Catalytic Reactions for Tri- and Difluoromethylation: The State of Play

Similar documents
C H Activated Trifluoromethylation

Nucleophilic Fluorination. Souvik Rakshit Burke group Literature Seminar July 13, 2013

Self-stable Electrophilic Reagents for Trifluoromethylthiolation. Reporter: Linrui Zhang Supervisor: Prof. Yong Huang Date:

Recent Developments in Alkynylation

Strategies for Catalytic Asymmetric Electrophilic a Halogenation of Carbonyl Compounds

Oxidative couplings of two nucleophiles

Catellani Reaction (Pd-Catalyzed Sequential Reaction) Todd Luo

Palladium-Catalyzed Electrophilic Aromatic C H Fluorination

Iron Catalysed Coupling Reactions

NIH Public Access Author Manuscript Org Lett. Author manuscript; available in PMC 2014 November 01.

Palladium-catalyzed sp 3 C H activation. Yan Xu Dong Group Meeting Apr. 2, 2014

Recent Advances in C-B Bond Formation through a Free Radical Pathway

Recent development in direct methods for trifluoromethylthiolation

Rachel Whittaker Dong Group Literature Talk October 10, Ref: Perez-Temprano, M.H, Casares, J.A., Espinet, P., Chem. Eur. J. 2012, 18, 1864.

Highly Efficient, Convergent, and Enantioselective Synthesis of Phthioceranic Acid

Halogen Bond Applications in Organic Synthesis. Literature Seminar 2018/7/14 M1 Katsuya Maruyama

Metalloporphyrin. ~as efficient Lewis acid catalysts with a unique reaction-field~ and. ~Synthetic study toward complex metalloporphyrins~

Nucleophilic and Electrophilic Trifluoromethylation

Catalytic Asymmetric [4+1] Annulation of Sulfur Ylides with Copper Allenylidene Intermediates. Reporter: Jie Wang Checker: Shubo Hu Date: 2016/08/02

Supporting Information. Copper-Mediated C-H Trifluoromethylation of Quinones

Asymmetric Palladium Catalyzed Cross-Coupling Reactions. Topic Talk September 4 th, 2014 Morken Lab Emma Edelstein 1

Microwave-promoted synthesis in water

sp 3 C-H Alkylation with Olefins Yan Xu Dec. 3, 2014

PHOTOCATALYSIS: FORMATIONS OF RINGS

Lecture 6: Transition-Metal Catalysed C-C Bond Formation

Arylhalide-Tolerated Electrophilic Amination of Arylboronic Acids with N-Chloroamides Catalyzed by CuCl at Room Temperature

Supporting Information. Table S General information General procedure for synthesis of compounds 4 and

Radical cascade reactions triggered by single electron transfer

Construction of C-C or C-N Bond via C-H Activation ~Chemistry of Yong-Qiang Tu~

Direct Catalytic Cross-Coupling of Organolithium

Zr-Catalyzed Carbometallation

both substrate : activated wastes derived from M and X one substrate : activated wastes derived from X

Xuefeng Jiang Professor Education Academic Career Awards International Invited Lecture USA Germany Shanghai Taiwan Singapore)

CH 3 TMG, DMF N H 3 CO 2 S. (PPh 3 ) 2 Pd 0

Supporting Information

Supporting Information

The Palladium-Catalyzed Trifluoromethylation of Vinyl Sulfonates

Anti-Markovnikov Olefin Functionalization

Iron Catalysis in Organic Synthesis Multitasking Champion. Current literature Andrey Kuzovlev

Functionalization of C(sp 3 ) H Bonds Using a Transient Directing Group

N-Heterocyclic Carbene Catalysis via Azolium Dienolates: An Efficient Strategy for Enantioselective Remote Functionalizations

sp 3 C-H insertion by α-oxo Gold Carbene B4 Kei Ito

Stereodivergent Catalysis. Aragorn Laverny SED Group Meeting July

Organic Chemistry Laboratory Summer Lecture 6 Transition metal organometallic chemistry and catalysis July

Aza-Wacker-Type Cyclization. Group Meeting Tuesday, April 19, 2011 William Kuester

Palladium-Catalyzed Alkylation of sp2 and sp3 C-H Bonds with Methylboroxine and Alkylboronic Acids: Two Distinct C-H Activation Pathways

Chapter 2 Sulfur Dioxide Surrogates

Title. Author(s)Ishiyama, Tatsuo; Oohashi, Zengo; Ahiko, Taka-aki; M. CitationChemistry Letters, 8: Issue Date Doc URL.

