local Stresses on Fracture Propagation

PERMIAN BASIN RISING E&P ACTIVITY IN OFFSHORE TECHNOLOGY. Well completion advances What s new in expandable tubulars Deepwater risers go deeper

Seismic Guided Drilling: Near Real Time 3D Updating of Subsurface Images and Pore Pressure Model

M. Y Soliman, PhD, PE, NAI Ali Rezaei

Ensign, Unravelling the Enigma DEVEX 2016

Use of S-wave attenuation from perforation shots to map the growth of the stimulated reservoir volume in the Marcellus gas shale

The State of the Industry of Drillbit Geomechanics

Transcription:

BARNETT SHALE Barnett Shale Showcases Tight-Gas Development Joel Parshall, JPT Features Editor Horizontal drilling and continuing advances in hydraulic fracturing have made the Barnett Shale formation of north Texas one of the great recent success stories in gas production and a showcase for tight-reservoir development technologies. Yearly production from the north-texas Barnett Shale, officially called the Newark East field by the Texas Railroad Commission, grew to 1.1 Tcf of gas equivalent in 2007, making it second in size only to the Panhandle-Hugoton field among US producing gas fields. Cumulative Barnett production from 2000 onward now exceeds 4 Tcf. The north-texas Barnett Shale extends over 5,000 square miles and at least 17 counties, with the core areas lying within Denton, Tarrant, and Wise counties. While the formation can be found at depths as shallow as 3,000 ft in some areas, it primarily appears between 7,000- and 9,000-ft depths. Pay-zone thickness ranges from 100 to 1,000 ft and averages 300 500 ft. Notably, shales like the Barnett once were seen mainly for their role as barriers that trapped hydrocarbons in other rock or were useful for containing secondary-recovery repressurization or fracturing operations. They were seldom considered producible formations because of shale s low permeability, making it difficult for fluids to move within the rock and, thus, for hydrocarbons to flow to the wellbore. Matrix permeability in the Barnett is extremely low, ranging generally between 10 7 and 10 9 darcies. Partially improving the permeability is the presence of interbedded silt- and sand-sized particles. The Barnett Shale was believed to be hydrocarbon-rich even before a discovery well was drilled by Mitchell Energy Fig. 1 A Devon-operated rig drills a well in the Barnett Shale near Decatur, Wise County, Texas. (Image courtesy of Devon Energy.) 48 JPT SEPTEMBER 2008

2008 ANNUAL TECHNOLOGY CONFERENCE AND EXHIBITION Fig. 2 Barnett Shale fracture treatment in progress, with the skyline of Fort Worth, Texas, visible in the background. (Image courtesy of BJ Services.) in 1981. Nonetheless, development activity had to wait another decade or more and did not attain any momentum until the late 1990s. With the extremely tight formation, the use of fracturing to break up as much reservoir rock as possible was a necessity. At first, Mitchell s development strategy consisted of drilling vertical wells completed with massive hydraulic fracturing treatments, using crosslinked gels to transport from 1 to 1.5 million lbm of sand proppant in the formation. In 1997, with the success that another operator had experienced with slickwater fracturing (water-frac) technology in the east-texas Cotton Valley formation, Mitchell began to apply slickwater fracs in the Barnett, with impressive results. Really, the big driver was the cost; water fraccing reduced the cost of a well by 25%, said Eugene Fielder of Devon Energy, which acquired Mitchell in 2002 and is by far the most active operator in the Barnett (Fig. 1). With the water-frac technology, we pumped larger volumes of fluid treated only with friction reducers and biocides and smaller amounts of sand, probably 100,000 lbm in an average treatment. The use of water fracs enabled us to add the upper Barnett to our well completions, which we couldn t have justified economically with the more expensive massive hydraulic frac jobs. Including the upper Barnett formation contributed 20 to 25% to our reserves in the Barnett. Within a year or two, we switched entirely from gel to water fracs. The possibility of improving the shale s development economics by means of horizontal drilling to multiply the level of wellbore contact with the reservoir was evident. Mitchell had drilled a lone horizontal as early as 1991, which Fielder describes as kind of a science project. After shifting to water-frac treatments, the company drilled a couple of more horizontals in 1998. However, it was not until 2002, after Devon s acquisition of Mitchell, that horizontal drilling began in earnest. Today, it is virtually the exclusive JPT SEPTEMBER 2008 49

