= f dx 1. + f dx 2. = 3x2 = 3

Similar documents
BEE1024 Mathematics for Economists

ECON 186 Class Notes: Optimization Part 2

Lecture Notes for Chapter 12

MTAEA Implicit Functions

z = f (x; y) = x 3 3x 2 y x 2 3

Chapter 4 Differentiation

Maximum Value Functions and the Envelope Theorem

Session: 09 Aug 2016 (Tue), 10:00am 1:00pm; 10 Aug 2016 (Wed), 10:00am 1:00pm &3:00pm 5:00pm (Revision)

Mathematical Economics: Lecture 9

Optimization, constrained optimization and applications of integrals.

ECON2285: Mathematical Economics

Partial Differentiation

ENGI Partial Differentiation Page y f x

Solutions. ams 11b Study Guide 9 econ 11b

Comparative Statics. Autumn 2018

Lecture Notes for January 8, 2009; part 2

Chain Rule. MATH 311, Calculus III. J. Robert Buchanan. Spring Department of Mathematics

The Kuhn-Tucker and Envelope Theorems

The Heckscher-Ohlin model: Mathematical treatment*

Keynesian Macroeconomic Theory

Sec. 1.1: Basics of Vectors

ECON Answers Homework #4. = 0 6q q 2 = 0 q 3 9q = 0 q = 12. = 9q 2 108q AC(12) = 3(12) = 500

EC /11. Math for Microeconomics September Course, Part II Lecture Notes. Course Outline

Comparative Statics Overview: I

Lecture Notes on Monotone Comparative Statics and Producer Theory

Mathematical Economics Part 2

Constrained optimization.

Principles in Economics and Mathematics: the mathematical part

1 Objective. 2 Constrained optimization. 2.1 Utility maximization. Dieter Balkenborg Department of Economics

Math for Economics 1 New York University FINAL EXAM, Fall 2013 VERSION A

MAT1300 Final Review. Pieter Hofstra. December 4, 2009

Elasticities as differentials; the elasticity of substitution

z = f (x; y) f (x ; y ) f (x; y) f (x; y )

Functions. A function is a rule that gives exactly one output number to each input number.

The Implicit Function Theorem (IFT): key points

Find the indicated derivative. 1) Find y(4) if y = 3 sin x. A) y(4) = 3 cos x B) y(4) = 3 sin x C) y(4) = - 3 cos x D) y(4) = - 3 sin x

First Midterm Exam. You are responsible for upholding the University of Maryland Honor Code while taking this exam.

Volume 30, Issue 3. Ramsey Fiscal Policy and Endogenous Growth: A Comment. Jenn-hong Tang Department of Economics, National Tsing-Hua University

Introduction and instructions 1. Review of some basic logic, matrix algebra, and calculus

Tvestlanka Karagyozova University of Connecticut

ECON0702: Mathematical Methods in Economics

Find all points where the function is discontinuous. 1) Find all vertical asymptotes of the given function. x(x - 1) 2) f(x) =

EC611--Managerial Economics

Mathematics for Economics ECON MA/MSSc in Economics-2017/2018. Dr. W. M. Semasinghe Senior Lecturer Department of Economics

( )! ±" and g( x)! ±" ], or ( )! 0 ] as x! c, x! c, x! c, or x! ±". If f!(x) g!(x) "!,

Math Final Solutions - Spring Jaimos F Skriletz 1

The Kuhn-Tucker and Envelope Theorems

CHAPTER 3: OPTIMIZATION

Economics 401 Sample questions 2

The Kuhn-Tucker Problem

Math 4263 Homework Set 1

Marginal Functions and Approximation

2. Which of the following is the ECONOMISTS inverse of the function y = 9/x 2 (i.e. find x as a function of y, x = f(y))

EconS 301. Math Review. Math Concepts

Lecture 10. (2) Functions of two variables. Partial derivatives. Dan Nichols February 27, 2018

Lecture Notes on Monotone Comparative Statics and Producer Theory

School of Business. Blank Page

Tutorial 2: Comparative Statics

Theory of Value Fall 2017

Section 11.7 The Chain Rule

The Implicit Function Theorem (IFT): key points

AY Term 1 Examination November 2013 ECON205 INTERMEDIATE MATHEMATICS FOR ECONOMICS

Economics 205 Exercises

Advanced Microeconomic Theory. Chapter 6: Partial and General Equilibrium

New Notes on the Solow Growth Model

Based on the specification in Mansoorian and Mohsin(2006), the model in this

MATH 19520/51 Class 5

MAT 122 Homework 7 Solutions

The Inconsistent Neoclassical Theory of the Firm and Its Remedy

Business Mathematics. Lecture Note #13 Chapter 7-(1)

Microeconomic Theory. Microeconomic Theory. Everyday Economics. The Course:

REVIEW OF DIFFERENTIAL CALCULUS

Lecture 2 The Centralized Economy

Sample Math 115 Midterm Exam Spring, 2014

Economics 203: Intermediate Microeconomics. Calculus Review. A function f, is a rule assigning a value y for each value x.

Econ 110: Introduction to Economic Theory. 8th Class 2/7/11

Online Appendix for Investment Hangover and the Great Recession

Rules of Differentiation

Lecture 1: Basic Models of Growth

Maximum Theorem, Implicit Function Theorem and Envelope Theorem

Math 233. Directional Derivatives and Gradients Basics

Math Review ECON 300: Spring 2014 Benjamin A. Jones MATH/CALCULUS REVIEW

Lecture 5: Rules of Differentiation. First Order Derivatives

Review for Final Review

INTRODUCTORY MATHEMATICS FOR ECONOMICS MSCS. LECTURE 3: MULTIVARIABLE FUNCTIONS AND CONSTRAINED OPTIMIZATION. HUW DAVID DIXON CARDIFF BUSINESS SCHOOL.

