Structural Characterization of the. Supporting information

Similar documents
Innocent Ligand for Supported Ziegler-Natta. Polymerization Catalysts

Azaphosphatranes as Structurally Tunable Organocatalysts for Carbonate Synthesis from CO 2 and Epoxides

Supplementary Material

Platinum nanoparticles in suspension are as efficient as Karstedt s catalyst for alkene hydrosilylation

Electronic Supplementary Information Structure of Clean and Hydrated α-al 2 O 3 (11 02) Surfaces: Implication on Surface Charge.

Supporting information Gas-phase conformations of capistruin comparison of lasso, branched-cyclic and linear topologies

Electronic Supplementary Information for Dalton Transactions This journal is The Royal Society of Chemistry Supporting information

Hydrophilic MacroRAFT-Mediated Emulsion Polymerization: Synthesis of Latexes for

Electronic Supplementary Information

SUPPORTING INFORMATION

Supporting Information

Thermal behaviour of 2 nanostructures in various gas environments: a combined 3D and in-situ TEM approach

Biobased solvents for the Baylis-Hillman reaction of HMF

Catalytic hydrogenation of liquid alkenes with a silica grafted hydride. pincer iridium(iii) complex: Support for a heterogeneous mechanism

Electronic Supplementary Information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Effect of the organic functionalization of flexible MOFs on the. adsorption of CO 2

Supporting Information. Co-adsorption and Separation of CO 2 -CH 4 Mixtures in. the Highly Flexible MIL-53(Cr) MOF.

Supporting Information

A Straightforward Access to Stable, 16 Valence-electron Phosphine-Stabilized Fe 0 Olefin Complexes and their Reactivity

Modeling the structure, reactivity and support properties of gamma alumina surfaces from DFT

Supporting Information

Supramolecular stabilization of the acid tolerant L-arabinose isomerase from the food-grade Lactobacillus sakei

Institute for Polymer Research Symposium May 10, Waterloo, Ontario. Ahmad Alshaiban and João B. P. Soares

Supporting Information. Amphiphilic Block Copolymer Nano-fibers via RAFT- Mediated Polymerization in Aqueous Dispersed System

Two truncated identities of Gauss

Efficient Aluminium Chloride Natural Graphite Battery

NOTE ON FREE CONJUGACY PINCHED ONE-RELATOR GROUPS

Supporting Information

Supporting information. The role of halogens in on-surface Ullmann polymerization

arxiv: v2 [math.dg] 12 Mar 2018

Supplementary Information. Amidation of phenol derivatives: a direct synthesis of paracetamol (acetaminophen) from hydroquinone

Supporting Information for: Functionalized Gold Magic Clusters: Au 25 (SPhNH 2 ) 17

POSITION SCIENTIFIC BACKGROUND

CHAPTER 4 Additional. Ziegler-Natta Polymerization. Ziegler-Natta Polymerization. Ziegler-Natta Polymerization

Stabilisation of small mono- and bimetallic gold-silver nanoparticles by calix[8]arene derivatives

RECENT PROGRESS ABOUT THE CONJECTURE OF ERDÖS- STRAUS Ibrahima GUEYE 1, Michel MIZONY 2

Optimal operation of sublimation time of the freeze drying process by predictive control: Application of the Software

Dark matter and LHC: complementarities and limitations

Synthesis and characterization of innovative well-defined difluorophosphonylated-(co)polymers by RAFT polymerization

Supporting Information

Electronic Supplementary information (ESI) Nanodiamonds as Metal-Free Catalyst. 5 Few-Layer Graphene-Graphene Oxide Composite containing

Supporting Information

Phase-controlled synthesis of iron phosphates via phosphation of -FeOOH nanorods

Pyochelin, a siderophore of Pseudomonas aeruginosa : Physicochemical characterization of the iron(iii), copper(ii) and zinc(ii) complexes

Supplementary information

Electrical Characterization of PiN Diodes with p + layer Selectively Grown by VLS Transport

Supporting Information. Liquid-Crystalline Dendrimers Designed by Click Chemistry

Supplementary Material to Native-oxide limited cross-plane thermal transport in suspended silicon membranes revealed by scanning thermal microscopy