BARNETT SHALE Transverse & longitudinal fracs Low σ & σh ~ σh Transverse fracs σh >> σh Longitudinal fracs Intersected Higher σ & σh ~ σh hydraulic frac Transverse & longitudinal fracs Low σ & σh ~ σh No fracs High σ Fig. 3 Fracture-geometry information attained by the microimaging tool from near-wellbore induced fractures, where σ =stress, σh=high stress, and σh=low stress. (Image courtesy of Schlumberger.) drilling method used in the Barnett, with horizontal sections ranging from 1,500 to 4,500 ft. By itself, Devon has drilled more than 1,450 horizontals in the Barnett. Horizontal drilling not only improves reservoir contact but reduces the drilling footprint in a play that includes considerable urban and suburban landscape in metropolitan Dallas-Fort Worth (Fig. 2). Often, two or more horizontals are spudded from the same drilling pad, helping to limit the surface footprint. If we had continued drilling vertical wells, on 20-acre spacing or looking ahead to 10-acre spacing, we H H h h h h H H Low stress anisotropy Lower seismic anisotropy Wide fracture fairway High stress anisotropy Higher seismic anisotropy Narrow fracture fairway Fig. 4 Contrasting fracture-fairway geometries shown by means of micro seismic mapping, confirming stress-anisotropy measurements acquired with a 3D sonic scanner tool, where σh=high stress and σh=low stress. (Image courtesy of Schlumberger.) 50 would have had a large impact on the environment, Fielder said. But if we could replace three or four potential vertical wells with one horizontal well, that would be a big plus for us and the landowners. And the other thing we were hoping to accomplish was to avoid fraccing into the waterbearing zones of the Ellenberger formation beneath the Barnett Shale, which is a risk encountered outside the core area of the Barnett. If we could do that, we could commercialize the noncore area. Previously, that had been a problem because of the insufficient barrier to contain fracture treatments in those areas. Aiding development of the Barnett Shale in the last couple of years has been the use of borehole microimaging tools on a number of wells. In the Barnett, these have been deployed in a logging-while-drilling mode to expedite data acquisition and reduce the expense and risk of logging in horizontal wellbores. Resistivity measurements along the borehole trajectory are obtained, through the use of this technology, and locally specific directions of maximum and minimum formation stress can be determined to help optimize the orientations of wellbore completions and fracture treatments. This has helped people better understand the stress directions in the Barnett, said Valerie Jochen, Unconventional Gas Technical Director for Schlumberger, which provides stress measurements and overall fracturing services to companies drilling the Barnett. They want to drill their horizontal wells in the direction of minimum stress and frac them in the direction of maximum stress, transverse to the wellbore, which maximizes the rock surface area accessed by the treatment. In addition, borehole microimaging helps to detect existing fractures. This enables treatments to be directed away from areas that have already been fracced and in the noncore areas enables open natural fractures connected to the water-bearing Ellenberger sands to be avoided. Fig. 3 shows fracture-geometry information attained from drilling-induced fractures near the wellbore, acquired by logging with the borehole microimaging tool in a Barnett Shale horizontal well. JPT SEPTEMBER 2008

BARNETT SHALE EXHIBITION Microseismic Fracture Mapping Measure frac height, length, and azimuth in real time Microseisms induced by stress changes near tip Leakoff region Projected fracture path Microseisms induced by leakoff Planes of weakness Fig. 5 A schematic of a fracturing treatment undergoing microseismic mapping. (Image courtesy of Pinnacle Technologies.) Along with this technology, in some cases, 3D sonic scanner tools have been used to measure stress anisotropy, the difference between minimum and maximum formation stress. If the anisotropy, or difference, is high, the fairway created by the fracture treatment will be narrow. If the anisotropy is low, the fairway will be wide (Fig. 4). A narrow fairway would call for pumping a larger number of fracture-treatment stages at close distance from each other, maximizing lateral coverage along the horizontal wellbore. A wide fairway would call for pumping fewer stages, farther apart, and larger treatments to maximize fracture length. The ability to microimage the formation and closely measure the complicated stress variations of the Barnett also can be used to optimize the location and length of perforation clusters to improve fracturing significantly in areas where stress levels previously have made fracture initiation difficult. Furthermore, noted Jerry Youngblood, Senior Reservoir Engineering Adviser for Devon, Once we see which portions of the wellbore have relatively high stress and which ones relatively low, we can design our frac stages so that within a stage, each perf cluster sees a similar stress level. Thus, each perf cluster is more likely to break down and take fluid, as we intend, and the fracture treatment is distributed more efficiently laterally along the wellbore. Another enhancement to Barnett Shale fracturing operations has been the introduction of acid-soluble cement for wellbore isolation along certain laterals. This cement is approximately 93% soluble in hydrochloric acid, compared with less than 50% in most conventional cement and in some cases less than 30%. With acid-soluble cement, when you perforate and run an acid spearhead in a horizontal well, you can almost completely remove the cement sheath in the perforated area, said Bill Johnson, Technical Services Adviser in Oklahoma City for Halliburton, which provides multiple services to Barnett operators, including fracturing and cementing. Removal of the cement allows better reservoir contact and lower breakdown pressures. In some areas, the pressures required exceed 52 JPT SEPTEMBER 2008