Review. Recent Developments in Pd-catalyzed Carbonylation Reaction. Li Yuanhe. Supervisors: Prof. Yang Prof. Chen Prof. Tang

Benzene and Aromatic Compounds. Chapter 15 Organic Chemistry, 8 th Edition John McMurry

Chiral Catalyst II. Palladium Catalysed Allylic Displacement ( -allyl complexes) 1. L n Pd(0) 2. Nuc

16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 7 th edition

Morita Baylis Hillman Reaction. Aaron C. Smith 11/10/04

Functionalization of arene and heteroarene via organic photoredox catalysis. Reporter: Fengjin Wu Supervisor: Prof. Huang Date:

Supporting Information

Room Temperature Aryl Trifluoromethylation via Copper- Mediated Oxidative Cross-Coupling

Modern C(sp 2 )-F bond forming reactions:

Spiro Monophosphite and Monophosphoramidite Ligand Kit

Organic Chemistry. M. R. Naimi-Jamal. Faculty of Chemistry Iran University of Science & Technology

Abstracts. p69. Keywords: C-H activation palladium catalysts arylation arenes polycyclic compounds biaryls natural products

Copper-Catalyzed Trifluoromethylation of Unactivated Olefins

Hypervalent Iodine(III): Property and Reactivity. Penghao Chen g Dong Group Seminar October, 21 st, 2015

Total Synthesis of Verruculogen and Fumitremorgin A Enabled by Ligand-Controlled C H Borylation

Phosphine-Catalyzed Formation of Carbon-Sulfur Bonds: Catalytic Asymmetric Synthesis of gamma-thioesters

Chiral Bronsted Acids as Catalysts

Modern Synthetic Methods

Cu- Catalyzed Synthesis of Diaryl Thioethers and S- Cycles by reaction of Aryl Iodides with Carbon Disul;ide in the Presence of DBU.

"-Amino Acids: Function and Synthesis

Copper-Catalyzed Reaction of Alkyl Halides with Cyclopentadienylmagnesium Reagent

Chemistry of Benzene: Electrophilic Aromatic Substitution

A Simple Introduction of the Mizoroki-Heck Reaction

Green Oxidations with Tungsten Catalysts. by Mike Kuszpit Michigan State University

Recent Developments in the Chemistry of Polyvalent Iodine Compounds

16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2

Transition-metal catalyzed C C bond cleavage

16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2

Ligand Effects in Nickel Catalysis. Anthony S. Grillo Chem 535 Seminar October 22, 2012

Recent Advances of Alkyne Metathesis. Group Meeting Timothy Chang

Asymmetric Catalysis by Lewis Acids and Amines

Planar-Chiral Phosphine-Olefin Ligands Exploiting a (Cyclopentadienyl)manganese(I) Scaffold to Achieve High Robustness and High Enantioselectivity

Fe-Catalyzed reactions of 2-chloro-1,7-dienes and allylmalonates

Lecture Topics: I. Electrophilic Aromatic Substitution (EAS)

Investigations into Transition Metal Catalyzed/Mediated Arene Trifluoromethylation and Fluorination Reactions

Michelangelo Gruttadauria

Palladium-catalyzed cross-addition of triisopropylsilylacetylene to unactivated alkynes*

Acid-Base Strength. Chapter 6. Monday, November 2, 2015

Cambrian Explosion, Complex Eukaryotic Organism, Ozonosphere 3

Reductive Elimination from High-Valent Palladium. Kazunori Nagao MacMillan Group Meeting