Proton NMR Studies of Supported Titanium Catalyst for Quantification of Incorporated Internal Electron Donor

Fisika Polimer Ariadne L Juwono. Sem /2007

High gain observer for a class of implicit systems

Improvement of gold-catalyzed oxidation of free carbohydrates to corresponding aldonates using microwaves

Fullerene growth from encapsulated graphene flakes

Mild and efficient bromination of Poly(hydroxyethyl)acrylate and its use towards Ionic-Liquid containing polymers

Supporting information for: Prediction and Characterization of MXene. Nanosheet Anodes for Non-Lithium-Ion Batteries

Kinetic Modeling of Quinoline Hydrodenitrogenation over a

Homogeneous and Inhomogeneous Line Broadening in EDFA

SUPPLEMENTARY FIGURES

Electronic Supporting Information for:

Advection Diffusion Problems with Pure Advection Approximation in Subregions

triples. 20, 1996 integer such that:

Synthesis of 12 nm iron oxide nanoparticles

Supporting information. A biocompatible calcium bisphosphonate coordination polymer: towards a metal-linker synergistic therapeutic effect?

METRIZABLE UNIVERSAL MINIMAL FLOWS OF POLISH GROUPS HAVE A COMEAGRE ORBIT

Supporting Information

Table of contents. Ling-Yan Chen, a,b Stéphane Guillarme, a and Christine Saluzzo a *

Ethanol condensation to butanol at high temperatures over basic heterogeneous catalysts: how relevant is acetaldehyde self-aldolisation?

Supporting information for:

Supporting Information

Chemoselective deprotonative lithiation of azobenzenes. Reactions and mechanisms

Supporting Information

Multifunctional silica nanoparticles modified via silylateddecaborate

Mole Worksheet (Key)

arxiv: v2 [astro-ph] 10 Jan 2008

Storage of Hydrogen, Methane and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications

Supplementary information

Enumeration and generation of all constitutional alkane isomers of methane to icosane using recursive generation and a modified Morgan s algorithm

Curriculum Vitae. or

Maximizing the Photocatalytic Activity of Metal-Organic Frameworks with Aminated-Functionalized Linkers: Substoichiometric

Triazabicyclodecene: an Effective Isotope. Exchange Catalyst in CDCl 3

SUPPORTING INFORMATION

Part B: Unraveling the mechanism of catalytic reactions through kinetics and thermodynamics

Synthesis of fluorophosphonylated acyclic nucleotide analogues via Copper (I)- catalyzed Huisgen 1-3 dipolar cycloaddition

Curriculum Vitae. Philippe Sautet

Elasticity Model for Blood Vessel

Supporting information. Enantioselective synthesis of 2-methyl indoline by palladium catalysed asymmetric C(sp 3 )-H activation/cyclisation.

ELECTRONIC SUPPLEMENTARY INFORMATION

Cooling dynamics of glass-embedded metal nanoparticles

Electronic Supplementary Information

SUPPORTING INFORMATION for

Supporting Information. Heteroaggregation of titanium dioxide nanoparticles. with model natural colloids under environmentally. relevant conditions

The materials used in this study were Iron (III) chloride hexahydrate (AR grade) and

Supporting Information. Zeolite Templated Carbon as an Ordered Microporous Electrode for Aluminum Batteries

Room-temperature emissive liquid crystalline materials based on palladium(ii) imine derivatives containing the 2-phenylpyridine core

Moments of the Rudin-Shapiro Polynomials

Biodegradable, multi-layered coatings for controlled release of small molecules

Hydrogen/Argon Plasma-Amorphous Carbon Near-Surface Interactions

Organic-Inorganic (O-I) Interfaces. Materials

Sensitive, highly resolved, and quantitative 1 H- 13 C NMR data in one go for tracking metabolites in vegetal extracts

Transcription:

Structural Characterization of the EtOH TiCl 4 MgCl 2 Ziegler-Natta Pre-catalyst Supporting information V. D Anna, S. Norsic, D. Gajan, K. Sanders, A. J. Pell, A. Lesage, V. Monteil, C. Copéret, G. Pintacuda, and P. Sautet,, CNRS, ENS Lyon, Université Lyon 1, Laboratory of Chemistry, 46, Allée d Italie, 69364 Lyon 07, France., Université de Lyon, Univ. Lyon 1, CPE Lyon, CNRS, Chimie Catalyse Polymères et Procédés (C2P2), LCPP team, 43 Bd du 11 novembre 1918, 69616 Villeurbanne, France., Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, Université Lyon 1, ENS Lyon - 5, rue de la Doua, F-69100 Villeurbanne, France., Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 15, 8093 Zürich, Switzerland., and Department of Chemical and Biomolecular engineering, University of California, Los Angeles, Los Angeles, CA 90095, United States. E-mail: Philippe.Sautet@ens-lyon.fr Phone: (1)310-825-8485. To whom correspondence should be addressed ENS-Lyon uni-lyon-pol uni-lyon ETH-Zurich UCLA 1

I) II) C B A A FigureS1: Compactmodel system representing theticl 4 anchoredona(110)mgcl 2 surface (I). Periodic repetition of the cell is shown in II (top view). 2

Figure S2: Structures representing the co-adsorption of EtOH and TiCl 4 MgCl 2. The adsorption of EtOH on the bare MgCl 2 is also shown. These structures are obtained using the extended model system. EtOH-Mg1 EtOH-Mg2 EtOH-Mg3 EtOH-TiCl 4 EtOH-bareMgCl 2 3

Figure S3: Structures modeling different coverage of EtOH on the TiCl 4 MgCl 2 surface. Per each structure, two point of view are shown. The cases of 1, 2, 3, 4, 5 and 6 EtOH molecules per 3 Mg surface atoms are considered. The compact cell was used. The coverage is also expressed as number of molecules per surface Mg atom (n ML). 1/3 ML 1 ML 1EtOH 3EtOH-2 2/3 ML 4/3 ML 2EtOH-1 4EtOH 2/3 ML 5/3 ML 2EtOH-2 5EtOH 1 ML 2 ML 3EtOH-1 6EtOH 4

Table S1: 13 C, 1 H chemical shifts (δ) and 1 H average chemical shifts ( δ) (calculated for the structures where one EtOH interacts with TiCl 4 MgCl 2. The values inherent EtOH on the bare MgCl 2 are also shown. The values are referred to TMS. All the values are in ppm. δ( 13 C) (ppm) δ( 1 H) (ppm) Structure C(CH 2 ) C(CH 3 ) H(CH 2 ) H(CH 3 ) H(OH) EtOH-Mg1 72.6 19.0 3.67 0.73 3.62 4.85 0.83 1.39 EtOH-Mg2 71.4 22.8 3.67 0.69 1.59 4.35 1.06 1.25 EtOH-Mg3 71.6 22.3 3.70 0.71 1.61 4.54 1.07 1.21 EtOH-TiCl 4 -MgCl 2 71.3 20.3 3.85 0.34 2.25 compact model system 4.65 0.79 0.85 EtOH-bare-MgCl 2 71.6 23.1 3.72 0.82 1.69 4.63 1.12 1.24 δ( 13 H) (ppm) H(CH 2 ) H(CH 3 ) EtOH-Mg1 4.26 0.98 EtOH-Mg2 4.01 1.00 EtOH-Mg3 4.12 1.00 EtOH-TiCl 4 -MgCl 2 compact 4.25 0.66 EtOH-bare-MgCl 2 4.18 1.06 5