Modelling Production

8.1. Prot maximization, cost minimization and function cost. December 12, The production function has decreasing returns to scale.

Math 201 Handout 1. Rich Schwartz. September 6, 2006

CHAPTER 4: HIGHER ORDER DERIVATIVES. Likewise, we may define the higher order derivatives. f(x, y, z) = xy 2 + e zx. y = 2xy.

Basic Techniques. Ping Wang Department of Economics Washington University in St. Louis. January 2018

13 Implicit Differentiation

Big Picture I. MATH 1003 Review: Part 3. The Derivatives of Functions. Big Picture I. Introduction to Derivatives

Lecture Notes October 18, Reading assignment for this lecture: Syllabus, section I.

Unit 3: Producer Theory

Econ 58 Gary Smith Spring Final Exam Answers

Math 110 Final Exam General Review. Edward Yu

Econ 101A Problem Set 1 Solution

Microeconomic theory focuses on a small number of concepts. The most fundamental concept is the notion of opportunity cost.

Winter Lecture 10. Convexity and Concavity

Transcription:

VARIOUS TOOLS FOR COMPARATIVE STATICS (ROUGH) 1. THE CHAIN RULE(OR TOTAL DERIVATIVE) FOR COMPOSITE FUNCTIONS OF SEVERAL VARIABLES 1.1.Chainruleforfunctionsoftwovariables.Whenyf(x 1,x 2 )withx 1 g(t)andx 2 h(t),then dy dt dx 1 dt + dx 2 dt dg(t) dt + dh(t) dt (1) Thisisusuallycalledthetotalderivativeofywithrespecttot. 1.2.Example.Letthefunctionbegivenby with y f (x 1,x 2 ) x 2 1 +x3 2 x 1 (t) t 2 +2t +1 x 2 (t) 3t Then dy x 2x 1 1, 3x2 2 dx 1 dx dt 2t +2, 2 dt 3 dt (2x 1 ) (2t +2) + (3x2 2) (3) (2t 2 +4t +2) (2t +2) + (27t 2 ) (3) 4t 3 +4t 2 +8t 2 +8t +4t +4+81t 2 4t 3 +93t 2 +12t +4 (2) Date: February 19, 2008. 1

2 VARIOUS TOOLS FOR COMPARATIVE STATICS(ROUGH) Ifwemultiplyifoutweobtain y f (x 1,x 2 ) x 2 1 +x3 2 (t 2 +2t +1) 2 + (3t) 3 t 4 +2t 3 +t 2 +2t 3 +4t 2 +2t +t 2 +2t +1+27t 3 df dt 4t 3 +6t 2 +2t +6t 2 +8t +2+2t +2+81t 2 4t 3 +93t 2 +12t +4 (3) In-class exercises Findthetotalderivativeofeachofthefollowingwithrespecttot. y f (x 1,x 2 ) x1 2 +x3 2 1. x 1 (t) t 2 x 2 (t) 2t 2. y f (x 1,x 2 ) x 2 1 +x2 2 x 1 (t) t 2 +2t x 2 (t) 2t +1 3. y f (x 1,x 2 ) x 2 1 x 1x 2 +x 2 2 x 1 (t) t 2 +2t +3 x 2 (t) 2t t 2 4. y f (x 1,x 2,x 3 ) x 2 1 +x2 2 +2x2 3 x 1 (t) t 2 +2t x 2 (t) 2t x 3 (t) t 2 5t 5. y f (x 1,x 2 ) x2 1 +x2 2 x 1 +x 2 x 1 (t) t 2 +2t x 2 (t) 2t +1 2. DIRECTIONAL DERIVATIVES 2.1.Idea.Ifyf(x 1,x 2 ),thepartialderivatives, x measuretheratesofchangeoff(x 2 1,x 2 ),in thedirectionsofthex 1 -axisandthex 2 -axis,respectively.wecanalsomeasuretherateofchange ofthefunctioninotherdirections. Consideraparticularpointinthedomainoffanddenoteit (x1 0,x0 2 ).Anynon-zerovector(h,k)isthenadirectioninwhichwemoveawayfromthepoint (x1 0,x0 2 )inastraightlinetopointsoftheform (x 1,x 2 ) (x 1 (t),x 2 (t)) (x1 0 +th,x0 2 +tk) (4) Givenanyinitialpoint (x1 0,x0 2 )andanydirection(h,k),definethedirectionalfunctiongby The derivative of this function is g (t) f (x 0 1 +th,x0 2 +tk) (5)

VARIOUS TOOLS FOR COMPARATIVE STATICS (ROUGH) 3 dg dt dx 1 dt + dx 2 dt x (x 0 1 1 +th,x0 2 +tk)h + x (x 0 2 1 +th,x0 2 +tk)k (6) Nowlett0sothatweareatthepoint (x 0 1,x0 2 ).Thenweobtain dg dt (0) x (x 0 1 1,x0 2 )h + x (x 0 2 1,x0 2 )k (7) Ifthevector(h,k)haslength1,thederivativeoffinthedirection(h,k)iscalledthedirectional derivativeoffinthedirectionof(h,k)at (x 0 1,x0 2 ).Specifically,thedirectionalderivativeoff(x 1, x 2 )at (x 0 1,x0 2 )inthedirectionoftheunitvector(h,k)is D h,k f (x1 0,x0 2 ) (x 0 1 x,x0 2 )h + (x1 0 1 x,x0 2 )k (8) 2 Notethatwhenthelengthof(h,k)isone,amoveawayfrom (x1 0, x0 2 )inthedirection(h,k) changesthevalueoffbyapproximatelyd h,k f (x1 0,x0 2 ).Alsonoticethatthedirectionalderivative istheproductofthegradientoffandthevector(h,k).

