Vectors. Chapter. Introduction of Vector. Types of Vector. Vectors 1

Similar documents
Section 4.2 Radians, Arc Length, and Area of a Sector

Example 11: The man shown in Figure (a) pulls on the cord with a force of 70

5.1 Moment of a Force Scalar Formation

Chapter 4 Motion in Two and Three Dimensions

Summary chapter 4. Electric field s can distort charge distributions in atoms and molecules by stretching and rotating:

Work, Energy, and Power. AP Physics C

A) N B) 0.0 N C) N D) N E) N

Magnetism. Chapter 21

5.4.3 Multipole Expansion of the Vector Potential

ELECTROMAGNETIC INDUCTION PREVIOUS EAMCET BITS

1. Show that if the angular momentum of a boby is determined with respect to an arbitrary point A, then. r r r. H r A can be expressed by H r r r r

The Gradient and Applications This unit is based on Sections 9.5 and 9.6, Chapter 9. All assigned readings and exercises are from the textbook

March 15. Induction and Inductance Chapter 31

ENGI 1313 Mechanics I

Electromagnetic Waves

Electric Charge. Electric charge is quantized. Electric charge is conserved

A) 100 K B) 150 K C) 200 K D) 250 K E) 350 K

n Power transmission, X rays, lightning protection n Solid-state Electronics: resistors, capacitors, FET n Computer peripherals: touch pads, LCD, CRT

Ch. 3: Inverse Kinematics Ch. 4: Velocity Kinematics. The Interventional Centre

Solution: (a) C 4 1 AI IC 4. (b) IBC 4

which represents a straight line whose slope is C 1.

CHAPTER 24 GAUSS LAW

V V The circumflex (^) tells us this is a unit vector

A) (0.46 î ) N B) (0.17 î ) N

Phys 332 Electricity & Magnetism Day 3. Note: I should have recommended reading section 1.5 (delta function) as well. rˆ rˆ

Announcements. Description Linear Angular position x θ displacement x θ rate of change of position v x ω x = = θ average rate of change of position

e.g: If A = i 2 j + k then find A. A = Ax 2 + Ay 2 + Az 2 = ( 2) = 6

Section 25 Describing Rotational Motion

CHAPTER 17. Solutions for Exercises. Using the expressions given in the Exercise statement for the currents, we have

5/20/2011. HITT An electron moves from point i to point f, in the direction of a uniform electric field. During this displacement:

ELECTRIC & MAGNETIC FIELDS I (STATIC FIELDS) ELC 205A

Chapter 19 Webassign Help Problems

i-clicker!! x 2 lim Lecture 3 Motion in 2- and 3-Dimensions lim REVIEW OF 1-D MOTION

Physics 201 Lecture 18

Fri. 10/23 (C14) Linear Dielectrics (read rest at your discretion) Mon. (C 17) , E to B; Lorentz Force Law: fields

Chapter 3. Electric Flux Density, Gauss s Law and Divergence

Sec. 9.1 Lines and Angles

TRAVELING WAVES. Chapter Simple Wave Motion. Waves in which the disturbance is parallel to the direction of propagation are called the

MOTION IN 2-DIMENSION (Projectile & Circular motion And Vectors)

Theoretical Competition:Solution Question 1 Page 1 of 8. I. Solution Q1_THEORY_SOLUTION_1700_SENT_TO_LEADER.DOCX. r 2. r 1

Chapter 4 Motion in Two and Three Dimensions

Announcements Candidates Visiting Next Monday 11 12:20 Class 4pm Research Talk Opportunity to learn a little about what physicists do

WYSE Academic Challenge Sectional Mathematics 2006 Solution Set

Electric Fields and Electric Forces

MAGNETIC FIELD INTRODUCTION

BASIC ALGEBRA OF VECTORS

The Dot Product

MEM202 Engineering Mechanics Statics Course Web site:

Introduction. Electrostatics

Static Electric Fields. Coulomb s Law Ε = 4πε. Gauss s Law. Electric Potential. Electrical Properties of Materials. Dielectrics. Capacitance E.

1. Describe the possible modes of lateral-directional motion of an aircraft when disturbed slightly from steady flight.

Lecture #2 : Impedance matching for narrowband block

FI 2201 Electromagnetism

Sensors and Actuators Introduction to sensors

MTE2 Wed 26, at 5:30-7:00 pm Ch2103 and SH 180. Contents of MTE2. Study chapters (no 32.6, 32.10, no 32.8 forces between wires)

PHY 121 Finals Review FSE Tutoring Centers Spring 2016

Geometry Contest 2013

Physics 122, Fall October 2012

ME 3600 Control Systems Frequency Domain Analysis

AP Physics Centripetal Acceleration

Sources of Magnetic Fields (chap 28)

Module 18: Outline. Magnetic Dipoles Magnetic Torques

Name Student ID. A student uses a voltmeter to measure the electric potential difference across the three boxes.