Table S2: 13 C and 1 H chemical shifts (δ) and average chemical shifts ( δ) calculated for the system with 4EtOH molecule on TiCl 4 MgCl 2. The values are referred to TMS. All the values are in ppm. δ( 13 C) (ppm) δ( 1 H) (ppm) 4EtOH-TiCl 4 MgCl 2 C(CH 2 ) C(CH 3 ) H(CH 2 ) H(CH 3 ) H(OH) 73.2 18.7 4.42; 5.17 0.61; 0.76; 1.49 2.52 67.8 23.1 3.94; 4.09 0.65; 1.11; 1.35 2.19 71.5 21.6 3.97; 4.43 0.45; 0.60; 1.38 2.76 71.7 21.4 3.85; 4.38 0.65; 1.03; 1.15 4.80 δ( 13 C) (ppm) δ( 1 H) (ppm) 4EtOH-TiCl 4 MgCl 2 C(CH 2 ) C(CH 3 ) H(CH 2 ) H(CH 3 ) H(OH) 71.1 21.2 4.28 0.94 3.07 Table S3: Calculated 13 C chemical shift, Span (ppm) and Skew of the CH 2 group of EtOH on interacting with TiCl 4 MgCl 2 surface. Structure θ (ML) δ (ppm) Span (ppm) Skew EtOH-bareMgCl 2 1/9 71.6 89.4 0.51 EtOH-Mg1 1/9 72.6 91.1 0.38 EtOH-Mg3 1/9 71.6 89.5 0.51 4EtOH 4/3 73.2 77.0 0.40 67.8 80.6 0.44 71.5 83.3 0.26 71.7 74.8 0.57 6

4EtOH-EtO-1 4EtOH-EtO-2 4EtOH-EtO-3 4EtOH-EtO-surface Figure S4: Possible geometries obtained replacing on Cl ion by one EtO group on 4EtOH/TiCl 4 /MgCl 2 (θ = 4/3 ML). Two different points of view are shown. In the top view (bottom part of each sub-figure) the repetition of the cell is shown. 7

Table S4: Values of 13 C chemical shifts (δ) calculated (EtO) TiCl 4 x MgCl 2 y, x+y = 1. The results calculated within the extended model systems and in the EtOH high coverage condition (θ = 4/3 ML) are shown. The values are referred to TMS. All the values are in ppm. Structure δ( 13 C) (ppm) C(CH 2 ) C(CH 3 ) Extended High Extended High model system coverage model system coverage EtO-1 97.8 94.3 21.0 22.8 EtO-2 101.7 94.4 20.0 18 EtO-3 78.3 91.9 24.2 35.9 EtO-surface 68.8 65.5 26.6 41.9 EtO-bulk 68.8 33.2 8

Table S5: 1 H chemical shifts (δ) and average 1 H chemical shifts ( δ) calculated for (EtO) TiCl 4 x MgCl 2 y, x+y = 1. The results calculated within the extended model systems and in the EtOH high coverage condition (θ = 4/3 ML) are shown. The values are referred to TMS. All the values are in ppm. δ( 1 H) (ppm) H(CH 2 ) H(CH 3 ) Structure Extended High Extended High model system coverage model system coverage EtO-1 5.63 5.66 1.16 0.84 5.63 5.69 1.53 0.89 2.18 2.23 EtO-2 5.01 5.31 1.04 0.81 5.87 5.43 1.26 1.83 1.61 2.46 EtO-3 4.19 4.65 1.51 1.32 4.52 5.12 2.15 2.53 2.28 3.07 EtO-surface 3.79 3.41 0.79 1.18 4.22 3.92 1.00 1.37 1.23 2.57 EtO-bulk 4.36 1.33 4.79 2.18 2.95 δ( 1 H) (ppm) H(CH 2 ) H(CH 3 ) Structure Extended High Extended High model system coverage model system coverage EtO-1 5.63 5.68 1.62 1.35 EtO-2 5.44 5.37 1.30 1.70 EtO-3 4.36 4.89 1.98 2.31 EtO-surface 4.01 3.66 1.01 1.71 EtO-bulk 4.58 2.15 9