Scientific Program. International Workshop on Organofluorine Chemistry

Dual Role of Silanol Groups in Cyclopropanation and Hiyama-Denmark Cross-Coupling Reactions

Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution

Copper-Catalyzed Aerobic Oxidative C-H Functionalizations. Supervisor: Prof. Yong Huang Reporter: Weiyu Yin ( 殷韦玉 ) Date:

ISCHIA ADVANCED SCHOOL OF ORGANIC CHEMISTRY

Selective monomethylation reactions of methylene-active compounds with dimethylcarbonate. An example of clean synthesis*

The Career of Tristan H. Lambert

Nucleophilic Heterocyclic Carbene Catalysis. Nathan Werner Denmark Group Meeting September 22 th, 2009

SUPPORTING INFORMATION

New Reagents for the Synthesis of Organic/Fluoroalkyl Copolymers DAVID A. VICIC

O H Hydrogen bonding promotes H-atom transfer from C H bonds for C-alkylation of alcohols

Copper-catalyzed cleavage of benzyl ethers with diacetoxyiodobenzene and p-toluenesulfonamide

Transcription:

Catalytic Reactions for Tri- and Difluoromethylation: The State of Play Véronique Gouverneur University of Oxford Chemistry Research Laboratory BOSS XV Tetrahedron Chair - Lecture 3 July 2016

Contents Tri- and Difluoromethylating Reagents Tri- and Difluoromethylation of (Hetero)arenes Csp 3 CF 3 Bond Construction Large Scale Applications

Top-Selling Drugs Containing CF 3 [A] [B] [C] [A] US2004/102651 A1, 2004; [B] Reddy Org. Process Res. Dev. 2007, 11, 842; [C] Lutz J. Med. Chem. 1971, 14, 926.

Top-Selling Drugs Containing CF 3 [A] [B] [C] [A] Pierce J. Org. Chem. 1998, 63, 8536; [B] Oh Tetrahedron Lett. 2006, 47, 7943; [C] Ahn Bull. Korean Chem. Soc. 2002, 23, 626.

Industrial Preparation of Ar-CF 3 [A] Chlorination of toluene followed by Cl/F exchange [B] Deoxyfluorination of aromatic carboxylic acids [A] Swarts Bull. Acad. R. Belg. 1892, 24, 309; Osswald, Müller, Steinhäuser German Patent, 575593 (1933); Filler Adv. Fluorine Chem. 1970, 6, 1; [B] Nickson J. Fluorine Chem. 1991, 55, 173; Hasek, Smith, Engelhardt J. Am. Chem. Soc. 1960, 82, 543.

Trifluoromethyl Anion [A] Calculated C-F bond dissociation enthalpy 19 F and 13 C NMR spectra of CF 3 anion [B] Free CF 3 anion [A] Prakash Angew. Chem. Int. Ed. 2014, 53, 11575; [B] Grushin Angew. Chem. Int. Ed. 2015, 54, 15289.

