EXPERIMENT 2 DEHYDRATION OF 1- & 2-BUTANOL & DEHYDROBROMINATION OF 1 & 2-BROMOBUTANE: ANALYSIS OF GASEOUS PRODUCTS BY GAS CHROMATOGRAPHY

Similar documents
REACTIONS: Elimination TECHNIQUES: Gas Chromatography

IMPORTANT SAFETY INFORMATION

E2 Elimination. Mary McHale. 1 The E2 Elimination Reaction

Experiment 11: Dehydration of Cyclohexanol

12AL Experiment 11 (3 days): Nucleophilic Substitution Reactions

Chemistry 283g- Experiment 4

CHMA2000 EXPT 7: The Physical and Chemical Properties of Alcohols

CH 241 EXPERIMENT #6 WEEK OF NOVEMBER 12, NUCLEOPHILIC SUBSTITUTION REACTIONS (S N 1 and S N 2)

DEHYDRATION OF ALCOHOLS-GAS CHROMATOGRAPHY

Expt 10: Friedel-Crafts Alkylation of p-xylene

Elimination Reactions Heating an alkyl halide with a strong base causes elimination of a. molecule of HX

Core practical 5: Investigate the oxidation of ethanol

R R CH. Some reactions of alcohols vary depending on their classification as 1º, 2º, or 3º alcohols.

Experiment 8: Chlorination of 1-Chlorobutane

EXPERIMENT 8 RELATIVE RATES OF NUCLEOPHILIC SUBSTITUTION REACTIONS

Dehydration of 2-methylcyclohexanol

Dehydration of Alcohols-Gas Chromatography

Expt 9: The Aldol Condensation

Elimination Reactions:

CHEM Lecture 7

Chapter 7 - Alkenes and Alkynes I

Classes of Alkenes. Alkenes and Alkynes. Saturated compounds (alkanes): Have the maximum number of hydrogen atoms attached to each carbon atom.

Homework problems Chapters 6 and Give the curved-arrow formalism for the following reaction: CH 3 OH + H 2 C CH +

ACID-CATALYZED DEHYDRATION OF 2-METHYLCYCLOHEXANOL. Douglas G. Balmer. (T.A. Mike Hall) Dr. Dailey

Free Radical Chlorination

Preparation of an Ester Acetylsalicylic Acid (Aspirin)

12AL Experiment 9: Markovnikov s Rule

Dehydrohalogenation of Alkyl Halides E2 and E1 Reactions in Detail

Chapter 7 Alkenes and Alkynes I: Properties and Synthesis Elimination Reactions of Alkyl Halides"

GRIGNARD REACTION Synthesis of Benzoic Acid

REACTIONS OF HALOALKANES - SUBSTITUTION AND ELIMINATION

Use this dramatic iodine clock reaction to demonstrate the effect of concentration, temperature, and a catalyst on the rate of a chemical reaction.

4.2.1 Alcohols. N Goalby chemrevise.org 1 C O H H C. Reactions of alcohols. General formula alcohols C n H 2n+1 OH

Nucleophilic Substitution and Elimination

ORGANIC SYNTHESIS: MICROWAVE-ASSISTED FISCHER ESTERIFICATION

Elimination Reactions. Chapter 6 1

19. Dehydration of 2- Methylcyclohexanol

22. The Diels-Alder Cycloaddition Reaction

CIE Chemistry A-Level Practicals for Papers 3 and 5

Chapter 6: Organic Halogen Compounds; Substitution and Elimination Reactions

The Synthesis of Triphenylmethano. will synthesize Triphenylmethanol, a white crystalline aromatic

12A Lab Activity Notes

The Fragrance of Rum, Isobutyl Propionate

Structure and Preparation of Alkenes: Elimination Reactions

Scheme 2: Formation of Di- Halide via Chloronium Intermediate

(b) (CH 3 ) 2 CCH 2 CH 3 D 2 O. (e) A. CH 3 CCl OSO 2 CH 3 C 6 H 5 H 3 C

Organic Chemistry Review: Topic 10 & Topic 20

8. What is the slow, rate-determining step, in the acidcatalyzed dehydration of 2-methyl-2-propanol?

Chapter 6 Ionic Reactions-Nucleophilic Substitution and Elimination Reactions of Alkyl Halides"

9. Hydroboration-Oxidation of Alkenes

NaBr, H2SO4 CH3CH2CH2CH2Br + NaHSO4 + H2O. 1-Bromobutane bp C den MW n 1.439

2. Synthesis of Aspirin

Organic Halogen Compounds

Chapter 8 Alkyl Halides and Elimination Reactions

3. Two unknown samples are found to have the same R f value under identical TLC conditions. Are they the same compound? Explain.