CAREER POINT TARGET IIT JEE CHEMISTRY, MATHEMATICS & PHYSICS HINTS & SOLUTION (B*) (C*) (D) MeMgBr 9. [A, D]

Rigid Body Dynamics 2. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018

ELECTROSTATICS::BHSEC MCQ 1. A. B. C. D.

Kinematics of rigid bodies

r cos, and y r sin with the origin of coordinate system located at

Content 5.1 Angular displacement and angular velocity 5.2 Centripetal acceleration 5.3 Centripetal force. 5. Circular motion.

ASTR 3740 Relativity & Cosmology Spring Answers to Problem Set 4.

Analytical Solution to Diffusion-Advection Equation in Spherical Coordinate Based on the Fundamental Bloch NMR Flow Equations

Cartesian Coordinate System and Vectors

1 2 U CV. K dq I dt J nqv d J V IR P VI

AE301 Aerodynamics I UNIT B: Theory of Aerodynamics

Calculate the electric potential at B d2=4 m Calculate the electric potential at A d1=3 m 3 m 3 m

Physics NYB problem set 5 solution

Written as per the revised syllabus prescribed by the Maharashtra State Board of Secondary and Higher Secondary Education, Pune.

rt () is constant. We know how to find the length of the radius vector by r( t) r( t) r( t)

Physics 121: Electricity & Magnetism Lecture 1

LINEAR FLOW BAR DIFFUSER

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018

FREE Download Study Package from website: &

Ch 30 - Sources of Magnetic Field! The Biot-Savart Law! = k m. r 2. Example 1! Example 2!

Consider the simple circuit of Figure 1 in which a load impedance of r is connected to a voltage source. The no load voltage of r

Linear Algebra Math 221

Chapter 9 Compressible Flow 667

one primary direction in which heat transfers (generally the smallest dimension) simple model good representation for solving engineering problems

is the instantaneous position vector of any grid point or fluid

16.1 Permanent magnets

A moving charged particle creates a magnetic field vector at every point in space except at its position.

INVERSE QUANTUM STATES OF HYDROGEN

Physics Spring 2012 Announcements: Mar 07, 2012

Outline. Steady Heat Transfer with Conduction and Convection. Review Steady, 1-D, Review Heat Generation. Review Heat Generation II

Physics 207 Lecture 5. Lecture 5

CHAPTER 2 ELECTRIC FIELD

J. N. R E DDY ENERGY PRINCIPLES AND VARIATIONAL METHODS APPLIED MECHANICS

On orthonormal Bernstein polynomial of order eight

Journal of Theoretics

Chapter 5 Trigonometric Functions

Review for 2 nd Midterm

Transcription:

Vect 1 Chapte 0 Vect Intductin f Vect Phical quantitie haing magnitude, diectin and being la f ect algeba ae called ect. Eample : Diplacement, elcit, acceleatin, mmentum, fce, impule, eight, thut, tque, angula mmentum, angula elcit etc. If a phical quantit ha magnitude and diectin bth, then it de nt ala impl that it i a ect. F it t be a ect the thid cnditin f being la f ect algeba ha t be atified. Eample : The phical quantit cuent ha bth magnitude and diectin but i till a cala a it dibe the la f ect algeba. Tpe f Vect (1) Equal ect : T ect and ae aid t be equal hen the hae equal magnitude and ame diectin. () Paallel ect : T ect and ae aid t be paallel hen (i) th hae ame diectin. (ii) ne ect i cala (pitie) nn-e multiple f anthe ect. (3) nti-paallel ect : T ect and ae aid t be anti-paallel hen (i) th hae ppite diectin. (ii) ne ect i cala nn-e negatie multiple f anthe ect. (4) Cllinea ect : When the ect unde cnideatin can hae the ame uppt hae a cmmn uppt then the cnideed ect ae cllinea. (5) Ze ect ( 0) : ect haing e magnitude and abita diectin (nt knn t u) i a e ect. (6) Unit ect : ect diided b it magnitude i a unit ect. Unit ect f i  (ead a cap hat). Since, ˆ ˆ. Thu, e can a that unit ect gie u the diectin. (7) thgnal unit ect ˆ i, ˆ j and kˆ ae called thgnal unit ect. Thee ect mut fm a ight Handed Tiad (It i a cdinate tem uch that hen e Cul the finge f ight hand fm t then e mut get the diectin f alng thumb). The ˆ i, ˆ j, kˆ ˆi, ˆj, kˆ (8) Pla ect : Thee hae tating pint pint f applicatin. Eample diplacement and fce etc. (9) ial Vect : Thee epeent tatinal effect and ae ala alng the ai f tatin in accdance ith ight hand ce ule. ngula elcit, tque and angula mmentum, etc., ae eample f phical quantitie f thi tpe. nticlck ie tatin ial ect i f tatin Fig. 0. Clck ie tatin i f tatin ial ect (10) Cplana ect : Thee ( me) ect ae called cplana ect if the lie in the ame plane. T (fee) ect ae ala cplana. kˆ ĵ î Fig. 0.1