4 VARIOUS TOOLS FOR COMPARATIVE STATICS(ROUGH) 2.2.Example.Considerthefunctionf(x 1,x 2 )withthefollowingdirectionandinitialpoint. f (x 1,x 2 ) x 2 1 +3x2 2 Direction (2,5) Point (1,1) Firstnormalizethedirectionvector.Becausethelengthofthevectoris ( ) 29wecannormalizeit as 2 5,.Thenfindthegradientoffas 29 29 Evaluated at(1,1) we obtain f (x 1,x 2 ) x 2 1 +3x2 2 2x 1 6x 2 2 6 The directional derivative is then given by ( 2 ), (2,6 ) 29 5 29 34 29

VARIOUS TOOLS FOR COMPARATIVE STATICS (ROUGH) 5 3. MORE GENERAL CHAIN RULES 3.1.Generalformofthechainrule.Letyf(x 1,x 2,...x n )andletx 1 g 1 (t 1,t 2,...,t m ),x 2 g 2 (t 1, t 2,...,t m ),...,x n g n (t 1,t 2,...,t m )wheretisanm-vectorofothervariablesuponwhichthexvector depends. Then the following holds y y + y + + y x n,j 1,2,,n (9) t j t j t j x n t j 3.2.Example.Considerthefunctionyf(x 1,x 2 )alongwiththeauxiliaryfunctionsx 1 (z,w)andx 2 (z,w) y f (x 1,x 2 ) 3x 1 +2x 1 x 2 2 x 1 (z,w) 5z +2zw x 2 (z,w) zw 2 +3w wheret 1 zandt 2 wfromequation9.wecanfindthepartialderivativeofywithrespectto zusingequation9asfollows. y z (x 1,x 2 ) z + (x 1,x 2 ) z (3 +2x 2 2 ) (5 +2w) + (4x 1x 2 ) (w 2 ) (3 +2 (z 2 w 4 +6zw 3 +9w 2 ) ) (5 +2w) +4 (5z +2zw) (zw 2 +3w )w 2 (3 +2z 2 w 4 +12zw 3 +18w 2 ) (5 +2w) + (20zw 2 +8zw 3 ) (zw 2 +3w ) 15 +6w +10z 2 w 4 +4z 2 w 5 +60zw 3 +24zw 4 +90w 2 +36w 3 +20z 2 w 4 +60zw 3 +8z 2 w 5 +24zw 4 15 +6w +90w 2 +36w 3 +120zw 3 +48zw 4 +30z 2 w 4 +12z 2 w 5 Wecanalsofindthepartialofywithrespecttowas y w (x 1,x 2 ) w + (x 1,x 2 ) w (3 +2x 2 2 ) (2z) + (4x 1x 2 ) (2zw +3) (3 +2 (z 2 w 4 +6zw 3 +9w 2 ) ) (2z) +4 (5z +2zw) (zw 2 +3w ) (2zw +3) (3 +2z 2 w 4 +12zw 3 +18w 2 ) (2z) + (20z +8zw) (zw 2 +3w ) (2zw +3) (6z +4z 3 w 4 +24z 2 w 3 +36zw 2 ) + (20z 2 w 2 +60zw +8z 2 w 3 +24zw 2 ) (2zw +3) 6z +4z 3 w 4 +24z 2 w 3 +36zw 2 +40z 3 w 3 +120z 2 w 2 +16z 3 w 4 +48z 2 w 3 +60z 2 w 2 +180zw +24z 2 w 3 +72zw 2 6z +180zw +108zw 2 +180z 2 w 2 +96z 2 w 3 +40z 3 w 3 +20z 3 w 4

6 VARIOUS TOOLS FOR COMPARATIVE STATICS(ROUGH) 4.1. A two-variable implicit function theorem. 4. DERIVATIVES OF IMPLICIT FUNCTIONS 4.1.1.statementofthetheorem.Considerthefunctiondefinedimplicitlybyf(x 1,x 2 )cwherecisa constant.if 0,then 4.1.2. examples. a:example1 (10) y 0 f (x 1,x 2 ) x 2 1 2x 1x 2 +x 1 x 3 2 Tofindthepartialderivativeofx 2 withrespecttox 1 wefindthetwopartialsoffas follows x 1 2x 1 2x 2 +x2 3 3x 1 x2 2 2x 1 2x 2 2x 1 x 3 2 3x 1 x 2 2 2x 1 b:example2 u 0 U (x 1,x 2 ) Tofindthepartialderivativeofx 2 withrespecttox 1 wefindthetwopartialsofuas follows U U 4.2. A more general form of the implicit function theorem with p independent variables and 1 implicit equation. 4.2.1.Statementofthetheorem.Supposex 1 isdefinedimplicitlyasadifferentiablefunctionofthep variablesy 1,y 2,...,y p bytheequationf(x 1,y 1,y 2,...y p )0orf(x 1,y 1,y 2,...y p )cwherecis a constant. Then y i y i,i 1,2,,p (11)

VARIOUS TOOLS FOR COMPARATIVE STATICS (ROUGH) 7 4.2.2. Example. Consider a utility function given by This can be written implicitly as u x 1 4 1 x 1 3 2 x 1 6 3 f (u,x 1,x 2,x 3 ) u x 1 4 1 x 1 3 2 x 1 6 3 0 Now consider some of the partial derivatives arising from this implicit function. First consider themarginalrateofsubstitutionofx 1 forx 2 1 ( 1 3 )x 41 x 2 1 3 2 x6 3 ( 4 1 1 1 )x 3 4 1 x3 2 x 63 3 4 x 1 x 2 Nowconsiderthemarginalrateofsubstitutionofx 2 forx 3. x 3 Nowconsiderthemarginalutilityofx 2. u x 3 1 1 ( 1 6 )x 41 x3 2 x 5 6 3 ( 3 1 1 )x 41 x 2 1 3 2 x6 3 1 2 u x 2 x 3 ( 1 3 )x 1 41 x 2 3 2 x1 63 1 1 3 x1 4 1 x 2 3 2 x 1 6 3