Experiment 6 Alcohols and Phenols

Schools Analyst Competition

CHE1502. Tutorial letter 201/1/2016. General Chemistry 1B. Semester 1. Department of Chemistry CHE1502/201/1/2016

EXPERIMENT 7 - Distillation Separation of a Mixture

Basic Organic Chemistry Course code : CHEM (Pre-requisites : CHEM 11122)

Experiment 7: The Synthesis of Artificial Hyacinth Odor (1-bromo-2-phenylethene), Part I

1. The Substrate: CH3, 1 o, 2 o, 3 o, Allyl or Benzyl

trans-cyclooctene 4-fluoro-1-butanol 2-cyclohexenol 4. (5 pts) Provide structural formula for each of the following molecules: Br OH Cl OH

ChBE 203. Organic Chemistry Laboratory. Experiment 10. Dehydration of Methylcyclohexanols. Submitted by. Ercüment Cenap Turan

11. Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations

SYNTHESIS OF 1-BROMOBUTANE Experimental procedure at macroscale (adapted from Williamson, Minard & Masters 1 )

Substances and Mixtures:Separating a Mixture into Its Components

C h a p t e r S e v e n : Haloalkanes: Nucleophilc Substitution and Elimination Reactions S N 2

Elimination Reactions The E2 Mechanism

ELECTROPHILIC ADDITIONS OF ALKENES AS THE COUNTERPART OF ELIMINATIONS

Alcohols, Ethers, & Epoxides

Reaction of Magnesium with Hydrochloric Acid

aa + bb cc + dd Equation 1

To understand concept of limiting reagents. To learn how to do a vacuum filtration. To understand the concept of recrystallization.

7. Haloalkanes (text )

CHEM51LC PROJECT DETERMINATION OF DIASTEREOSELCTIVITY USING THERMODYNAMIC VERSUS KINETIC CONTROLLED REDUCTION PROCEDURES: A REDUCTION

Cl 2(g) + NaCl + H 2 O. light. 2Cl. Once formed, the chlorine radical can react with the heptane as shown below: + Cl

Organic Chemistry 1 CHM 2210 Exam 3 (November 9, 2001)

Ethers. Synthesis of Ethers. Chemical Properties of Ethers

CHEM 302 Organic Chemistry I Problem Set VII Chapter 7 Answers

You must bring 1-2 empty pop cans to lab this week.

Classifying Chemical Reactions: Lab Directions

Apply the ideal gas law (PV = nrt) to experimentally determine the number of moles of carbon dioxide gas generated

Experiment 7: Synthesis of an Alkyne from an Alkene

Organic Chemistry Practice Problems: Solutions

Chemistry 283g Experiment 4

Properties of Liquids

Lab Activity 9: Introduction to Organic Chemical Reactivity, Lab 5 Prelab, Reflux

But in organic terms: Oxidation: loss of H 2 ; addition of O or O 2 ; addition of X 2 (halogens).

17 th Chemistry Olympiad of the Baltic States

Chemistry 210 Organic Chemistry I Summer Semester 1999 Dr. Somnath Sarkar

Experiment 17. Synthesis of Aspirin. Introduction

Preparation of Alkyl Halides, R-X. Reaction of alkanes with Cl 2 & Br 2 (F 2 is too reactive, I 2 is unreactive): R + X X 2.

Student Manual for Aerobic Alcohol Oxidation Using a Copper(I)/TEMPO Catalyst System

Lecture 11 Organic Chemistry 1

Reactions of Chapter 10 Worksheet and Key

Chemical Equilibrium and Le Chatlier s Principle

Experiment DE: Part II Fisher Esterification and Identification of an Unknown Alcohol

Background Information

7/30/07 MIKE HALL ALKENE FORMATION: ACID-CATALYZED DEHYDRATION OF AN ALCOHOL

Transcription:

EXPERIMENT 2 DEYDRATION OF 1- & 2-BUTANOL & DEYDROBROMINATION OF 1 & 2-BROMOBUTANE: ANALYSIS OF GASEOUS PRODUTS BY GAS ROMATOGRAPY A part of this procedure is adopted from an article published by.m. Gilow in the Journal of hemical Education, 1992, 69, A265 Reading Assignment for Experiment 1: Review Pavia Sections 22.1-22.12. Supplementary information can be found in Smith, sections 8.4-8.6, 8.8-8.9, 9.8. Pre-lab Questions: 1) Pavia chapter 22 Questions #1, #2. 2) Predict the major product expected in the two dehydration reactions and in the two dehydrobromination reactions. In this experiment, we will compare and contrast acid-catalyzed dehydration of a primary and secondary alcohol and dehydrobromination of a primary and secondary alkyl halide with strong base. These reactions are used extensively for the preparation of alkenes. The stereo- and regio-chemistry of the two reactions will be investigated using gas chromatography to analyze the product mixture. Background Discussion Acid-catalyzed dehydration reaction: An E1 reaction Dehydration of a secondary alcohol proceeds readily with the presence of strong acid such as sulfuric or phosphoric acid, and proceeds via an E1 mechanism. In step 1, protonation of the hydroxyl group of the alcohol with the acid catalyst converts the poor leaving group -O to a much better leaving group, 2 O. The loss of a water molecule from the oxonium ion intermediate results in a carbocation intermediate, which undergoes E1 elimination to form an alkene. 2 SO 4 3 2 3! O - - + 3 2 2 O 3 3 2 3 O an oxonium ion alkene EM M52LB/52LB Experiment 1 Page 1