R = Me: Aldrich, 2400 per mol R = Et: Aldrich, 17700 per mol Nucleophilic CF 3 Reagents Prakash Tet. Lett. 1984, 25, 2195 Kashimura J. Org. Chem. 1991, 56, 2 Kobayashi Tet. Lett. 1969, 47, 4095 Paratian J. Chem. Soc., Chem. Commun. 1992, 53 (Phen)CuCF 3 : Aldrich, 28000 per mol Burton J. Am. Chem. Soc. 1986, 108, 832 Feng, Weng, Huang Organomet. 2011, 30, 3229 Burton J. Am. Chem. Soc. 1985, 107, 5014 Willis J. Am. Chem. Soc. 1960, 82, 1888 Kondratenko Synthesis 1980, 932 Motherwell Synlett 2002, 646 Langlois Org. Lett. 2000, 2, 2101 Langlois Eur. J. Org. Chem. 2001, 1467 Langlois Tet. Lett. 2003, 44, 1055 Langlois Synlett 2000, 230 Langlois Synlett 2000, 233 Yokoyama Synlett 1996, 1191 Prakash Org. Lett. 2003, 5, 3253 Langlois Matsui Vicic J. Fluorine Chem. 2010, 131, 1108 J. Fluorine Chem. 2007, 128, 1318 Chem. Lett. 1981, 1719 Weng Chem. Eur. J. 2016, 22, 2075 Chen J. Chem. Soc., Perkin Trans. I 1989, 2385 Chen J. Chem. Soc. Chem. Commun. 1989, 705 Palmer US5475165 1995 Chen J. Fluorine Chem. 1996, 78, 177 Chen J. Chem. Soc., Chem. Commun. 1993 1389 Chen Chin. J. Chem. 1994, 464 R = Me: TCI, 2100 per mol Gooβen Chem. Eur. J. 2011, 17, 2689 Colby Org. Lett. 2013, 15, 1208 Burton J. Am. Chem. Soc. 1985, 107, 5014 Xiao Org. Lett. 2015, 17, 532 Umemoto Bull. Chem. Soc. Jpn. 1986, 59, 447 Dolbier Org. Lett. 2001, 3, 4271

Properties of CF 3. and CF3+ [A] CH 3 radical vs CF 3 radical [A] Relative rate of reaction with styrene [B] Order of Stability of Fluorinated Radicals [D] Order of Stability of Fluorinated Cations Calculated Stabilisation Energies (ev) [A] Studer Angew. Chem. Int. Ed. 2012, 51, 8950; Dolbier Chem. Rev. 1996, 96, 1557; [B] Jiang J. Org. Chem. 1989, 54, 5648; Pasto J. Org. Chem. 1987, 52, 3062; [C] Beauchamp J. Am. Chem. Soc. 1974, 96, 1269; Viehe Tetrahedron 1987, 43, 4309; Suda Tetrahedron Lett. 1980, 21, 2555.

Electrophilic CF 3 Reagents Cheng J. Org. Chem. 2016, 81, 3119; Médebielle J. Fluorine Chem. 2013, 155, 124.

Sources of CF 3 Radical Aldrich, 1200 per mol Hazeldine Chem. Commun. 1949, 47, 6632 Akiyama Bull. Chem. Soc. Jpn. 1988, 61, 3531 Szwarc J. Am. Chem. Soc. 1961, 83, 4732 Umemoto Chem. Lett. 1982, 1519 Umemoto Tet. Lett. 1982, 23, 3929 Naumann J. Fluorine Chem. 1985, 30, 73 Naumann J. Fluorine Chem. 1990, 47, 283 Naumann J. Fluorine Chem. 1990, 46 265 Naumann J. Fluorine Chem. 2000, 106, 217 Umemoto Bull. Chem. Soc. Jpn. 1986, 59, 447 Charles Trans. Faraday Soc. 1960, 56, 794 Muller J. Org. Chem. 1983, 48, 1370 Yoshida J. Chem. Soc. Perkin Trans. I 1989, 909 Sawada J. Fluorine Chem. 1990, 46, 423 Barton Tet. 1986, 42, 2325 Aldrich, 1000 per mol Aldrich, 1200 per mol Kamigata J. Chem. Soc. Perkin Trans. I 1991, 627 Fuchs J. Am. Chem. Soc. 1996, 118, 4486 Langlois Tet. Lett. 2000, 41, 3069 Zard Org. Lett. 2001, 3, 1069 Langlois Phosphorus, Sulfur Silicon Relat. Elem. 1991, 59, 169 Langlois Synlett 2002, 1697 Umemoto Tet. Lett. 1990, 31, 3579 Xiao Chem. Commun. 2011, 47, 6632 Sanford Org. Lett. 2011, 13, 5464 Togni ACS Catal. 2012, 2, 521 Soloshonok Chem. Commun. 2015, 51, 5967 Hu Angew. Chem. Int. Ed. 2016, 55, 2743

Adapted from Steiner Chim. Oggi Chem. Today 2015, 33, 26. Routes to CF 3 Reagents

Trifluoromethylation of (Hetero)arenes Soloshonok J. Fluorine Chem. 2014, 167, 37; Steiner Chim. Oggi Chem. Today 2015, 33, 26.