Vect Tiangle La f Vect dditin f T Vect If t nn e ect ae epeented b the t ide f a tiangle taken in ame de then the eultant i gien b the cling ide f tiangle in ppite de. i.e. (1) Magnitude f eultant ect In N, N c N c N in N in In N, e hae and, then N c Fig. 0.4 ( c) ( in ) N c c in (c in ) c c c () Diectin f eultant ect : If i angle beteen c If make an angle ith, then in N, tan N N N N in tan c Paallelgam La f Vect dditin If t nn e ect ae epeented b the t adjacent ide f a paallelgam then the eultant i gien b the diagnal f the paallelgam paing thugh the pint f inteectin f the t ect. (1) Magnitude Since, N CN ( N) CN c N Fig. 0.3 in Special cae : hen = 0 hen = 180 hen = 90 () Diectin tan CN N in c Plgn La f Vect dditin If a numbe f nn e ect ae epeented b the (n 1) ide f an n-ided plgn then the eultant i gien b the cling ide the n th ide f the plgn taken in ppite de. S, e. C D E C CD DE E Fig. 0.6 Nte : eultant f t unequal ect can nt be eultant f thee c-plana ect ma ma nt be e eultant f thee nn c- plana ect can nt be e. Subtactin f ect Since, ( ) and c c(180 ) Since, E c(180 E ) c D Fig. 0.5 D c C c C C N in c

Vect 3 um 1 180 in tan 1 c in(180 ) and tan c(180 ) ut in( 180 ) in and c( 180 ) c in tan c elutin f Vect Int Cmpnent diff Fig. 0.7 If make an angle ith ai, ith ai and ith ai, then c c c l m n Cnide a ect in X-Y plane a hn in fig. If e da thgnal ect and alng and ae epectiel, b la f ect additin, N a f an ect ˆi and ˆj nˆ, ˆi ˆj (i) ut fm figue and c (ii) in (iii) Since and ae uuall knn, Equatin (ii) and (iii) gie the magnitude f the cmpnent f alng and -ae epectiel. Hee it i th t nte nce a ect i eled int it cmpnent, the cmpnent themele can be ued t pecif the ect a (1) The magnitude f the ect i btained b quaing and adding equatin (ii) and (iii), i.e. () The diectin f the ect i btained b diiding equatin (iii) b (ii), i.e. tan ( / ) tan 1 ( / ) ectangula Cmpnent f 3-D Vect Y q ˆi ˆj kˆ Y Fig. 0.8 X Whee l, m, n ae called Diectin Cine f the ect and l m n c c c 1 Nte : When a pint P hae cdinate (,, ) then it pitin ect P i ˆ j ˆ kˆ When a paticle me fm pint ( 1, 1, 1 ) t (,, ) then it diplacement ect ( )ˆi ( )ˆj ( ) kˆ 1 1 1 Scala Pduct f T Vect (1) Definitin : The cala pduct ( dt pduct) f t ect i defined a the pduct f the magnitude f t ect ith cine f angle beteen them. Thu if thee ae t ect and haing angle beteen them, then thei cala pduct itten a. c () Ppetie : (i) It i ala a cala hich i pitie if angle beteen the ect i acute (i.e., < 90 ) and negatie if angle beteen them i btue (i.e. 90 < < 180 ). (ii) It i cmmutatie, i.e... (iii) It i ditibutie, i.e..( C).. C (i) b definitin. c. i defined a Fig. 0.10 X Z Fig. 0.9