8 VARIOUS TOOLS FOR COMPARATIVE STATICS(ROUGH) 4.3. A more general form of the implicit function theorem with p independent variables and m implicit equations. 4.3.1. One motivation for implicit function theorem. Assuming the conditions of the implicit function theorem as discussed below hold, we can eliminate m variables from the constrained optimization problem using the constraint equations. In this way the constrained problem is converted to an unconstrained problem and we can use the results on unconstrained problems to determine a solution.. 4.3.2.descriptionofthesystemofequations. Supposethatwehavemequationsdependingonm+p variables(parameters) written in implicit form as follows φ 1 (x 1,x 2,,x m, y 1,y 2,,y p ) 0 φ 2 (x 1,x 2,,x m, y 1,y 2,,y p ) 0 0........ φ m (x 1,x 2,,x m, y 1,y 2,,y p ) 0 (12) Forexamplewithm2andp3,wemighthave φ 1 (x 1,x 2,p,w 1,w 2 ) (0.4)px1 0.6 x2 0.2 w 1 0 φ 2 (x 1,x 2,p,w 1,w 2 ) (0.2)px1 0.4 x2 0.8 w 2 0 (13) 4.3.3.Jacobianmatrixofthesystem.TheJacobianmatrixofthesystemin(12)definedasmatrixof first partials as follows J φ 1 φ 1 φ 2 φ 2...... φ m φ m φ 1 x m φ 2 x m.. φ m x m (14) Thismatrixwillbeofrankmifitsdeterminantisnotzero. 4.4.Statementofimplicitfunctiontheorem.Suppose φ i arerealvaluedfunctionsdefinedona domaindandarecontinuouslydifferentiableonanopensetd 1 D R m+p,p 0and φ i (x 0,y 0 ) 0fori1,2,...,mand(x 0,y 0 ) ǫd 1,i.e.,theequationsystemissatisfiedatthepoint(x 0,y 0 ).Letx beofdimensionmandyofdimensionp.assumethejacobianmatrix [ Œi (x 0,y 0 ) x j hasrankm.thenthereexistsaneighborhoodof(x 0,y 0 )(N ffi (x 0,y 0 )) ǫd 1,anopensetD 2 R p containingy 0,andrealvaluedfunctions ψ k k1,...,mcontinuouslydifferentiableond 2 suchthat the following conditions are satisfied x 0 k g k (y 0 )k 1,...,m. (15) Thismeanswecansolvethesystemofmimplicitequationsforallmofthexvariablesasfunctionsofthepindependentoryvariables. Intheexamplesystem(13),wecouldsolvethetwo

VARIOUS TOOLS FOR COMPARATIVE STATICS (ROUGH) 9 equationsforx 1 andx 2 asfunctionsofp,w 1,andw 2,i.e.,x 1 g 1 (p,w 1,w 2 )andx 2 g 2 (p,w 1,w 2 ). Foreveryy ǫd 2,wehave φ i (g 1 (y), g 2 (y),g m (y),y) 0i 1,...,m φ i (g (y),y) 0i 1,...,m (16) whereg(y)[g 1 (y),g 2 (y)...g m (y)andforall(x,y) ǫn ffi (x 0,y 0 )thejacobianmatrix φ i (x,y) x j hasrankm (17) Thismeansthatifweplugthex sthatweobtainfrom(16)intotheimplicitequations(equation 12),thelefthandsideoftheequationswillbezero,ortheequationswillbesatisfied. FurthermoreforyǫD 2,wecancomputethepartialderivativesof ψ k (y)assolutionstothesetof equations m φ i (g (y),y) x k1 k Herethederivative φ i(g(y),y) g k (y) y j φ i(g (y),y) y j,i 1,2,,m (18) x isjustthederivativeof φ k i withrespecttoitskthargument. Inequation12thisisx ( ) k,whileinequation16,itisg k (y). Fortheexamplein(13)wecanfind,thatis gi, from the following two equations derived from equation 13, which is repeated here. φ 1 (x 1,x 2,p,w 1,w 2 ) (0.4)px1 0.6 x2 0.2 w 1 0 φ 2 (x 1,x 2,p,w 1,w 2 ) (0.2)px1 0.4 x2 0.8 w 2 0 [ [ ( 0.24)px1 1.6 x2 0.2 x1 + (0.08)px1 0.6 x2 0.8 x2 (0.4)x1 0.6 x2 0.2 [ [ (0.08)px1 0.6 x2 0.8 x1 + ( 0.16)px1 0.4 x2 1.8 x2 (0.2)x1 0.4 x2 0.8 (19) While the system is non-linear, we can(in principle and in practice) solve for the two derivatives in question. Toseetheintuitionofequation18,takethetotalderivativeof φ i in(16)withrespecttoy j as follows φ i (g 1 (y), g 2 (y),, g m (y),y) 0 φ i g 1 g 1 y + φ i g 2 j g 2 y + + φ i g m j g m y + φ i j y 0 j (20) andthenmove φ i y j totherighthandsideoftheequation.thenperformasimilartaskforthe otherequationstoobtainmequationsinthempartialderivatives, x i y j g i y j Forthecaseofonlyoneimplicitequation(18)reducesto m φ i (g (y),y) g k (y) φ(ψ(y),y) (21) x k1 k y j y j Withonlyoneimplicitequationm1andweobtain