Palladium Mediated Trifluoromethylation of Aryl Halides Electronic Effects on Reductive Elimination σ* Hartwig Organometallics 2004, 23, 3398.

Palladium Mediated Trifluoromethylation of Aryl Halides Effect of Ligands on Reductive Elimination Grushin J. Am. Chem. Soc. 2006, 128, 4632; J. Am. Chem. Soc. 2006, 128, 12644; Ozawa Organometallics 1989, 8, 180.

Palladium Catalysed Trifluoromethylation of Aryl Halides Buchwald Science 2010, 328, 1679.

Routes to Cu-CF 3 Steiner Chim. Oggi Chem. Today 2015, 33, 26; Normant Tetrahedron 2000, 56, 275.

Copper Mediated Trifluoromethylation of Aryl Halides [A] First example [B] First pregenerative route to CuCF 3 [C] First thermally stable and well-defined CuCF 3 complex [A] Kobayashi Tetrahedron Lett. 1969, 47, 4095; J. Chem. Soc., Perkin Trans. 1 1980, 2755; [B] Burton J. Am. Chem. Soc. 1986, 108, 832; [C] Vicic J. Am. Chem. Soc. 2006, 130, 8600.

Copper Mediated Trifluoromethylation of Aryl Halides [A] [B] [C] [D] [E] [F] [A] Fuchikami Tetrahedron Lett. 1991, 32, 91; [B] Hartwig Angew. Chem. Int. Ed. 2011, 50, 3793; [C] Chen Tetrahedron Lett. 1991, 32, 7689; [D] Buchwald Angew. Chem. Int. Ed. 2013, 52, 11628; [E] Normant Tetrahedron 2000, 56, 275; [F] Grushin J. Am. Chem. Soc. 2011, 133, 20901.

Copper Catalysed Trifluoromethylation of Aryl Halides [A] [B] [C] [A] Chen J. Chem. Soc., Chem. Commun. 1989, 705; [B] Amii Chem. Commun. 2009, 1909; [C] Gooßen Chem. Eur. J. 2011, 17, 2689; Novak Org. Lett. 2014, 16, 4268.

Copper Mediated Trifluoromethylation of Ar-B(OR) 2 [A] [C] [B] [A] Buchwald J. Org. Chem. 2011, 76, 1174; [B] Gooßen Chem. Eur. J. 2012, 18, 1577; [C] Grushin J. Am. Chem. Soc. 2014, 136, 16998.

Copper Catalysed Trifluoromethylation of Ar-B(OR) 2 [A] [B] [C] [A] Liu Chem. Comm. 2011, 47, 4300; Shen Org. Lett. 2011, 13, 2342; [B] Sanford J. Am. Chem. Soc. 2012, 134, 9034; [C] Qing J. Org. Chem. 2012, 77, 1251; Beller Chem. Commun. 2013, 49, 2628.

Copper Mediated Trifluoromethylation of Diazonium Salts [A] [B] [A] Fu J. Am. Chem. Soc. 2013, 135, 8436; [B] Gooßen Angew. Chem. Int. Ed. 2013, 52, 7972.

Copper Mediated Trifluoromethylation of Arylsilanes Hartwig Angew. Chem. Int. Ed. 2016, 55, DOI: 10.1002/anie.201601163.

Trifluoromethylation via C-H Functionalisation [A] Lewis Acid Activation [B] Palladium Catalysed C-H activation [A] Togni J. Fluorine Chem. 2010, 131, 951; [B] Yu J. Am. Chem. Soc. 2010, 132, 3648; Sanford J. Am. Chem. Soc. 2010, 132, 2878 for recent example using CF 3 Br see: Beller Angew. Chem. Int. Ed. 2016, 55, 2782.