Table S6: 13 C and 1 H chemical shifts (δ) and average chemical shifts ( δ) of the 4EtOH molecules in 4EtOH (OEt) TiCl 4 x MgCl 2 y, x+y = 1. The values are referred to TMS. All the values are in ppm. δ( 13 C) (ppm) δ( 1 H) (ppm) Structure C(CH 2 ) C(CH 3 ) H(CH 2 ) H(CH 3 ) H(OH) 4EtOH-EtO-1 72.1 19.2 4.63; 5.75 1.07; 1.07; 1.41 1.96 68.8 22.3 3.97; 4.21 1.12; 1.23; 2.13 2.71 71.1 21.0 3.96; 4.54 0.52; 0.58; 1.31 2.38 70.6 20.5 3.80; 4.47 0.65; 1.08; 1.27 4.84 4EtOH-EtO-2 69.6 17.1 3.55; 4.39 0.56; 1.07; 1.40 4.20 70.0 24.6 4.21; 4.22 0.65; 0.91; 0.94 2.31 69.3 24.3 4.15; 4.38 0.64; 0.64; 1.44 5.25 72.0 20.3 3.25; 4.90 0.63; 1.20; 1.59 3.62 4EtOH-EtO-3 70.8 19.3 3.98; 4.71 0.87; 0.94; 1.13 0.73 68.3 22.9 3.66; 4.22 0.45; 1.03; 1.12 4.61 70.6 21.6 3.99; 4.32 0.58; 0.83; 1.49 5.45 70.3 22.8 4.50; 4.81 0.63; 0.79; 1.10 3.63 4EtOH-EtO-surface 68.0 19.2 3.60; 4.23 0.63; 1.35; 2.05 3.34 69.8 23.3 4.30; 4.45 0.59; 1.09; 1.12 2.11 67.8 20.4 4.20; 4.66 0.49; 0.92; 1.26 5.90 70.6 20.1 3.65; 4.45 0.57; 0.60; 1.70 2.31 δ( 13 C) (ppm) δ( 1 H) (ppm) Structure C(CH 2 ) C(CH 3 ) H(CH 2 ) H(CH 3 ) H(OH) 4EtOH-EtO-1 70.7 20.8 4.42 1.12 2.97 4EtOH-EtO-2 70.2 21.6 4.13 0.97 3.85 4EtOH-EtO-3 70.0 21.7 4.26 0.91 3.61 4EtOH-EtO-surface 69.1 20.8 4.19 1.03 3.42 10

Table S7: Comparison between the experimental and calculated Span (ppm) and Skew of the CH 2 groups. Structure θ EtOH (ML) δ (ppm) Span (ppm) Skew EtO-bulk 0 68.8 86.2 0.91 EtO-surface 0 68.8 77.3 0.62 4/3 65.4 68.3 0.62 EtO -1 0 97.8 129.5 0.73 4/3 94.3 119.0 0.57 EtO-2 0 101.6 113.5 0.47 4/3 94.4 90.9 0.48 EtO-3 0 78.3 86.2 0.75 4/3 91.9 93.0 0.66 11

4EtOH-EtO-1-1 4EtOH-EtO-2-2 4EtOH-EtO-1-2 4EtOH-EtO-2-3 4EtOH-EtO-1-3-I 4EtOH-EtO-1-3-II Figure S5: Possible geometries obtained replacing two Cl ions by two EtO groups on 4EtOH/TiCl 4 /MgCl 2 (θ = 4/3 ML). In the top view (bottom part of each sub-figure) the repetition of the cell is shown. 12

Table S8: Values of 13 C chemical shifts (δ) calculated (EtO) 2 TiCl 4 x MgCl 2 y, x+y = 2. The results calculated within the extended model systems (θ EtOH = 1/9 ML) and θ EtOH = 4/3 ML are shown. The values are referred to TMS. All the values are in ppm. δ( 13 C) (ppm) C(CH 2 ) C(CH 3 ) θ EtOH (ML) 0 4/3 0 4/3 EtO-1-1 EtO-2-2 EtO-3-3 91.4 91.0 26.7 24.0 93.8 84.1 21.6 21.2 95.6 94.7 19.8 23.5 85.5 87.0 19.0 14.8 79.6 33.4 80.0 34.3 EtO-1-2 a 96.7 91.2 21.0 25.1 b 91.2 98.7 20.1 20.0 EtO-1-3 a c 95.3 90.0 I 18.4 26.7 I 91.1 II 22.5 II 77.6 85.0 I 22.6 35.2 I 81.3 II 33.4 II EtO-2-3 b 97.7 95.1 14.9 20.1 c 77.4 87.1 23.3 32.2 a EtO in position 1 b EtO in position 2 c EtO in position 3 I I relative orientation II II relative orientation 13