10 VARIOUS TOOLS FOR COMPARATIVE STATICS(ROUGH) φ(g (y),y) x k g k (y) φ (g (y),y) (22) y j y j which can be rewritten as g k (y) y j φ(g(y),y) y j φ(g(y),y) x k (23) Thisisthenthesameasequation11. Ifthereareonlytwovariables,x 1 andx 2 wherex 2 isnowlikey 1,weobtain φ(g(x 2 ),x 2 ) g 1 (x 2 ) φ(g (x 2),x 2 ) g 1(x 2 ) φ (g (x 2 ),x 2 ) φ(g(x 2 ),x 2 ) (24) whichisthesameasthetwovariablecaseinequation10where φtakestheplaceoff. 4.4.1. examples of implicit function theorem. a:example1 TheJacobianisgivenby φ 1 (x 1,x 2,y) 3x 1 +2x 2 +4y 0 φ 2 (x 1,x 2,y) 4x 1 +x 2 +y 0 [ 3 2 4 1 SincethisJacobianisoffullrank,wecansolvetheseequationsforx 1 andx 2 asfunctions ofy.moveytotherhsineachequation. 3x 1 +2x 2 4y 4x 1 +x 2 y Nowsolvethesecondequationforx 2,andpluginthefirstequation

VARIOUS TOOLS FOR COMPARATIVE STATICS (ROUGH) 11 x 2 y 4x 1 3x 1 +2( y 4x 1 ) 4y 3x 1 2y 8x 1 4y 5x 1 2y x 1 2/5y ψ 1 (y) Nowplugthisanswerintotheequationfory 2 andsolve x 2 y 4(2/5y) y 8/5y 13/5y ψ 2 (y) Wecanchecktoseethatequation16issatisfied Furthermore φ 1 (2/5y, 13/5y,y) 3(2/5y) +2 ( 13/5) +4y 6/5y 26/5y +4y 0 φ 2 (2/5y, 13/5y,y) 4(2/5y) + ( 13/5) +y 8/5y 13/5y +y 0 y g 1(y) y 2 5 y g 2(y) y 13 5

12 VARIOUS TOOLS FOR COMPARATIVE STATICS(ROUGH) Ratherthansolvingthesystemforx ( ) ( ) 1 andx 2 asfunctionsofy,wecansolveforthepartial derivatives x1 g1 g 2 y y y y usingtheformulain(18)as: φ 1 g 1 y + φ 1 g 2 y φ 1 y φ 2 g 1 y + φ 2 g 2 y φ 2 y 3 g 1 y +2 g 2 2y 4 4 g 1 y + g 2 y 1 > g 2 y 1 4 g 1 y > 3 g 1 y +2 ( 1 4 g 1 y ) 4 > 3 g 1 y 2 8 g 1 y 4 5 g 1 y 2 g 1 y 2/5 g 2 y 1 4 (2/5) 1 8/5 13/5

VARIOUS TOOLS FOR COMPARATIVE STATICS (ROUGH) 13 b:example2 Lettheproductionfunctionforafirmbygivenby y 14x 1 +11x 2 x 2 1 x2 2 Profitforthefirmisgivenby π py w 1 x 1 w 2 x 2 p (14x 1 +11x 2 x 2 1 x2 2 ) w 1x 1 w 2 x 2 The first order conditions for profit maximization imply that π 14px 1 +11px 2 px1 2 px2 2 w 1x 1 w 2 x 2 π φ 1 14p 2px 1 w 1 0 π φ 1 11p 2px 2 w 2 0 Wecansolvethefirstequationforx 1 asfollows π 14p 2px 1 w 1 0 2px 1 14p w 1 x 1 14p w 1 2p 7 w 1 2p Inasimilarmannerwecanfindx 2 fromthesecondequation π 11p 2px 2 w 2 0 2px 2 11p w 2 x 2 11p w 2 2p 5.5 w 2 2p

14 VARIOUS TOOLS FOR COMPARATIVE STATICS(ROUGH) Wecanfindthederivativesofx 1 andx 2 withrespecttop,w 1 andw 2 directlyasfollows: x 1 7 1 2 w 1p 1 x 2 5.5 1 2 w 2p 1 1 2 w 1p 2 w 1 1 2 p 1 w 2 0 1 2 w 2p 2 w 2 1 2 p 1 w 2 0 We can also find these derivatives using the implicit function theorem. The two implicit equations are φ 1 (x 1,x 2,p,w 1,w 2 ) 14p 2px 1 w 1 0 φ 2 (x 1,x 2 p,w 1,w 2 ) 11p 2px 2 w 2 0 FirstwechecktheJacobianofthesystem.Itisobtainedbydifferentiating φ 1 and φ 2 with respecttox 1 andx 2 asfollows J [ φ1 φ 1 φ 2 φ 2 [ 2p 0 0 2p Thedeterminantis4p 2 whichispositive. Nowwehavetwowecansolveusingthe implicit function theorem.

VARIOUS TOOLS FOR COMPARATIVE STATICS (ROUGH) 15 The theorem says m k1 φ i (g (y),y) x k or φ 1 + φ 1 φ 1 φ 2 + φ 2 φ 2 [ φ1 φ 1 φ 2 φ 2 [ x1 [ x1 g k (y) y j φ i(ψ(y),y) y j,i 1,2, [ φ 1 φ 2 [ φ1 φ 1 φ 2 φ 2 1 [ φ 1 φ 2 We can compute the various partial derivatives of φ as follows (25) φ 1 (x 1,x 2,p,w 1,w 2 ) 14p 2px 1 w 1 0 φ 1 2p φ 1 0 φ 1 14 2x 1 φ 2 (x 1,x 2 p,w 1,w 2 ) 11p 2px 2 w 2 0 φ 2 2p φ 2 0 φ 1 11 2x 2

16 VARIOUS TOOLS FOR COMPARATIVE STATICS(ROUGH) Nowwritingoutthesystemweobtainforthecaseathandweobtain [ x1 [ x1 [ [ φ1 φ 1 φ 2 φ 2 [ 2p 0 0 2p [ 1 2p 0 0 1 7 x 1 p 5.5 x 2 p 2p 1 [ φ 1 φ 2 1 [ 2x1 14 2x 2 11 [ 2x1 14 2x 2 11 (26) Given that x 1 7 1 2 w 1p 1 x 2 5.5 1 2 w 2p 1