BARNETT SHALE Shale Reservoirs Complex Fracture Networks Textbook fracture min Complex fracture networks of fractured shale Fracture initiates perpendicular to the least principle rock stresses Conventional fracture vs. shale fracture South North (ft) 1500 1000 500 0 500 1000 1500 Plan view of microseismic map Observation well 2000 2500 3000 1000 500 0 500 1000 1500 2000 2500 3000 West East (ft) Fig.6 A football-shaped volume of fractures in a network (lower left), which is characteristic of the Barnett Shale, is contrasted with a conventional bi-wing fracture system (upper left). In addition, the plan, orientation, and coverage of a fracture treatment are shown in a microseismic map (right). (Image courtesy of Halliburton.) the limits of the tubulars and prevent the use of fracture treatments when conventional cement is used. With acid-soluble cement, the 360 access to the shale formation through the perforated interval results in lower breakdown pressures, making it possible to frac wells in such areas. Fractures induced in the Barnett Shale generally do not propagate in a so-called textbook pattern of two wings with a 180 separation. Instead, they tend to spread in irregular patterns and link with other fractures to form networks that become increasingly complex as treatments multiply. As fracturing continues to be performed on infill wells, it is essential to ensure that the treatments enter new rock, as opposed to portions of the reservoir that already have been fractured. A key technology used for this purpose is microseismic fracture mapping. Geophones placed in offset wells are used to take seismic measurements of the fracturing formation as the treatment is performed. Basically, you are listening to microearthquakes generated around the hydraulic fractures, said Mike Mayerhofer, Applied Diagnostics Engineering Manager for Pinnacle Technologies, one of several companies providing microseismic services in the Barnett play. Fracture geometry, fracture-height growth, and orientation can be measured microseismically, and realtime monitoring enables treatments to be directed with high precision into targeted areas (Fig. 5). Danger zones, such as the wet Ellenberger, can be avoided. In addition to its real-time applications, microseismic fracture mapping provides valuable data to guide future decisions regarding lateral placements and well spacing. A majority of Barnett fracturing treatments have used sand as the fracture proppant. However, ultralightweight proppant has been used successfully in some Barnett treatments. A proppant made from chemically modified walnut hulls, impregnated and coated with resin, has proven effective in a number of treatments. The proppant has a specific gravity of 1.25 g/cm 2, compared with 2.65 g/cm 2 for sand, and an average bulk density of 0.85 g/cm 2, compared with 1.62 g/cm 2 for sand, and is usable where reservoir conditions do not exceed 5,000 psi net closure pressure and 200 F. An even lighter proppant with specific gravity of 54 JPT SEPTEMBER 2008

BARNETT SHALE 1.05 g/cm 2 and an operating envelope of 7,000 psi/225 F recently has been commercialized and now is being used in some Barnett treatments. Generally, the benefits from using ultralightweight proppant appear gradually, rather than immediately. Production from stimulated wells flows at levels that would be expected after a treatment using a sand proppant, but over time, the declines on these wells have not been as dramatic, said Harold Brannon, Senior Adviser, Fracturing, for BJ Services, which has developed and used these ultralightweight proppants in some of the treatments it has done for Barnett operators. In all, the various improvements in horizontal drilling and slickwater fracturing efficiency in recent years have dramatically reduced the time needed to drill and complete wells in the Barnett. Three years ago, it took more than a month to drill a typical horizontal well in the Barnett Shale; now it takes about 2 weeks to drill the same well, Johnson said. Looking ahead, infill drilling will continue on tighter spacing in the Barnett, and there is also significant potential to add production by means of refraccing existing wells. The majority of the refracturing jobs will be on wells that were fracced with the slickwater method. Because of slight changes in formation stresses that have occurred as a result of reservoir-pressure depletion, as wells are produced, the field should respond favorably to well refracturing. It becomes easier when you go in and refrac a well to contact new rock because of those changes that have stressed the formation, Johnson said. The Barnett has been shown to respond to refracturing a lot better than other reservoirs because treatments tend to move to new areas of the formation, rather than staying in the earlier fracture plane. You have a network, generally a football-shaped volume of fractures in the formation as the treatment proceeds from the wellbore. The very low rock permeability, we think, is one of the things that will contribute to refracturing response. You can t drain very deep into the reservoir at nanodarcy permeability like that in the Barnett. But if you can create new fractures, even tens of feet away from the old ones, there is still a lot of gas in place to produce. (See Fig. 6.) Indeed, some wells may be refractured several times. The drainage from the original gas in place is less than 10%, said Bill Grieser, Technical Moyno PC Pumps & Power Sections Proven leader in progressing cavity technology and performance Optimized rotor/stator profile geometries to deliver maximum performance value Tubing Wear Prevention Solutions (TWPS) Hercules Rod Rotators New Era Rod Guides RODEC Tubing Rotators Moyno ERT Power Sections 100% more power than conventional power sections of the same length High torque output permits a more constant bit speed Moyno Tri-Phaze System Handles liquids and gases of varying ratios Increases oil production and decreases wellhead pressure U.S.A. (936) 890-1064 Canada (780) 465-9500 www.rmenergy.com/rn Analyst, Completions and Production, Halliburton, Oklahoma City. So if you can refracture and get another 4, 5, or 6%, it is economic because of the large reservoir. A pay zone that is 300 to 500 ft thick can be a lot of gas molecules. JPT Moyno Power Sections RODEC TM Tubing Rotators Hercules Rod Rotators Moyno Down-Hole Pumps Moyno Tri-Phaze Pump System New Era Rod Guides Moyno ERT TM Power Sections Visit Us at the SPE Annual Technical Conference and Exhibition Booth 1161 JPT SEPTEMBER 2008 55