Table S9: Values of 1 H chemical shifts (δ) calculated for (EtO) TiCl 4 x MgCl 2 y, x + y = 2. The results calculated within the extended model systems and in the EtOH high coverage condition (θ = 4/3 ML) are shown. The values are referred to TMS. All the values are in ppm. δ( 1 H) (ppm) H(CH 2 ) H(CH 3 ) θ EtOH (ML) 0 4/3 0 4/3 EtO-1-1 EtO-2-2 EtO-3-3 4.66; 5.63 5.39; 5.82 0.92; 1.51; 1.75 1.05; 1.45; 1.58 5.10; 5.16 4.87; 5.14 0.96; 1.52; 1.94 0.89; 1.10; 1.16 5.05; 5.58 5.24; 5.48 0.96; 0.97; 1.67 1.07; 1.92; 2.00 4.67; 4.74 4.90; 6.12 0.76; 1.26; 1.83 1.14; 1.41; 2.39 4.18; 4.55 0.08; 2.54; 2.59 4.22; 4.53-0.06; 2.53; 2.68 EtO-1-2 a 5.08; 5.57 5.23; 5.43 1.10; 1.37; 1.78 0.34; 0.99; 1.82 b 4.44; 5.49 5.08; 5.35 0.99; 1.12; 1.14 0.91; 1.46; 2.39 EtO-1-3 a c 5.42; 5.82 5.14; 5.35 I 1.08; 1.46; 2.27 0.94; 1.40; 1.97 I 5.42; 5.73 II 1.02; 1.37; 1.60 II 3.80; 4.35 4.47; 4.76 I 1.32; 1.87; 2.38 0.95; 2.69; 2.73 I 4.30; 4.63 II 1.06; 2.41; 2.72 II EtO-2-3 b 5.04; 5.78 5.37; 5.57 0.76; 1.27; 2.42 0.74; 1.65; 2.49 c 3.91; 4.39 4.29; 4.91 1.72; 1.96; 1.98 1.04; 2.40; 2.70 a EtO in position 1 b EtO in position 2 c EtO in position 3 I I orientation II II orientation 14

Table S10: Values of average 1 H chemical shifts ( δ) calculated for (EtO) 2 TiCl 4 x MgCl 2 y, x+y = 2. The results calculated within the extended cell (θ EtOH = 1/9 ML) and θ EtOH = 4/3 ML are shown. The values are referred to TMS. All the values are in ppm. δ( 1 H) (ppm) H(CH 2 ) H(CH 3 ) θ EtOH (ML) 0 4/3 0 4/3 EtO-1-1 EtO-2-2 5.14 5.61 1.40 1.36 5.13 5.00 1.47 1.05 5.31 5.36 1.67 1.66 4.71 5.51 1.28 1.64 EtO-1-2 a 5.33 5.33 1.42 1.05 b 4.97 5.22 1.08 1.59 EtO-3-3 EtO-1-3 a c 4.36 1.74 4.38 1.72 5.62 5.25 I 1.60 1.44 I 5.58 II 1.33 II 4.07 4.62 I 1.86 2.12 I 4.47 II 2.06 II EtO-2-3 b 5.41 5.47 1.48 1.63 c 4.15 4.60 1.89 2.05 a EtO in position 1 b EtO in position 2 c EtO in position 3 I I orientation II II orientation 15