4 Vect. The angle beteen the ect c 1 () Scala pduct f t ect ill be maimum hen c ma 1, i.e. 0, i.e., ect ae paallel (. ) ma (i) Scala pduct f t ect ill be minimum hen c min 0, i.e. 90 (. ) min 0 i.e. if the cala pduct f t nne ect anihe the ect ae thgnal. (ii) The cala pduct f a ect b itelf i temed a elf dt pduct and i gien b ( ). c i.e.. (iii) In cae f unit ect nˆ n ˆ. nˆ 1 1 c0 1 n ˆ. nˆ ˆ i.ˆi ˆ j.ˆj k ˆ. kˆ 1 (i) Ptential eneg f a diple U : If an electic diple f mment p i ituated in an electic field E a magnetic diple f mment M in a field f inductin, the ptential eneg f the diple i gien b : U E p. E and U M. Vect Pduct f T Vect (1) Definitin : The ect pduct c pduct f t ect i defined a a ect haing a magnitude equal t the pduct f the magnitude f t ect ith the ine f angle beteen them, and diectin pependicula t the plane cntaining the t ect in accdance ith ight hand ce ule. itten a C Thu, if and ae t ect, then thei ect pduct i a ect C defined b C in nˆ (i) In cae f thgnal unit ect ˆ i. ˆj ˆj. kˆ kˆ.ˆi 11 c 90 0 ˆ i, ˆ j and ˆk, () In tem f cmpnent ( i j k ).( i j k ) ]. [ Z (3) Eample : (i) Wk W : In phic f cntant fce k i defined a, W Fc (i) ut b definitin f cala pduct f t ect, F. Fc (ii) S fm eq n (i) and (ii) W F. i.e. k i the cala pduct f fce ith diplacement. (ii) Pe P : W F. dw d F. [ F i cntant] P F. i.e., pe i the cala pduct f fce ith dw elcit. P and d (iii) Magnetic Flu : Magnetic flu thugh an aea i gien b d dc (i) ut b definitin f cala pduct. d d c...(ii) S fm eq n (i) and (ii) e hae d. d.d d Fig. 0.11 The diectin f, i.e. C i pependicula t the plane cntaining ect and and in the ene f adance f a ight handed ce tated fm (fit ect) t (ecnd ect) thugh the malle angle beteen them. Thu, if a ight handed ce he ai i pependicula t the plane famed b and i tated fm t thugh the malle angle beteen them, then the diectin f adancement f the ce gie the diectin f i.e. C () Ppetie (i) Vect pduct f an t ect i ala a ect pependicula t the plane cntaining thee t ect, i.e., thgnal t bth the ect and, thugh the ect and ma ma nt be thgnal. (ii) Vect pduct f t ect i nt cmmutatie, i.e., [but ] Fig. 0.1 Hee it i th t nte that in i.e. in cae f ect and magnitude ae equal but diectin ae ppite. (iii) The ect pduct i ditibutie hen the de f the ect i tictl maintained, i.e.

Vect 5 ( C) C (i) The ect pduct f t ect ill be maimum hen in ma 1, i.e., 90 [ ] nˆ ma i.e. ect pduct i maimum if the ect ae thgnal. () The ect pduct f t nn- e ect ill be minimum hen in minimum = 0, i.e., 0 180 [ ] min 0 (i) Fce n a chaged paticle q ming ith elcit in a magnetic field i gien b F q( ) () Tque n a diple in a field p E and M Lami' Theem In an C ith ide a, b, c in in in a b c 180 E i.e. if the ect pduct f t nn-e ect anihe, the ect ae cllinea. (i) The elf c pduct, i.e., pduct f a ect b itelf anihe, i.e., i null ect in 0 nˆ 0 c b 180 (ii) In cae f unit ect nˆ nˆ 0 that ˆi ˆi ˆj ˆj kˆ kˆ 0 (iii) In cae f thgnal unit ect, ith ight hand ce ule : ĵ ˆ i, ˆ, j kˆ in accdance ĵ 180 Fig. 0.14 i.e. f an tiangle the ati f the ine f the angle cntaining the ide t the length f the ide i a cntant. a F a tiangle he thee ide ae in the ame de e etablih the Lami' theem in the flling manne. F the tiangle hn î kˆ î a b c 0 [ll thee ide ae taken in de] (i) a b c (ii) kˆ Fig. 0.13 ˆi ˆj kˆ, ˆj kˆ ˆi and kˆ ˆi ˆj nd a c pduct i nt cmmutatie, ˆj ˆi kˆ, kˆ ˆj ˆi and ˆi kˆ ˆj () In tem f cmpnent Pe-multipling bth ide b a a ( a b) a c 0 ab a c a b c a (iii) Pe-multipling bth ide f (ii) b b b ( a b) b c b a b b b c ˆi ˆj kˆ ˆ( i ) ˆ( j ) kˆ( ) (3) Eample : Since ect pduct f t ect i a ect, ect phical quantitie (paticulal epeenting tatinal effect) like tque, angula mmentum, elcit and fce n a ming chage in a magnetic field and can be epeed a the ect pduct f t ect. It i ell etablihed in phic that : (i) Tque F (ii) ngula mmentum L p (iii) Velcit a b b c a b b c (i) Fm (iii) and (i), e get a b b c c a Taking magnitude, e get a b b c c a ab in( 180 ) bcin( 180 ) cain( 180 ) abin bcin cain Diiding thugh ut b abc, e hae in in in a b c elatie Velcit (1) Intductin : When e cnide the mtin f a paticle, e aume a fied pint elatie t hich the gien paticle i in mtin. F eample, if e a that ate i fling ind i