Trifluoromethylation via C-H Functionalisation [A] [B] [C] - enhanced reactivity - easily prepared - bench-stable - free-flowing solids [A] MacMillan Nature 2011, 480, 224; [B] Baran Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 14411; [C] Baran Nature 2012, 492, 95.

Trifluoromethylation via C-H Functionalisation [A] [B] [A] Ritter Angew. Chem. Int. Ed. 2015, 54, 3712 [B] Li J. Am. Chem. Soc. 2016, 138, 5809.

Difluoromethylating Reagents Burton J. Fluorine Chem. 1988, 39, 425 Burton J. Fluorine Chem. 2007, 128, 1198 Prakash Angew. Chem. Int. Ed. 2012, 51, 12090 Shen Organomet. 2015, 34, 3065 Baran J. Am. Chem. Soc. 2012, 134, 1494 Chen J. Chem. Soc. Chem. Commun. 1994, 737 Aldrich, 9700 per mol Prakash J. Am. Chem. Soc. 1997, 119, 1572 Prakash Org. Lett. 2007, 9, 1863 Prakash Org. Lett. 2007, 9, 1863 Prakash J. Org. Chem. 2003, 68, 4457 Prakash J. Fluorine Chem. 2011, 132, 792 Akita Chem. Eur. J. 2016, 22, 1262

Copper Mediated Aromatic Difluoromethylation of Aryl Halides [A] [B] [C] [A] Amii Org. Lett. 2011, 13, 5560; [B] Hartwig J. Am. Chem. Soc. 2012, 134, 5524; Prakash Angew. Chem. Int. Ed. 2012, 51, 12090; Qing Org. Chem. Front. 2014, 1, 774; [C] Eujen J. Organomet. Chem. 1996, 519, 7; Burton J. Fluorine Chem. 2007, 128, 1198; Vicic J. Am. Chem. Soc. 2016, 138, 2536.

Palladium Catalysed Difluoromethylation of Aryl-X and B(OH) 2 [A] [B] [A] Zhang Org. Lett. 2016, 18, 44; [B] Shen Nat. Commun. 2014, 5, 5405.

Arene Difluoromethylation via C-H Functionalisation Baran J. Am. Chem. Soc. 2012, 134, 1494.

Trifluoromethylation Addition to Carbonyl Groups [A] Pioneering Work [B] Ruppert-Prakash Reagent [A] De Meijere Angew. Chem. Int. Ed. 1977, 16, 854; Angew. Chem. Int. Ed. 1982, 21, 443; [B] Ruppert Tetrahedron Lett. 1984, 25, 2195; Prakash J. Am. Chem. Soc. 1989, 111, 393.

Trifluoromethylation Addition to Carbonyl Groups [A] Felkin-Anh [B] Auxiliary Based Methods [C] Chiral Auxiliary Approach [D] Cinchona Alkaloid [A] Pedrosa J. Org. Chem. 2006, 71, 2177; [B] Toru Tetrahedron Lett. 2006, 47, 1337; [C] Prakash Angew. Chem. Int. Ed. 2001, 40, 589; J. Am. Chem. Soc. 2002, 124, 6538; Dolbier J. Org. Chem. 2005, 70, 4741; [D] Shibata J. Fluorine Chem. 2013, 152, 46; Angew. Chem. Int. Ed. 2009, 48, 6324; Feng Tetrahedron 2007, 63, 6822.

Trifluoromethylation alpha to Carbonyl Groups [A] [B] [A] Chen Chem. Commun. 1989, 705; [B] Grushin J. Am. Chem. Soc. 2012, 134, 16167.

Trifluoromethylation alpha to Carbonyl Groups [A] Copper Catalysis [B] Enamine-Copper Catalysis Early works: Umemoto J. Am. Chem. Soc. 1993 115, 2156; Cahard J. Fluorine Chem. 2007, 128, 975; Shibata Org. Biomol. Chem. 2009, 7, 3599; [A] Gade J. Am. Chem. Soc. 2012, 134, 10769; [B] MacMillan J. Am. Chem. Soc. 2010, 132, 4986.