Dehydration of a primary alcohol is expected to be slower that dehydration of a primary alcohol, and generally requires higher temperatures (Why? Explain in your lab report.) You may also expect a different product outcome. Dehydration is a reversible reaction that must be driven to completion. According to Lehatelier's principle, removing a product from a chemical system at equilibrium shifts the equilibrium in the direction favoring the formation of the products. You will carry out the two dehydration reactions in a reaction tube connected to a gas collector so that the product will continuously escape out of the reaction mixture as it is formed. Removal of the product will shift the equilibrium to the right and thus complete the reaction. The collected gaseous product will be analyzed by gas chromatography, which will show peaks with fair resolution. From the relative area of peaks, you can calculate the percentage composition of the product mixture. Dehydrobromination Reaction: An E2 reaction -induced dehydrohalogenation of an alkyl halide is another alternative for synthesizing alkenes, and proceeds via an E2 mechanism. The use of strong and bulky base promotes the elimination reaction and disfavors the competing S N 2 reaction, which is disfavored when bulky reagents are used. The E2 reaction requires an anti-periplanar arrangement of the β- and leaving group (the β- and leaving group must be in the same plane and anti to each other). You will be conducting an E2 reaction with 2-bromobutane and 1-bromobutane. Because 2-bromobutane has two different types of β- s, elimination on either side can lead to both internal and terminal alkenes. Newman projections of the three possible antiperiplanar elimination pathways are shown below. The most thermodynamically stable arrangement is expected to form the major product. 2 3 3 3 3 3 2 3 3 3 3 3 3 2 3 3 3 3 offman Product Saytzeff's Products EM M52LB/52LB Experiment 1 Page 2

The offman product is the least substituted alkene product, and the Saytzeff products are the most-substituted, and therefore most stable alkenes. Of the two possible Saytzeff products, the trans-alkene is the most stable. When the base and the alkyl halide are both sterically hindered, it can be difficult for the hindered base to remove a β-hydrogen on a more substituted carbon, and the less substituted alkene product predominates. An elimination that gives the least substituted alkene as a major product is called a offman Elimination. When the β-hydrogen is removed preferentially from a carbon atom that has fewer hydrogens, more substituted, and therefore more stable, alkenes are formed and this pathway follows Saytzeff s rule. An analysis of the product distribution for each of the four reactions you are conducting will give information about the mechanism of the reaction, and give an indication of steric constraints in the two alternate mechanisms. AUTION All alkyl halides are harmful if inhaled, ingested, or absorbed through the skin. Wear gloves, and keep all chemicals/reactions in the hood at all times. Potassium tert-butoxide is corrosive and moisture-sensitive. Avoid contact with skin, eyes, and clothing. Sulfuric acid is corrosive and causes burns. Notify the instructor if any acid is spilled. 2-butanol and 1-butanol are flammable and toxic. Avoid contact with skin, eyes and clothing. Experimental Students will work in teams. You should include results and discussion for ALL 4 EXPERIMENTS in your lab report. Make sure to follow steps carefully. A1. Dehydration of 2-Butanol Assemble the gas collection apparatus shown in figure 1 below before the reactants are mixed by carrying out the following steps: (1) Fit the collection tube with a septum stopper in one end. (2) Fill the collection tube with water, (3) Insert the end of the Teflon tubing that is coming out from the top of the septa into the collection tube all the way up to reach the stopper. (4) Place your index finger over the top end of the tube and invert it (water should remain in the tube.) (5) Place the tube, with the open end down, into a 250-mL beaker half-filled with water. EM M52LB/52LB Experiment 1 Page 3