6 Vect bling a pen i unning ith a peed, e mean that thee all ae elatie t the eath (hich e hae aumed t be fied). S X Fig. 0.15 N t find the elcit f a ming bject elatie t anthe ming bject, cnide a paticle P he pitin elatie t fame S i hile elatie t S i. If the pitin f fame S elatie t S at an time i then fm figue, SS Diffeentiating thi equatin ith epect t time d Y d ds S Y S ' S S P ' X S S ith e elatie t the cente f eath, the elcit f atellite elatie t the uface f eath e e S if the atellite me fm et t eat (in the diectin f tatin f eath n it ai) it elcit elatie t eath' uface ill be e e nd if the atellite me fm eat t et, i.e., ppite t the mtin f eath, e ( ) e (4) elatie elcit f ain : If ain i falling eticall ith a elcit and an bee i ming hintall ith peed M the elcit f ain elatie t bee ill be e M hich b la f ect additin ha magnitude M M M diectin tan 1 ( M / ) ith the etical a hn in fig. [a d / ] S S S S () Geneal Fmula : The elatie elcit f a paticle P 1 ming ith elcit 1 ith epect t anthe paticle P ming ith elcit i gien b, 1 then : = 1 (i) If bth the paticle ae ming in the ame diectin then : 1 1 (ii) If the t paticle ae ming in the ppite diectin, 1 1 (iii) If the t paticle ae ming in the mutuall pependicula diectin, then: P 1 1 Fig. 0.16 (i) If the angle beteen 1 / 1 1 c. 1 and be, then (3) elatie elcit f atellite : If a atellite i ming in equatial plane ith elcit P 1 1 1 and a pint n the uface f eath (5) elatie elcit f imme : If a man can im elatie t ate ith elcit and ate i fling elatie t gund ith elcit elcit f man elatie t gund M ill be gien b: M M elcit M M M, i.e., M Fig. 0.17 M S if the imming i in the diectin f fl f ate, nd if the imming i ppite t the fl f ate, (6) Cing the ie : Suppe, the ie i fling ith. man can im in till ate ith elcit m. He i tanding n ne bank f the ie and ant t c the ie, t cae aie. (i) T c the ie e htet ditance : That i t c the ie taight, the man huld im making angle ith the upteam a hn. Upteam m Fig. 0.18 Dnteam