Trifluoromethylation alpha to Carbonyl Groups MacMillan J. Am. Chem. Soc. 2009, 131, 10875.

Allylic Trifluoromethylation of Allyl Halides and Alkenes [A] [B] [C] [D] [A] Nishibayashi Chem. Eur. J. 2012, 18, 13255; Szabo J. Org. Chem. 2013, 78, 7330. [B] Qing Org. Lett. 2012, 14, 2106; [C] Liu J. Am. Chem. Soc. 2011, 133, 15300; [D] Buchwald Angew. Chem. Int. Ed. 2011, 50, 9120; Wang J. Am. Chem. Soc. 2011, 133, 16410.

Trifluoromethylation of Allylsilanes [A] Copper Catalysis [B] Photoredox Catalysis [A] Sodeoka Angew. Chem. Int. Ed. 2012, 51, 4577; Gouverneur Chem. Eur. J. 2012, 18, 8583; [B] Gouverneur Org. Lett. 2013, 15, 1250.

Trifluoromethylation of Alkenes [A] [B] Hydrotrifluoromethylation of unactivated alkenes [A] Palacios Chem. Rev. 2015, 115, 1847; Nevado Chem. Soc. Rev. 2014, 43, 6598; [B] Gouverneur J. Am. Chem. Soc. 2013, 135, 2505; Nicewicz Chem. Sci. 2013, 4, 3160; Qing Angew. Chem. Int. Ed. 2013, 52, 2198.

Trifluoromethylation of Alkenes Carbotrifluoromethylation [A] [B] Oxytrifluoromethylation [C] [D] Aminotrifluoromethylation [E] [F] [A] Liu J. Am. Chem. Soc. 2014, 136, 10202; [B] Nevado J. Am. Chem. Soc. 2013, 135, 14480; [C] Studer Angew. Chem. Int. Ed. 2012, 51, 8221; [D] Buchwald J. Am. Chem. Soc. 2012, 134, 12462; [E] Akita Org. Lett. 2013, 15, 2136; [F] Liu J. Org. Chem. 2014, 79, 7084.

Criteria for Large-Scale Application Criteria + +/- - Substrate cost (generic, based on functional group) Low cost, e.g. Ar-H Ar-Cl Ar-NH 2 Ar-COOH Medium cost, e.g. Ar-Br Ar-Bpin (Pin = pinacolyl) High cost, e.g. Ar-I Ar-B(OH) 2 Reagent Cost Low cost reagent, e.g. HF HCF 3 CF 3 COONa CClF 2 COOMe CF 3 SO 2 Cl Medium cost, e.g. SF 4 CF 3 I TMSCF 3 /TESCF 3 CF 3 SO 2 Na/CF 3 SO 2 K FSO 2 CF 2 COOMe PhCOCF 3 PhSO 2 CF 3 High cost, e.g. Fluolead Togni Reagent Trifluoromethylator Umemoto Reagent Yagupolskii Reagent Cu(P(Ph 3 ) 3 )CF 3 Metal cost Low cost, e.g. Cu, Fe, Sb: s/c > 1 Re, Ru: s/c > 100 Pd: s/c > 1000 Medium cost, e.g. Cu,Sb: s/c = 1 0.1 Re, Ru: s/c = 100 10 Pd: s/c = 1000 100 High cost, e.g. Re, Ru: s/c < 10 Pd: s/c = < 100 Ligand cost Low cost, e.g. 1,10-Phenanthroline: s/c > 10 Brettphos: s/c > 1000 Medium cost, e.g. 1,10-Phenanthroline: s/c = 10 1 Brettphos: s/c = 1000 100 High cost, e.g. 1,10-Phenanthroline: s/c < 1 Brettphos: s/c < 100 Requirement of protocol No special requirement Irradiation Strictly inert conditions Strictly dry conditions Autoclave Secondary containment s/c = substrate to catalyst ratio; Steiner Chim. Oggi Chem. Today 2015, 33, 26.