VARIOUS TOOLS FOR COMPARATIVE STATICS (ROUGH) 17 we obtain 7 x 1 p 7 (7 2 1w 1p 1 ) p 2 1w 1p 2 5.5 x 2 p 5.5 (5.5 2 1w 2p 1 ) p 2 1w 2p 2 whichisthesameasbefore. c: example 3(exercise) Verifytheimplicitfunctiontheoremderivatives w 1, w 2, w 1, w 2 forthefunctionin example 2. d:example4 Afirmsellsitsoutputintoaperfectlycompetitivemarketandfacesafixedpricep. It hireslaborinacompetitivelabormarketatawagew,andrentscapitalinacompetitive capital market at rental rate r. The production is f(l, K). The production function is strictly concave. The firm seeks to maximize its profits which are ß pf(l,k) wl rk The first-order conditions for profit maximization are π L pf L (L,K ) w 0 π K pf K (L,K ) r 0 ThisgivestwoimplicitequationsforKandL.

18 VARIOUS TOOLS FOR COMPARATIVE STATICS(ROUGH) The second order conditions are 2 π L 2 (L, K ) < 0 2 π 2 π L 2 K 2 We can compute these derivatives as [ 2 2 π > 0at (L, K ) L K 2 π (pf L(L,K ) w ) L 2 L 2 π (pf K(L,K ) r ) K 2 L 2 π L K (pf L(L,K ) w ) K pf LL pf KK pf KL Thefirstofthesecondorderconditionsissatisfiedbyconcavityoff.Wethenwritethe second condition as D pf LL pf LK pf KL pf KK > 0 p 2 f LL f LK f KL f KK > 0 (27) p 2 (f LL f KK f KL f LK ) > 0 The expression is positive because f is assumed to be strictly concave. Nowwewishtodeterminetheeffectsoninputdemands,L andk,ofchangesinthe input prices. Using the implicit function theorem in finding the partial derivatives with respecttow,weobtainforthefirstequation π LL L For the second equation we obtain w + π LK K w + π Lw 0 L pf LL w + pf KL K w 1 0 π KL L w + π KK K w + π Kw 0 L pf KL w + pf KK K w 0 Wecanwritethisinmatrixformas [ pfll pf LK pf KL pf KK [ L / w K / w 1 0 Using Cramer s rule, we then have the comparative-statics results L w K w 1 pf LK 0 pf KK D pf LL 1 pf KL 0 D pf KK D pf KL D Thesignofthefirstisnegativebecausef KK <0andD >0fromeitherstrictconcavity of f or the second-order conditions. Thus, the demand curve for labor has a negative slope.

VARIOUS TOOLS FOR COMPARATIVE STATICS (ROUGH) 19 However,inordertosigntheeffectofachangeinthewagerateonthedemandforcapital, weneedtoknowthesignoff KL,theeffectofachangeinthelaborinputonthemarginal productofcapital.itisplausibletoassumethatthisispositive(thoughitmaynotbe)and soanincreaseinthewageratewouldalsodecreasethedemandforcapital.wecanderive theeffectsofachangeintherentalrateofcapitalinasimilarway.

20 VARIOUS TOOLS FOR COMPARATIVE STATICS(ROUGH) e:example5 LettheproductionfunctionbeCobb-DouglasoftheformyL ff K fi.findthecomparativestaticeffects L / wand K / w. Profits are given by π pf(l,k) wl rk pl α K β wl rk The first-order conditions are for profit maximization are π L αpl α 1 K β w 0 π K βpl α K β 1 r 0 ThisgivestwoimplicitequationsforKandL. The second order conditions are 2 π L 2 (L, K ) < 0 2 π 2 π L 2 K 2 We can compute these derivatives as [ 2 2 π > 0at (L, K ) L K 2 π α (α 1)pL α 2 K β L 2 2 π β (β 1)pL α K β 2 K 2 2 π L K α βplα 1 K β 1 Thefirstofthesecondorderconditionsissatisfiedaslongas α, β 1.Wecanwritethe second condition as D α (α 1)pL α 2 K β α βpl α 1 K β 1 α βpl α 1 K β 1 β (β 1)pL α K β 2 > 0 (28)

VARIOUS TOOLS FOR COMPARATIVE STATICS (ROUGH) 21 WecansimplifyDasfollows D α (α 1)pL α 2 K β α βpl α 1 K β 1 α βpl α 1 K β 1 β (β 1)pL α K β 2 p 2 α (α 1)L α 2 K β α βl α 1 K β 1 α βl α 1 K β 1 β (β 1)L α K β 2 p 2 α β (α 1) (β 1)L α 2 K β L α K β 2 α 2 β 2 L 2α 2 K p 2 α βl α 2 K β L α K β 2 ( (α 1) (β 1) α β ) p 2 α βl α 2 K β L α K β 2 ( α β β α +1 α β ) p 2 α βl α 2 K β L α K β 2 (1 α β ) 2β 2 (29) The condition is then that D p 2 α βl 2α 2 K 2β 2 (1 α β) > 0 Thiswillbetrueif α + β <1. Nowwewishtodeterminetheeffectsoninputdemands,L andk,ofchangesinthe input prices. Using the implicit function theorem in finding the partial derivatives with respecttow,weobtainforthefirstequation π LL L w + π LK K α (α 1)pL α 2 K β L w + α βplα 1 K For the second equation we obtain w + π Lw 0 1 0 β 1 K w L π KL w + π KK K w + π Kw 0 α βpl α 1 Kβ 1 L w + β (β 1)pLα Kβ 2 K w 0 Wecanwritethisinmatrixformas [ α (α 1)pL α 2 K β α βpl α 1 K β 1 α βpl α 1 K β 1 β (β 1)pL α K β 2 [ L / w K / w 1 0

22 VARIOUS TOOLS FOR COMPARATIVE STATICS(ROUGH) Using Cramer s rule, we then have the comparative-statics results L w K w 1 α βpl α 1 K β 1 0 β (β 1)pL α K β 2 D α (α 1)pL α 2 K β 1 α βpl α 1 K β 1 0 D β (β 1)pLα K β 2 D α βplα 1 K β 1 D Thesignofthefirstofisnegativebecausep β (β 1)L α K β 2 <0(β <1),and D > 0bythesecondorderconditions.Thecrosspartialderivative K w isalsolessthanzero becausep α βl α 1 K β 1 > 0andD > 0.So,forthecaseofaCobb-Douglasproduction function, an increase in the wage unambiguously reduces the demand for capital.