Table S11: 13 C and 1 H chemical shifts (δ) and average chemical shifts ( δ) of the 4EtOH molecules of 4EtOH (OEt) 2 TiCl 4 x MgCl 2 y, x+y = 2. The values are referred to TMS. All the values are in ppm. δ( 13 C) (ppm) δ( 1 H) (ppm) Structure C(CH 2 ) C(CH 3 ) H(CH 2 ) H(CH 3 ) H(OH) 4EtOH-EtO-1-1 70.5 20.6 4.05; 5.40 0.73; 1.04; 1.05 2.14 66.4 25.0 3.33; 4.47 0.92; 1.08; 1.96 4.97 69.7 22.1 3.99; 5.46 0.89; 1.03; 1.15 4.95 69.5 23.8 3.96; 5.12 0.86; 0.88; 1.67 2.70 4EtOH-EtO-2-2 67.6 23.6 4.24; 4.62 0.59; 0.85; 1.68 4.03 70.6 23.1 3.68; 4.58 0.62; 0.90; 0.96 3.67 67.9 20.6 4.39; 5.19 0.61; 0.78; 1.23 5.55 71.8 21.1 4.08; 4.57 1.37; 1.48; 1.69 2.29 4EtOH-EtO-1-2 69.5 23.0 4.66; 4.80 0.89; 1.36; 1.43 2.05 69.2 22.7 4.14; 4.31 1.14; 1.32; 1.62 1.75 73.3 22.9 3.69; 4.72 0.66; 0.73; 1.32 3.36 70.8 23.7 3.90; 4.44 0.64; 0.96; 1.69 5.58 4EtOH-EtO-1-3-I 70.8 22.2 3.94; 5.30 0.87; 1.20; 1.38 1.41 68.0 21.4 3.78; 4.26 1.20; 1.20; 1.23 5.60 69.9 21.6 4.10; 4.29 0.63; 0.67; 1.42 5.48 70.8 23.2 4.30; 5.05 0.71; 0.98; 1.04 3.73 4EtOH-EtO-1-3-II 70.5 19.3 3.95; 4.72 0.84; 0.88; 1.17 0.91 66.9 23.9 3.33; 4.29 0.52; 1.07; 1.10 5.08 69.1 22.7 3.99; 4.73 0.87; 0.91; 1.49 6.01 70.2 25.0 4.21; 5.03 0.86; 0.87; 1.37 3.00 4EtOH-EtO-2-3 69.3 22.0 4.10; 4.42 0.86; 1.03; 1.31 0.59 68.7 24.2 3.80; 4.25 0.43; 1.04; 1.10 4.42 69.8 25.2 4.17; 4.46 0.80; 0.87; 1.50 5.67 70.2 23.1 4.43; 5.03 0.76; 0.90; 1.22 4.17 δ( 13 C) (ppm) δ( 1 H) (ppm) Structure C(CH 2 ) C(CH 3 ) H(CH 2 ) H(CH 3 ) H(OH) 4EtOH-EtO-1-1 69.0 22.9 4.47 1.11 3.69 4EtOH-EtO-2-2 69.5 22.1 4.42 1.06 3.89 4EtOH-EtO-1-2 70.7 23.1 4.33 1.15 3.19 4EtOH-EtO-1-3-I 69.9 22.1 4.38 1.05 4.06 4EtOH-EtO-1-3-II 69.2 22.7 4.28 1.00 3.75 4EtOH-EtO-2-3 69.5 23.6 4.33 0.99 3.71 16

Table S12: Calculated 13 C chemical shift (ppm), Span (ppm) and Skew of the CH 2 groups for EtO of (EtO) TiCl 4 x MgCl 2 y, x+y = 2, within the low and high coverage of EtOH. Structure θ EtOH (ML) δ (ppm) Span (ppm) Skew EtO-1-1 0 91.4 110.3 0.73 93.8 119.1 0.74 4/3 91.0 115.1 0.61 84.1 92.7 0.39 EtO-1-2 0 96.7 a 118.3 0.92 91.2 b 93.4 0.87 4/3 91.2 a 109.2 0.45 98.7 b 104.8 0.39 EtO-3-3 0 79.6 83.8 0.77 80.1 83.0 0.77 EtO-2-2 0 95.6 105.1 0.70 85.5 87.7 0.47 4/3 94.7 90.0 0.45 87.0 90.0 0.77 EtO-1-3 0 95.4 a 124.7 0.74 77.6 c 84.6 0.85 I 4/3 90.0 a 117.0 0.48 85.0 c 86.6 0.63 II 4/3 91.1 a 117.2 0.63 81.3 c 87.1 0.56 EtO-2-3 0 97.8 b 107.8 0.69 77.4 c 87.4 0.70 4/3 95.1 b 92.7 0.54 84.1 c 85.5 0.66 a EtO in position 1 b EtO in position 2 c EtO in position 3 I I orientation II II orientation 17