Criteria for Large-Scale Application Criteria + +/- - Toxicity and eco-toxicity of metals and reagents Low e.g. Fe, Zn or metal free HCF 3 Medium e.g. Cu, CF 3 COOR, CF 3 I High e.g. Pd, Ru, HF, SF 4 Metal removal / waste generation Little waste: No metals involved Few reagents, little excess Recyclable solvents Medium waste: Metals (catalytic) Several reagents Recyclable solvents Much waste: Metal (stoichiometric) Several reagents in excess Non-recyclable solvents (i.e. dipolar aprotic solvents) Efficiency and yield of the trifluoromethylbuilding step High efficiency, e.g. Equimolar amounts of reagents Yield: 80-100% Moderate efficiency, e.g. Substantial excess of reagents Yield: 60-80% Low efficiency e.g. large excess of reagents Yield < 60% Potential for difficult to remove byproducts (e.g. regioisomers or Ar-H) Very low Low Medium to high Status quo of the trifluoromethylation / fluorination protocol > 100 kg to multi-tonne scale 1 kg to 100 kg scale < 1 kg scale Steiner Chim. Oggi Chem. Today 2015, 33, 26.

Potential of Selected Trifluoromethylation Methods Substrate Reagent Cost Metal and Catalyst Cost Specific Requirements Waste Load Toxicity and Eco-toxicity Status Quo Ar-CH 3 Cl 2 (3 eq.) HF (3 eq.) 0 0.1 eq. Sb Autoclave HCl Cl 2, HF 100 tonnes Ar-NH 2 Umemoto reagent (1.5 eq.), tbuono 3 eq. Cu - Cu Cu mmol Ar-NH 2 tbuono (1 eq.), ptsa (1.5 eq.) Me 3 SiCF 3 (1.5 eq.) 0.5 eq. CuSCN - Cu Cu mmol Ar-COOH SF 4 (2.5 eq.) HF Autoclave SOF 2 SF 4, HF 100 kg Ar-COOH ArSF 3 (2.5 eq.) - Autoclave ArSOF - mmol Ar-Cl TESCF 3 (2 eq.) 0.05 eq. Pd, Brettphos Strictly dry - Pd mmol Ar-I CClF 2 COOMe (2-4 eq.), KF (1 eq.) 1-1.5 eq. CuI - Cu Cu 5 kg Ar-I Ar-Br HCF 3 (1.5 eq.), tbuok, Et 3 N. 3HF 1.5 eq. Cu Strictly inert Cu Cu mmol Ar-I TESCF 3 (2 eq.) 0.1 eq. Cu - Cu Cu mmol Ar-I Trifluoromethylator (1.2 eq.) 1.2 eq. Cu - Cu Cu mmol Ar-B(OH) 2 CF 3 SO 2 Na (3 eq.) (TBHP) 1 eq. Cu - Cu CF 3 SO 2 Na Cu mmol Ar-B(OH) 2 CF 3 I (5 eq.) 0.2 eq. Cu, 0.01 eq. Ru Irradiation Cu, CF 3 I Cu mmol Ar-B(OH) 2 Togni reagent (1.2 eq.) 0.05 eq. Cu, Phen - Cu Cu mmol Ar-Bpin K[B(OMe) 3 CF 3 ] (2 eq.), O 2 1 eq. Cu(OAc) - Cu Cu mmol Het-H CF 3 SO 2 Cl (1-4 eq.) 0.02 eq. Ru, Phen Irradiation Ru mmol Het-H CF 3 I (3 eq.), H 2 O 2 (2 eq.) 0.3 eq. FeSO 4 or Cp 2 Fe - CF 3 I CF 3 I 40 kg Het-H Zn(CF 3 SO 2 ) 2 (1-4 eq.) TBHP (3-5 eq.) Zn - Zn Zn mmol Steiner Chim. Oggi Chem. Today 2015, 33, 26.