VARIOUS TOOLS FOR COMPARATIVE STATICS (ROUGH) 23 5. THEGENERALEQUATIONFORTHETANGENTTOF(X 1,X 2,... )CANDPROPERTIESOFTHE GRADIENT 5.1. The general equation for a tangent plane. Consider the surface defined by atthepoint (x 0 1,x0 2,,x0 n ) y f (x 1,x 2,,x n ) (30) y 0 f (x 0 1,x0 2,,x0 n) (31) Theequationoftheplanetangenttothesurfaceatthispointisgivenby (y y 0 ) f 1 (x 1 x 0 1 ) + f 2 (x 2 x 0 2 ) + + f n (x n x 0 n) f 1 (x 1 x 0 1 ) +f 2 (x 2 x 0 2 ) + + f n (x n x 0 n) (y y 0 ) 0 f (x 1,x 2,,x n ) f (x 0 1,x0 2,,x0 n) + f 1 (x 1 x 0 1 ) + f 2 (x 2 x 0 2 ) + + f n (x n x 0 n) (32) wherethepartialderivativesf i areevaluatedat (x 0 1,x0 2,,x0 n ).Wecanalsowritethisas Compare this to the tangent equation with one variable f (x) f (x 0 ) f(x 0 ) (x x 0 ) (33) y f (x 0 ) f (x 0 ) (x x 0 ) y f (x 0 ) + f (x 0 ) (x x 0 ) (34) 5.2.Vectorfunctionsofarealvariable.Letx 1,x 2,...,x n befunctionsofavariabletdefinedinan interval I and write x (t) (x 1 (t),x 2 (t),,x n (t) ) (35) Thefunctiont x(t)isatransformationfromrtor n andiscalledavectorfunctionofareal variable.asxrunsthroughi,x(t)tracesoutasetofpointsinn-spacecalledacurve.inparticular, ifweput x 1 (t) x 0 1 +ta 1,x 2 (t) x 0 2 +ta 2,,x n (t) x 0 n +ta n (36) theresultingcurveisastraightlineinn-space.itpassesthroughthepointx 0 (x 0 1,x0 2,,x0 n ) att0,anditisinthedirectionofthevectora (a 1,a 2,,a n ). Wecandefinethederivativeofx(t)as dx dt ẋ (t) ( dx1 (t) dt, dx 2(t) dt,, dx n(t) dt IfKisacurveinn-spacetracedoutbyx(t),thenẋ (t)canbeinterpretedasavectortangenttok atthepointt. ) (37)

24 VARIOUS TOOLS FOR COMPARATIVE STATICS(ROUGH) 5.3.Tangentvectors.Considerthefunctionr (t) (x 1 (t),x 2 (t),,x n (t) )anditsderivative ṙ (t) (ẋ 1 (t), ẋ 2 (t),, ẋ n (t) ).ThisfunctiontracesoutacurveinR n.wecancallthecurve K.Forfixedt, r (t +h) r (t) ṙ (t) lim (38) h 0 h Ifṙ(t) 0,thenfort+hcloseenoughtot,thevectorr(t+h)-r(t)willnotbezero.Ashtendsto0, thequantityr(t+h)-r(t)willcomecloserandclosertoservingasadirectionvectorforthetangent tothecurveatthepointp.thiscanbeseeninthefollowinggraph Itmaybetemptingtotakethisdifferenceasapproximationofthedirectionofthetangentand then take the limit lim [r (t +h) r (t) (39) h 0 andcallthelimitthedirectionvectorforthetangent.butthelimitiszeroandthezerovector hasnodirection.insteadweusetheavectorthatforsmallhhasagreaterlength,thatisweuse r (t +h) r (t) h Foranyrealnumberh,thisvectorisparalleltor(t+h)-r(t).Thereforeitslimit r (t +h) r (t) ṙ (t) lim h 0 h canbetakenasadirectionvectorforthetangentline. 5.4. Tangent lines, level curves and gradients(sydsaeter). Consider the equation (40) (41) f (x) f (x 1,x 2,,x n ) c (42) whichdefinesalevelcurveforthefunctionf. Letx 0 (x 0 1, x0 2,, x0 n )beapointonthe surfaceandletx (t) (x 1 (t),x 2 (t),,x n (t) )representadifferentiablecurveklyingonthe surfaceandpassingthroughx 0 attt 0.BecauseKliesonthesurface,f[x(t)f[x 1 (t),x 2 (t),,,,x n (t) cforallt.nowdifferentiatethisequationwithrespecttot (x) t + (x) t + + (x) t 0 f(x 0 ) ẋ (t 0 ) 0 (43) Becausethevectorẋ (t) (ẋ 1 (t),ẋ 2 (t),,ẋ n (t) )hasthesamedirectionasthetangentto thecurvekatx 0,thegradientoffisorthogonaltothecurveKatthepointx 0.