Vect 7 ect can hae an numbe, een infinite cmpnent. (minimum cmpnent) Hee i the tiangle f ect, in hich, m. Thei eultant i gien b. The diectin f imming make angle ith upteam. Fm the tiangle, e find, c l m m in m Whee i the angle made b the diectin f imming ith the htet ditance () ac the ie. Time taken t c the ie : If be the ih f the ie, then time taken t c the ie ill be gien b t1 m (ii) T c the ie in htet pible time : The man huld im pependicula t the bank. The time taken t c the ie ill be: t m Upteam Fig. 0.19 In thi cae, the man ill tuch the ppite bank at a ditance dn team. Thi ditance ill be gien b: t m ll phical quantitie haing diectin ae nt ect. F eample, the electic cuent pee diectin but it i a cala quantit becaue it can nt be added multiplied accding t the ule f ect algeba. ect can hae nl t ectangula cmpnent in plane and nl thee ectangula cmpnent in pace. m Dnteam Flling quantitie ae neithe ect n cala : elatie denit, denit, icit, fequenc, peue, te, tain, mdulu f elaticit, pin ati, mment f inetia, pecific heat, latent heat, ping cntant ludne, eitance, cnductance, eactance, impedance, pemittiit, dielectic cntant, pemeabilit, uceptibilit, efactie inde, fcal length, pe f len, ltman cntant, Stefan cntant, Ga cntant, Gaitatinal cntant, dbeg cntant, Planck cntant etc. Ditance ceed i a cala quantit. The diplacement i a ect quantit. Scala ae added, ubtacted diided algebaicall. Vect ae added and ubtacted gemeticall. Diiin f ect i nt alled a diectin cannt be diided. Unit ect gie the diectin f ect. Magnitude f unit ect i 1. Unit ect ha n unit. F eample, elcit f an bject i 5 m 1 due Eat. 1 i.e. 5m due eat. 1 5 (Eat) ˆ m Eat 1 5m S unit ect ˆ ha n unit a Eat i nt a phical quantit. Unit ect ha n dimenin. ˆi.ˆi ˆj.ˆj k ˆ. kˆ 1 ˆi ˆi ˆj ˆj kˆ kˆ 0 ˆi ˆj kˆ, ˆj kˆ ˆ, i kˆ ˆi ˆj ˆi.ˆj ˆj. kˆ kˆ.ˆi 0 0. l 0 ut ecaue and i cllinea ith Multiplicatin f a ect ith 1 eee it diectin. If, then = and ˆ ˆ. If 0, then = but ˆ ˆ. Minimum numbe f cllinea ect he eultant can be e i t. Minimum numbe f cplane ect he eultant i e i thee. Minimum numbe f nn cplane ect he eultant i e i fu. T ect ae pependicula t each the if. 0.

8 Vect T ect ae paallel t each the if 0. Diplacement, elcit, linea mmentum and fce ae pla ect. ngula elcit, angula acceleatin, tque and angula mmentum ae aial ect. Diiin ith a ect i nt defined becaue it i nt pible t diide ith a diectin. Ditance ceed i ala pitie quantit. The cmpnent f a ect can hae magnitude than that f the ect itelf. The ectangula cmpnent cannt hae magnitude geate than that f the ect itelf. When e multipl a ect ith 0 the pduct becme a null ect. The eultant f t ect f unequal magnitude can nee be a null ect. Thee ect nt ling in a plane can nee add up t gie a null ect. quantit haing magnitude and diectin i nt neceail a ect. F eample, time and electic cuent. Thee quantitie hae magnitude and diectin but the ae cala. Thi i becaue the d nt be the la f ect additin. phical quantit hich ha diffeent alue in diffeent diectin i called a ten. F eample : Mment f inetia ha diffeent alue in diffeent diectin. Hence mment f inetia i a ten. the eample f ten ae efactie inde, te, tain, denit etc. The magnitude f ectangula cmpnent f a ect i ala le than the magnitude f the ect If, then, and. If C. if C 0, then, and C lie in ne plane. If C, then C i pependicula t a ell a. If, then angle beteen and i 90. eultant f t ect ill be maimum hen = 0 i.e. ect ae paallel. ma P Q PQ c 0 P Q eultant f t ect ill be minimum hen = 180 i.e. ect ae anti-paallel. min P Q PQ c180 P Q Thu, minimum alue f the eultant f t ect i equal t the diffeence f thei magnitude. Thu, maimum alue f the eultant f t ect i equal t the um f thei magnitude. When the magnitude f t ect ae unequal, then min P Q 0 [ P Q ] Thu, t ect P and Q haing diffeent magnitude can nee be cmbined t gie e eultant. Fm hee, e cnclude that the minimum numbe f ect f unequal magnitude he eultant can be e i thee. n the the hand, the minimum numbe f ect f equal magnitude he eultant can be e i t. ngle beteen t ect and i gien b. c Pjectin f a ect in the diectin f ect. Pjectin f a ect in the diectin f ect. If ect, and C ae epeented b thee ide ab, bc and ca epectiel taken in a de, then C ab bc ca The ect ˆi ˆj kˆ i equall inclined t the cdinate ae at an angle f 54.74 degee. If C, then. C 0. If. C 0, then. and C ae cplana. If angle beteen and i 45, then. If 1 3... n 0 and 1 3... n then the adjacent ect ae inclined t each the at angle / n. If C and C, then the angle beteen and i 90. l, and C can hae the flling alue. (i) = 3, = 4, C = 5 (ii) = 5, = 1, C = 13 (iii) = 8, = 15, C = 17.