(6) Remove your finger (the column of water should remain in the tube.) (7) In the reaction tube, place 2 drops of concentrated sulfuric acid. Add a boiling stone, then place a rubber septum on top. (9) onnect the other end of the Teflon tubing to the reaction tube as shown in figure 1. Rubber septum Distillation colum (ollection tube) Syringe Rubber septum Reaction tube ot sand bath Water Teflon tubing Beaker, 250 ml Fig. 1: Assembly for the Generation of Gaseous Products After the assembly is complete, add 0.2 ml of 2-butanol to the reaction tube using a syringe and heat the mixture in a preheated sand bath. Generation of gaseous product can be observed by watching the rapid decrease of the water level in the collection tube. Keep heating until no more bubbles escape from the bottom of the collection tube. Remove the Teflon tubing from the gas collection tube, and then from the beaker, before removing the reaction tube from the heat, all the while making sure your collection tube stays below the beaker s water level. Use this sequence of steps in shutting down the reaction to prevent water from being sucked back into the hot reaction tube while it is cooling down. Label the beaker containing the collection tube kept in the water and submit it for the gas chromatographic analysis. The butenes have been determined to elute from the non-polar column (SE30) in the following order: 1-butene, trans-2-butene, and cis-2-butene. Determine the relative amount (% composition) of the three components of gas products, using the areas provided on the G printout. A2. Dehydration of 1-Butanol Repeat the procedure described in A1 using 1-butanol instead of 2-butanol. Be sure to read chemical labels carefully and keep track of which alcohol you are adding. EM M52LB/52LB Experiment 1 Page 4

B1. Dehydrobromination of 2-omobutane Assemble the gas collection apparatus shown in figure 2 below before the reactants are mixed by carrying out the following steps: (1) Fit the collection tube with a septum stopper in one end. (2) Fill the collection tube with water, (3) Insert the end of the Teflon tubing that is coming out from the top of the septa into the collection tube all the way up to reach the stopper. (4) Place your index finger over the top end of the tube and invert it (water should remain in the tube.) (5) Place the tube, with the open end down, into a 250-mL beaker half-filled with water. (6) Remove your finger (the column of water should remain in the tube.) (7) In a10 ml round-bottom flask equipped with a water-cooled condenser, place 5 ml of 1M potassium t-butoxide (or 575 mg of potassium t-butoxide powder and 5 ml of t- butanol) using the Automatic pipette. Add a boiling stone to the flask. (9) onnect the other end of the Teflon tubing to the top of the water-cooled condenser as shown in figure 2. Rubber septum Distillation column (ollection tube) Rubber Septum Water out Teflon tubing Reaction Tube Water in Water Beaker, 250 ml ot Sand Bath Fig. 2: Assembly for the Generation of Gaseous Products After the assembly is complete, add 0.5 ml of 2-bromobutane to the 10 ml round bottom flask using a syringe, and heat the mixture in a preheated sand bath. Generation of gaseous product can be observed by watching the rapid decrease of the water level in the collection tube. Keep heating until no more bubbles escape from the bottom of the collection tube. Remove the Teflon tubing from the gas collection tube, and then from the beaker, before removing the reaction tube from the heat, all the while making sure your collection tube stays below the EM M52LB/52LB Experiment 1 Page 5

beaker s water level. Use this sequence of steps in shutting down the reaction to prevent water from being sucked back into the hot reaction tube while it is cooling down. Label the beaker containing the collection tube kept in the water and submit it for the gas chromatographic analysis. The butenes have been determined to elute from the non-polar column (SE30) in the following order: 1-butene, trans-2-butene, and cis-2-butene. Determine the relative amount (% composition) of the three components of gas products, using the areas provided on the G printout. B2. Dehydrobromination of 1-omobutane Repeat the procedure described in B1 using 1-bromobutane instead of 2-bromobutane. Be sure to read chemical labels carefully and keep track of which alkyl halide you are adding. In your lab write-up, construct a data table with the percent composition of each of the three products for all four reactions. Discuss the difference of the product composition from both reactions. If the G plot did not match what you predicted, provide an explanation as to what might have happened. Post-lab Questions: 1. Write the structure of the three alkenes produced by the dehydration of 3-methyl 3-pentanol. Which one would you expect to be the major product? 2. Write the structure of the three alkenes produced by reaction of tert-butoxide with 3-methyl-3-bromopentane. Which would you expect to be the major product? What would be the major product if the base was changed to ethoxide ion? 3. A student wished to prepare ethylene gas by dehydration of ethanol at 140 o using sulfuric acid as the dehydrating agent. A low-boiling liquid was obtained instead of ethylene. What was the liquid, and how might the reaction conditions be changed to give ethylene? 4. From your knowledge of the dehydration of tertiary alcohols, which alkene should predominate in the product of the dehydration of 2-methyl-2-butanol and why? 5. What is the maximum volume (at STP) of the butene mixture that could be obtained by the dehydration of 91 mg of 2-butanol? 6. The percentages of each alkene calculated from the G peak areas in this experiment are reasonably close the true percentages, but not 100% accurate. ow would you increase the accuracy of these percentages (hint: remember experiment 4 last quarter?) EM M52LB/52LB Experiment 1 Page 6