VARIOUS TOOLS FOR COMPARATIVE STATICS (ROUGH) 25 6. LINEAR APPROXIMATIONS AND DIFFERENTIALS 6.1.Differentials.Considerafunctionyf(x 1,x 2,...,x n ).Ifdx 1,dx 2,...,dx n arearbitraryreal numbers(notnecessarilysmall),wedefinethedifferentialofyf(x 1,x 2,...,x n )as dy dx + dx 2 + + dx n (44) 1 x n Whenx i ischangedtox i +dx i,thentheactualchangeinthevalueofthefunctionistheincrement y f (x 1 +dx 1, x 2 +dx 2,, x n +dx n ) f (x 1,x 2,,x n ) (45) Ifdx i issmallinabsolutevalue,the ycanbeapproximatedbydy y dy dx 1 + dx 2 + + x n dx n (46) 6.2. Rules for differentials. 1:dc0(cisaconstant) 2:d(cx n )cnx n 1 dx 3: d (af +bg) adf +bdg(aandbareconstants) 4: d (fg) gdf + fdg 5: d ( f g ) gdf fdg g 2 g 0 6: d (fgh) ghdf + fhdg + fgdh 7:Ifyg[f(x 1,x 2,...,x n )thendyg [f(x 1,x 2,...,x n )df.

26 VARIOUS TOOLS FOR COMPARATIVE STATICS(ROUGH) 6.3. Differentials and systems of equations. 6.3.1. Idea. We can find partial derivatives of implicit systems using differentials. We take the total differential of both sides of each equation, set all differentials of variables that are not changing equal to zero, and then divide each equation by the differential of the one exogenous variable that is changing. We then solve the resulting system for the various partial derivatives. 6.3.2. Example 1. Consider the system φ 1 (x 1,x 2,p,w 1,w 2 ) 14p 2px 1 w 1 0 φ 2 (x 1,x 2 p,w 1,w 2 ) 11p 2px 2 w 2 0 The total differential of each equation is (47) 14dp 2pdx 1 2x 1 dp dw 1 0 11dp 2pdx 2 2x 2 dp dw 2 0 Nowsetdw 1 dw 2 0anddivideeachequationbydp Solving we obtain 14 2p dx 1 dp 2x 1 0 11 2p dx 2 dp 2x 2 0 2p 14 2x 1 14 2x 1 2p 7 x 1 p 2p 11 2x 1 11 2x 1 2p 5.5 x 2 p

VARIOUS TOOLS FOR COMPARATIVE STATICS (ROUGH) 27 6.3.3. Example 2. Consider the following macroeconomic model: Y C + I +G C f (Y T) I h (r) r m (M) (48) WhereYisnationalincome,Cisconsumption,Iisinvestment,Gispublicexpenditure,Tistax revenue,ristheinterestrate,andmismoneysupply.therearesevenvariablesandfourequations sowecanpotentiallysolvefor4endogenousvariablesintermsof3exogenousvariables. Ifwe assumethatf,h,andmaredifferentiablefunctionswith0 <f <1,h <0,andm <0,thenthese equationsdeterminey,c,i,andrasdifferentiablefunctionsofm,t,andg.wecanalsofindthe differentialsofy,c,i,andrintermsofthedifferentialsofm,t,andg. The total differential of the system is dy dc +di +dg dc f (Y T) (dy dt) di h (r)dr dr m (M)dM (49) WeneedtosolvethissystemforthedifferentialchangesdY,dC,dI,anddrintermsofthe differentialchangesdm,dt,anddgintheexogenouspolicyvariablesm,t,andg.fromthelast twoequationsin(41),wecanfinddianddrasfollows dr m (M)dM di h (r)m (M)dM (50) InsertingtheexpressionfordIfrom(50)intothefirsttwoequationsin(49)gives dy dc h (r)m (M)dM +dg f (Y T)dY dc f (Y T)dT (51) ThisgivestwoequationstodeterminethetwounknownsdYanddCintermsofdM,dG,and dt.wecanwritethisinmatrixformasfollows [ 1 1 f (Y T) 1 [ dy dc [ h (r)m (M)dM +dg f (Y T)dT (52) WecanuseCramer sruletosolvethissystem.thedeterminantofthecoefficientmatrixisgiven by D 1 1 f (Y T) 1 ( 1) ( f (Y T) ) f (Y T) 1 (53) FirstsolvingfordYweobtain

28 VARIOUS TOOLS FOR COMPARATIVE STATICS(ROUGH) dy dy h (r)m (M)dM +dg 1 f (Y T)dT 1 1 1 f (Y T) 1 h (r)m (M)dM dg +f (Y T)dT f (Y T) 1 h (r)m (M) f (Y T) 1 dm 1 f (Y T) 1 dg + h m 1 f dm f 1 f dt + 1 1 f dg ThensolvingfordCweobtain h (r)m (M)dM +dg 1 f (Y T)dT 1 f (Y T) 1 f (Y T) f (Y T) 1 dt (54) dc 1 h (r)m (M)dM +dg f (Y T) f (Y T)dT 1 1 f (Y T) 1 1 h (r)m (M)dM +dg f (Y T) f (Y T)dT f (Y T) 1 dc f (Y T)dT h (r)m (M)dMf (Y T) dgf (Y T) f (Y T) 1 h (r)m (M)f (Y T) f (Y T) 1 dm f (Y T) f (Y T) 1 dg + f (Y T) f (Y T) 1 dt f h m 1 f dm f 1 f dt + f 1 f dg (55) WehavenowfoundthedifferentialsdY,dC,dI,anddraslinearfunctionsofdM,dT,anddG.If wesetdmanddgequaltozero,then dy f 1 f dt Y T f 1 f Similarly T r I 0and T 0.Becauseweassumedthat0 <f <1, Y T f (1 f ) <0. IfdM,dT,anddGaresmallinabsolutevalue,then (56) Y Y(M 0 +dm,t 0 +dt,g 0 +dg) Y(M 0,T 0,G 0 ) dy

VARIOUS TOOLS FOR COMPARATIVE STATICS (ROUGH) 29 Literature Cited Sydsaeter, Knut. Topics in Mathematical Analysis for Economists. New York: Academic Press, 1981.